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Table 5: Some important notations in Sec. 2
Notations Description

µ the distribution of the subset of the training data
µT a subset of the contributors
G generative model
G∗ well-trained generative model
Z noise distribution
z a latent sample in the latent space

d(·, ·) distance function
X , x training dataset, training sample
X̂ , x̂ generated dataset, generated sample
S a subset of the training data
S∗ the real K contributors
K K = |S∗|
T K contributors found by a data valuator
A attribute space
X data distribution
L loss function

f , f ′
S∗ labeling function, model trained on S∗

Roadmap of Appendix In this appendix, we provide a concise summary of key notations and
Algorithm 1, detailing the pipeline of GMValuator in Sec. A and Sec. B. A more comprehensive
review of related work is also provided in Sec. C. Additionally, Sec. D contains detailed statistical
analysis for the results depicted in Figure 1. Our main text focuses on experiments conducted on
benchmark datasets such as MNIST and CIFAR-10, along with a large-scale dataset, ImageNet,
to evaluate the most significant contributors found by GMVALUATOR are in the same class as the
generated sample (C1). In Sec. E, we extend the evaluation of GMVALUATOR to other generative
models for C1. Additionally, we expand our evaluation using C2 by considering the ground truth of
multiple combined attributes. We operate under the assumption that the most significant contributors
to a generated sample should exhibit similar attributes in the images. For a more thorough validation
of the effectiveness of GMVALUATOR, high-resolution datasets like AFHQ and FFHQ are also
employed for C2. The appendix includes additional experimental insights such as ablation studies,
alternative embedding approaches, alternative distance metrics, calibration and further experimental
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details in Sec. F, H, I and J, respectively. The potential applications, limitations and future directions
are also provided in Sec. K and Sec. L. Lastly, we present the proof of our theorem and ensure the
reproducibility of our experiments.

A NOTATION

To make motivation and problem formulation clear, we list some significant notations from Sec. 2 in
Table 5.

B ALGORITHM

To better introduce GMVALUTOR, the pseudocode is shown in Algorithm 1.

Algorithm 1 GMVALUATOR

Input: Training dataset X = {xi}ni=1, a well-trained
model G∗, random distribution Z .
Output: Generated dataset X̂ , the value of training data
points Φ = {ϕ1, ϕ2, ..., ϕn}

1: X̂ = {x̂j}mj=1 ← G∗(zj), for zj ∈ Z // Generate the synthetic dataset
2: for x̂j in X̂ do
3: // Matching process (see Sec. 3.1)
4: Pj = f(X, x̂j) // Including two phases
5: for xi in Pj do
6: dij ← DreamSim(xi, x̂j) or others
7: end for
8: qj = MANIQA(x̂j) // Image Quality Assessment (see Sec. 3.2)
9: Calculate score V(xi, x̂j , dij , qj) using Eq. equation 6 // Contribution Score Calculation (see

Sec. 3.3)
10: end for
11: // Calculation of data value and return the result Φ
12: for xi in X do
13: Calculate xi’s value ϕi using Eq.equation 5
14: end for
15: return Φ = {ϕ1, ϕ2, ..., ϕn}

C RELATED WORK

C.1 DATA VALUATION

There are three lines of methods on data valuation: metric-based methods, influence-based methods
and data-driven methods. In terms of metric-based methods, the commonly-used approach is
to calculate its marginal contribution (MC) based on performance metrics (e.g., accuracy, loss).
As the basic method depending on performance metrics for data valuation, LOO (Leave-One-
Out) Cook (1977) is used to evaluate the value of the training sample by observational change
of model performance when leaving out that data point from the training dataset. To overcome
inaccuracy and strict desirability of LOO, SV Ghorbani & Zou (2019) and BI Wang & Jia (2023)
originated from Cooperative Game Theory are widely used to measure the contribution of data Jia
et al. (2019b); Ghorbani et al. (2020). Considering the joining sequence of each training data point,
SV needs to calculate the marginal performance of all possible subsets in which the time complexity
is exponential. Despite the introduction of techniques such as Monte-Carlo and gradient-based
methods, as well as others proposed in the literature, approximating data significance value (SV)
is computationally expensive and it typically requires retraining Ghorbani & Zou (2019); Jia et al.
(2019a). The computational cost and need for unconventional performance metrics present difficulties
in adapting the methods to generative models. As for influence-based methods, they evaluate the
influence of data points on model parameters by computing the inverse Hessian for data valuation Jia
et al. (2019a); Richardson et al. (2019); Saunshi et al. (2022). Due to the high computational cost,
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Table 6: The statistic test of data values of Xv1 versus Xv2 using different generative models. Xv1 is
supposed to have higher value than Xv2, given the generated data.

H0: ϕ(Di, S, µi) ≥ ϕ(Dj , S, µi)
H1: ϕ(Xi, S, µi) < ϕ(Xj , S, µi), i ∈ Xv1, j ∈ Xv2

BigGAN Classifier-free Guidance Diffusion

Average value (v1) 0.319654 0.030434
Average value (v2) 1.632352 0.369565

P-value 6.937027 ×10−68 8.053195 ×10−55

T-statistic 17.924512 15.947860
Significance level 0.01 0.01

Result p-value less than 0.01, reject H0,
value of v2 less than v1 averagely

p-value less than 0.01, reject H0,
value of v2 less than v1 averagely

some approximation methods have also been proposed Pruthi et al. (2020). In addition, the use of
influence function for data valuation is not limited to discriminative models, but can also be applied
to specific generative models such as GAN and VAE Terashita et al. (2021); Kong & Chaudhuri
(2021). When it comes to data-driven methods, most of them are training-free methods that focus on
the data itself Xu et al. (2021); Wu et al. (2022); Just et al. (2023).

C.2 GENERATIVE MODEL

Generative models are a type of unsupervised learning that can learn data distributions. Recently,
there has been significant interest in combining generative models with neural networks to create
Deep Generative Models, which are particularly useful for complex, high-dimensional data distri-
butions. They can approximate the likelihood of each observation and generate new synthetic data
by incorporating variations. Variational auto-encoders (VAEs) Rezende et al. (2014) optimize the
log-likelihood of data by maximizing the evidence lower bound (ELBO), while generative adversarial
networks (GANs) Goodfellow et al. (2020); Karras et al. (2020) involves a generator and discriminator
that compete with each other, resulting in strong image generation. Recently proposed diffusion
models Ho et al. (2020); Rombach et al. (2022) add Gaussian noise to training data and learn to
recover the original data. These models use variational inference and have a fixed procedure with a
high-dimensional latent space.

D STATISTICAL RESULTS FOR FIGURE 1

It is evident by visualization in Figure 1 that the data points in Xv2 (used for training) are more
overlapped with generated data than data points in Xv1 (not used for training). We perform statistic
testing on data values obtained by GMVALUATOR, to examine if data points Xv2 (used for training)
have significantly higher values than those of the data points in Xv1 (not used for training).

To this end, we use a t-test with the null hypothesis that data values in Xv1 should not be smaller
than those of Xv12. We compute p-value, which is the probability of getting a difference as large
as we observed, or larger, under the null hypothesis. If the p-value is very low, we reject the null
hypothesis and consider our approach, GMVALUATOR, to be verified with a high level of confidence
(1-p). Typically, a p-value smaller than significance level 0.01 is used as a threshold for rejecting the
null hypothesis. Table 6 showcases the outcomes of Xv1 and Xv2 in CIFAR-10 with p≪ 0.01 for
both BigGAN and diffusion model, indicating that the data points in Xv2 have significantly more
value than those in Xv1. Consequently, these findings align with the presumption that the trained
dataset Xv2 has a higher value than the untrained dataset Xv1 and verify our approach.
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Figure 6: Visualization of Identical Attributes Test on AFHQ and FFHQ. The results shown in the
first and second subfigures on the left are conducted on AFHQ-Cat and AFHQ-Dog, respectively.
The subfigure on the right presents the results of FFHQ. In each subfigure, the generated samples are
on the left, and the top k contributors in the training dataset are on the right.

Table 7: Performance comparison of Identical Class Test.
MNIST

GAN (%) k=30 k=50 k=100
GMValuator (No-Rerank) 96.27 96.26 95.86
GMValuator (l2-distance) 97.73 97.58 96.03

GMValuator (LPIPS) 97.77 97.72 97.38
GMValuator (DreamSim) 97.43 97.44 97.40

Diffusion (%) k=30 k=50 k=100
GMValuator (No-Rerank) 92.40 91.82 91.26
GMValuator (l2-distance) 92.90 92.66 91.88

GMValuator (LPIPS) 93.73 97.72 92.42
GMValuator (DreamSim) 93.90 93.44 92.55

CIFAR-10
BigGAN (%) k=30 k=50 k=100

GMValuator (No-Rerank) 64.70 63.80 62.14
GMValuator (l2-distance) 64.70 63.80 62.14

GMValuator (LPIPS) 63.67 62.80 61.51
GMValuator (DreamSim) 70.33 68.74 65.18

Class-free Guidance Diffusion (%) k=30 k=50 k=100
GMValuator (No-Rerank) 72.67 72.00 71.00
GMValuator (l2-distance) 72.67 72.00 71.00

GMValuator (LPIPS) 72.53 72.28 71.06
GMValuator (DreamSim) 79.37 78.08 74.61

E ADDITIONAL RESULTS ON C1 AND C2

E.1 (C1) IDENTICAL CLASS TEST ON OTHER GENERATIVE MODELS

We have presented Identical Class Test (C1) on β-VAE and MNIST LeCun et al. (1998), CIFAR-
10 Krizhevsky et al. (2009) in Sec. 4.3 in our main context. Since GMVALUATOR is model-agnostic,
we further validate our method of C1 on other generative models.

Here, we conduct the experiments using a GAN and a Diffusion Model on MNIST. The architectural
details of the used generative models are described in Sec. J.3 in the appendix. We also conduct
the experiment on BigGAN Brock et al. (2018) and Class-free Guidance Diffusion Ho & Salimans
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(2022) with CIFAR-10. We used the same number of generated samples m = 100 as the experiments
presented in Sec. 4.

Following the similar settings in Sec. 4.3 (C1), we examine the class(es) of is top k contributors for
a given generated data in the training data. We calculate the number of training samples, denoted
as Q, from the top k contributors that have the same class as the generated data. The identical class
ratio, denoted as ρ, is calculated as ρ = Q/k. We report the average value of ρ across the generated
datasets for different choices of k in Table 7. GMVALUATOR (DreamSim) has the highest ratio
of contributors that belong to the same class as the generated sample among most of the models
evaluated on MNIST and CIFAR-10 datasets for different values of k. And the ratio improves as the
value of k decreases, which is consistent with the top k assumption and validates our method.

Table 8: Performance of Identical Attributes Test (C2) of multiple combined attributes.
Top K contributors: k=5 k=10 k=15

Attribute: Eyeglasses & Gender (%)
GMValuator (No-Rerank) 50.10 48.48 48.42
GMValuator (l2-distance) 59.19 56.67 56.23

GMValuator (LPIPS) 78.18 74.24 73.87
GMValuator (DreamSim) 92.53 90.61 90.30

Attribute: Eyeglasses & Hat (%)
GMValuator (No-Rerank) 78.79 78.38 85.86
GMValuator (l2-distance) 84.44 82.93 83.23

GMValuator (LPIPS) 86.87 86.16 86.33
GMValuator (DreamSim) 89.49 87.58 87.41

Attribute: Gender & Hat (%)
GMValuator (No-Rerank) 58.59 57.47 57.71
GMValuator (l2-distance) 61.62 60.51 60.40

GMValuator (LPIPS) 63.84 63.23 62.96
GMValuator (DreamSim) 65.25 64.44 64.18

E.2 (C2) IDENTICAL ATTRIBUTES TEST ON CELEBA

We extend C1 to focus on the attributes present in the images, treating them as ground truth rather
than class labels, as discussed in Sec. 4.4. Our experiments now incorporate multiple attributes
simultaneously, rather than just a single attribute, to verify the performance of GMVALUATOR. For
instance, when evaluating a generated image with both a hat and eyeglasses, the most significant
contributors identified should also include both of these attributes. Table 8 showcases some outcomes
of identical attributes test when regarding multiple combined attributes as ground truth, which validate
the effectiveness of our methods.

E.3 (C2) IDENTICAL ATTRIBUTES TEST ON OTHER DATASETS

To further validate GMVALUATOR, we also conducted experiments on high-resolution datasets:
AFHQ Choi et al. (2020) and FFHQ Karras et al. (2019), following the same settings in Sec 4.4. The
results are shown in Figure 6, which demonstrates the effectiveness of our methods in C2. The results
show that the top k contributors have similar attributes with the generated sample such as fur color of
cats or dogs in AFHQ. For the experiment conducted on FFHQ, human faces attributes of the most
significant contributors are also similar to the attributes in generated images.

F DIFFERENT GENERATED DATA SIZES

Since our value function ϕi (Eq. equation 5) for training data xi is computed by averaging over
generated samples, it is expected that the sensitivity of ϕi is connected to the size m of the in-
vestigated generated sample. To explore the influence of generated data size m on the utilization
of GMVALUATOR, we perform sensitivity testing on MNIST, CIFAR10 using generative models
GAN Goodfellow et al. (2020), and Diffusion models Dhariwal & Nichol (2021) as depicted below.
The dataset, model and used k are denoted under each subfigure of Figure 7. First, we generate a
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Figure 7: The change of ρ with the different number of generated samples m on MNIST and CIFAR-
10 by diverse generative models.

varying number of samples from the same class. Specifically, we consider four different sample
sizes, denoted by m, which are given by 1, 10, 30, and 50. Next, we evaluate the GMVALUATOR
using parameter C1, and this evaluation is performed for each of the aforementioned values of m.
Subsequently, we conduct the experiment 10 times using GMVALUATOR (No-Rerank), each time
with different m-sized generated data samples from the same class. The results are presented as the
mean and standard deviation (ρ) for accuracy, taken over these 10 runs. The results shown in Figure 7
imply that varying m does not yield notable differences in mean accuracy and increasing the number
of generated samples m leads to more stable and consistent results.

G ALTERNATIVE EMBEDDING APPROACHES

In the step of efficient similarity matching, the embedding fe is exclusively used in the recall phase
for retaining n samples with non-minimal contributions. Apart from using CLIP for embedding, we
also investigate the influence for the results when using other embedding methods. We present results
in Table 9 using more embedding methods, showing similar performance with CLIP with “Rerank”.
The reason for this results is that we implement re-ranking that relies on the image space rather than
the embedding space, which allows us to derive accurate top k contributors from n samples n≫ k.
Thus, the embedding could tolerate some noise in the recall phase.
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Table 9: Comparison of different embedding methods.
MNIST (%) No-Rerank l2-distance LPIPS DreamSim

CLIP 86.41 87.76 88.78 88.78
Alexnet 79.77 84.82 86.51 88.72

Densenet 80.47 86.77 87.97 89.35

H ALTERNATIVE DISTANCE METRIC

We suggest utilizing Learned Perceptual Image Patch Similarity (LPIPS) Zhang et al. (2018) or
DreamSim Fu et al. (2023) as the distance metric d during the re-ranking phase. This enables to
understand the perceptual dissimilarity between generated and real data points. These metrics are
applied in the image embedding space derived from pre-trained models. Alternatively, distance
measurement can be based on pixel space, such as employing l2-distance. Notably, we find that
distances calculated in the input pixel space yield comparable outcomes as shown in Table 7. This
implies that our method GMVALUATOR could be flexible to the different choices of distance metrics
and the selection can depend on data prior.

I NECESSITY FOR CALIBRATION

For challenges 2 and 3, we utilize image quality assessment and establish a non-zero scores rule
for calibration in GMVALUATOR. To better understand the impact and necessity of calibration,
we compare the distribution of the top 1, 2, and 3 contributors’ scores with (w) and without (w/o)
calibration conducted on MNIST in Figure 8. It is evident that scores without calibration are generally
higher than with calibration. We also extend C3 and perform an ablation study in Figure 9 on
scenarios where the generated samples include low-quality outputs. The results show that the OOD
(out-of-distribution) training samples’ value rank by GMValuator without (w/o) calibration is smaller,
indicating significant bias and poor performance.

Figure 8: Sore Distribution Figure 9: Value Rank

J ADDITIONAL EXPERIMENTAL DETAILS

J.1 JUSTIFICATION OF EXPERIMENT SETUP

We provide a detailed justification in Table 10 for our experiment setup from C1 to C4.

• C1. In Identical Class Test, the baseline method is VAE-TracIn Kong & Chaudhuri (2021),
which can find the most influenced instances in the training dataset. Since VAE-TracIn is
the model-specific method, we only need to compare it with GMVALUATOR when VAE
model is used. Besides, all the datasets used in C1 should have the class labels. Considering
the computational demands detailed in VAE-TracIn Kong & Chaudhuri (2021), the runtime
complexity of VAE-TracIn correlates with the number of network parameters and the size of
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the dataset. Therefore, our analysis primarily utilizes simpler benchmark datasets such as
MNIST and CIFAR-10 for comparative evaluations with VAE-TracIn.

• C2. In extending C1, we use image attributes to supplant the concept of class for datasets
lacking class labels. For datasets with attribute labels, quantified experiments are feasible,
as demonstrated in Table 3 and Table 8. For datasets without attribute labels, we employ
visualized experiments.

• C3. IF4GAN, a model-specific method for GAN, serves as the baseline for measuring
data value. Adhering to the settings outlined in Terashita et al. (2021) and considering the
impractical computational costs, we conduct experiments on the same dataset (MNIST)
in Terashita et al. (2021) using DCGAN.

• C4. We present a comparison of the efficiency of GMVALUATOR against baseline methods.
In accordance with the settings used for VAE-TracIN and IF4GAN in Kong & Chaudhuri
(2021), we report the efficiency results for C1 on the MNIST and CIFAR-10 datasets, and
for C3 on MNIST.

J.2 DATASETS

We conduct the generation tasks in the experiments on benchmark datasets (i.e., MNIST LeCun et al.
(1998) and CIFAR Krizhevsky et al. (2009)), face recognition dataset (i.e., CelebA Liu et al. (2018)),
high-resolution image dataset AFHQ Choi et al. (2020) and FFHQ Karras et al. (2019), large-scale
image dataset ImageNet Deng et al. (2009).

MNIST. The MNIST dataset consists of a collection of grayscale images of handwritten digits (0-9)
with a resolution of 28x28 pixels. The dataset contains 60,000 training images and 10,000 testing
images.

CIFAR-10. CIFAR-10 dataset consists of 60,000 color images in 10 different classes, with 6,000
images per class. The classes include objects such as airplanes, cars, birds, cats, deer, dogs, frogs,
horses, ships, and trucks. Each image in the CIFAR-10 dataset has a resolution of 32x32 pixels.

CelebA. The CelebA dataset is a widely used face recognition and attribute analysis dataset, which
contains a large collection of celebrity images with various facial attributes and annotations. The
dataset consists of more than 200,000 celebrity images, with each image labeled with 40 binary
attribute annotations such as gender, age, facial hair, and presence of eyeglasses.

AFHQ. The AFHQ dataset is a high-resolution image dataset that focuses on animal faces (e.g., dogs,
cat), and it consists of high-resolution images with 512 × 512 pixels.

FFHQ. The FFHQ dataset is a high-resolution face dataset that contains high-quality images
(1024x1024 pixels) of human faces.

ImageNet. ImageNet is a large-scale image dataset, which contains over 14 million images and is
categorized into more than 20,000 classes.

Table 10: Justification of Experiment Setup. The selection of datasets and models was based on
three critical factors that guided the process. Firstly, attribute labels were required to evaluate C2
effectively. Secondly, benchmark datasets were meticulously chosen to ensure a fair comparison
with baselines while also taking into account computational costs (C3 and C4). Finally, the selected
generative models are powerful enough to generate good-quality data for the datasets.

Dataset Model Baseline Label Requirements

C1 MNIST, CIFAR-10 VAE VAE-TracIn Kong & Chaudhuri (2021) Class labels
Diffusion, GAN - Class labels

ImageNet Masked Diffusion Transformer Gao et al. (2023) - Class labels

C2 CelebA Diffusion-StyleGAN - Attribute labels
AFHQ, FFHQ StyleGAN - -

C3 MNIST DCGAN IF4GAN Terashita et al. (2021) Class labels

C4 MNIST, CIFAR-10 VAE VAE-TracIn Kong & Chaudhuri (2021) Class labels
MNIST DCGAN IF4GAN Terashita et al. (2021) Class labels
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J.3 ARCHITECTURE OF GENERATIVE MODELS

In our experiments, we leverage different generative models in the class of GAN, VAE and diffusion
models. We utilize β-VAE for both MNIST and CIFAR-10 datasets while a simple GAN is conducted
on MNIST. BigGAN and β-VAE are also conducted on CIFAR-10. We list the architecture details
for these generative models from Table 11 to Table 13. StyleGAN is used for high-resolution datasets
AFHQ and FFHQ. CelebA uses Diffusion-StyleGAN Wang et al. (2022), for which we use the exact
architecture in their open-sourced code. In addition, Masked Diffusion Transformer, as introduced by
Gao et al. Gao et al. (2023), is applied to the ImageNet.

Table 11: The architecture of GAN for MNIST.
Generator

FC(100, 8192), BN(32), ReLU
Conv2D(128, 64, 4, 2, 1), BN(64), ReLU

Discriminator
Conv2D(1, 128, 4, 2, 1), BN(128), LeakyReLU

FC(8192, 1024), BN(1024), LeakyReLU

Table 12: The architecture of BigGAN.

Input 28×28×1 (MNIST) & 32×32×3 (CIFAR-10).

Encoder
Conv 32×4×4 (stride 2), 32×4×4 (stride 2),

64×4×4 (stride 2), 64×4×4 (stride 2),
FC 256. ReLU activation.

Latents 32

Decoder Deconv reverse of encoder. ReLu acitvation.
Gaussian.

K DISCUSSION ON THE POSSIBLE APPLICATIONS

The application of data valuation within generative models offers a wide range of opportunities. A
potential use case is to quantify privacy risks associated with generative model training using specific
datasets, since the matching mechanism GMVALUATOR can help re-identify the training samples
given the generated data. By doing so, organizations and individuals will be able to audit the usage of
their data more effectively and make informed decisions regarding its use.

Table 13: The architecture of β-VAE.

β-VAE
Generator Discriminator

z ∈ R120 ∼ N (0, I)

Embed(y) ∈ R32 RGB image x ∈ R32×32×3

Linear (20 + 128)→ 4× 4× 16ch ResBlock down ch→ 2ch

ResBlock up 16ch→ 16ch Non-Local Block (64× 64)

ResBlock up 16ch→ 8ch ResBlock down 2ch→ 4ch

ResBlock up 8ch→ 4ch ResBlock down 4ch→ 8ch

ResBlock up 4ch→ 2ch ResBlock down 8ch→ 16ch

Non-Local Block (16× 16) ResBlock down 16ch→ 16ch

ResBlock up 2ch→ ch ResBlock 16ch→ 16ch

BN, ReLU, 3× 3 Conv ch→ 3 ReLU, Global sum pooling
Tanh Embed (y) · h+ ( linear→ 1)
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Another promising application is material pricing and finding in content creation. For example, when
training generative models for various purposes, such as content recommendation or personalized
advertising, data evaluation can be used to measure the value of reference content.

In addition, GMVALUATOR can play an important role in the development of ensuring the responsi-
bility of using synthetic data in safe-sensitive fields, such as healthcare or finance. By assessing the
value of the data used in generative model training, researchers can ensure that the generated data are
robust and reliable.

Last but not least, the applications of GMVALUATOR can promote the recognition of intellectual
property rights. Determining the value of the intellectual property being generated by generative
models is critical. By evaluating the data employed in training generative models, we can develop a
more comprehensive understanding of copyright that may emerge from the generative models. In
essence, such insights can help advance licensing agreements for the utilization of the generative
model and its outputs.

L CURRENT LIMITATION AND FUTURE DIRECTIONS

The limitation of this work is that it only measures data value for vision-related generative models
and conducts experiments exclusively within the field of computer vision. However, this does not
mean that GMVALUATOR cannot be easily adapted to Natural Language Processing (NLP) fields,
given its core idea of similarity matching. In the future, we should extend GMVALUATOR to NLP
and assess the data value for language-related generative models, such as large language models
(LLMs).

M OMITTED PROOFS

We follow Just et al. (2023) to prove the theorem. Firstly, we give several assumptions that will be
used in later proof.

Assumption M.1 Following Assumption 2.3, given a distance function d(·, ·) between , we defined
the coupling between X(T |f) and X(S∗|f) as π∗:

π∗ := arg inf
π∈Π(X(T |f),X(S∗|f))

E(xT ,xS∗ )∼πd(xT , xS∗) (7)

It is easy to see that all joint distributions defined above are couplings between the corresponding
distribution pairs. Then, following Just et al. (2023) we prove the main Theorem.

Theorem M.2 (Restated of Theorem 2.4.) Let f
′

S∗ : µ→ A = {0, 1}V be the model trained on the
optimal contributor dataset S∗. Following Assumption 2.3, if the contributors are corresponding to
the given generated data X̂ , we have:

Ex∼µT

[
L
(
f(x), f

′

S∗(x)
)]
− Ex∼µS

[
L
(
f(x), f

′

S∗(x)
)]

≤ kϵ ·
[
dW (X(T |f),X(X̂|f))+dW (X(S∗|f),X(X̂|f))

] (8)

Proof M.3

Ex∼µT

[
L
(
f(x), f

′

S∗(x)
)]

= Ex∼µT

[
L
(
f(x), f

′

S∗(x)
)]

− Ex∼µS

[
L
(
f(x), f

′

S∗(x)
)]

+ Ex∼µS

[
L
(
f(x), f

′

S∗(x)
)]

≤ Ex∼µS

[
L
(
f(x), f

′

S∗(x)
)]

+
∣∣∣Ex∼µS

[
L
(
f(x), f

′

S∗(x)
)]
− Ex∼µT

[
L
(
f(x), f

′

S∗(x)
)]∣∣∣ (9)

We bound
∣∣∣Ex∼µS∗

[
L
(
f(x), f

′

S∗(x)
)]
− Ex∼µT

[
L
(
f(x), f

′

S∗(x)
)]∣∣∣ as follows:
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∣∣∣Ex∼µS∗

[
L
(
f(x), f

′

S∗(x)
)]
− Ex∼µT

[
L
(
f(x), f

′

S∗(x)
)]∣∣∣

=

∣∣∣∣∫
X 2

L
(
f(xS∗), f

′

S∗(xS)
)
− L

(
f(xT ), f

′

S∗(xT )
)
dπ∗(xT , xS∗)

∣∣∣∣
= |

∫
X 2

L
(
f(xS∗), f

′

S∗(xS∗)
)

− L
(
f(xS∗), f

′

S∗(xT )
)
+ L

(
f(xS∗), f

′

S∗(xT )
)
− L

(
f(xT ), f

′

S∗(xT )
)
dπ∗(xT , xS∗)|

≤
∫
X 2

∣∣∣∣L(f(xS∗), f
′

S∗(xS∗)
)
−
∫
X 2

L
(
f(xS∗), f

′

S∗(xT )
)∣∣∣∣ dπ∗(xT , xS∗)

+

∫
X 2

∣∣∣∣L(f(xS∗), f
′

S∗(xT )
)
−
∫
X 2

L
(
f(xT ), f

′

S∗(xT )
)∣∣∣∣ dπ∗(xT , xS∗) (10)

Then due to k-Lipschitzness of L and ϵ-Lipschitzness of f , we can obtain:

RHS of Eq.equation 10 ≤ k

∫
X 2

||f
′

S∗(xS∗)− f
′

S∗(xT )||dπ∗(xT , xS∗)

+ k

∫
X 2

||f(xS∗)− f(xT )||dπ∗(xT , xS∗)

≤ kϵ

∫
X 2

2d(xT , xS∗)dπ∗(xT , xS∗)

= kϵdW (X(T |f),X(S∗|f)),

where the last step is due to the definition of 1-Wasserstein distance. Then, according to the triangle
inequality of Wasserstein distance Peyré et al. (2019), we can obtain:

dW (X(T |f),X(S∗|f)) ≤ dW (X(T |f),X(X̂|f)) + dW (X(X̂|f),X(S∗|f)) (11)

Combining Eq. equation 9 and Eq. equation 11 we finished the proof and obtained the Theorem 2.4.
By reducing the distance term dW

(
X(T |f),X(X̂|f)

)
, we have X(T |f) → X(S∗|f). As a result, the

expected distance

E(S∗∼X(S∗|f),T∼X(T |f)) min
π∈Π(T,S∗)

E(xT ,xS∗ )∼πd(xT , xS∗)→ 0,

with randomly sampling S∗ and T with K elements.

N REPRODUCIBILITY

To ensure reproducibility, we make our implementation available to reviewers through this anonymous
link: https://anonymous.4open.science/r/GMValuator-V2-E0BE.
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