
Under review as a conference paper at ICLR 2024

THE REPRESENTATION JENSEN-SHANNON DIVER-
GENCE (SUPPLEMENTARY MATERIAL)

Anonymous authors
Paper under double-blind review

Next, we present the proofs of the theorems and properties described in the paper. Additionally,
we include implementation details for all the experiments reported. All the codes to reproduce
the results in the paper can be found in the following anonymous Github repository: https:
//anonymous.4open.science/r/representationJSD-0705.

A PROOFS OF THEOREMS

A.1 PROOF THEOREM 1

Proof.

H(p, p̂) = −
∫
X

p(x) log p̂(x)dx

= −
∫
X

log

[
1

h
⟨ϕ(x), CPϕ(x)⟩

]
p(x)dx

= −
∫
X

log

[
1

h
⟨ϕ(x), CPϕ(x)⟩

]
dP(x)

= −
∫
X

NH∑
i=1

⟨ϕ(x), ui⟩ log (λi) ⟨ui, ϕ(x)⟩ dP(x) +
∫
X

log(h)dP(x)

= −
∫
X

NH∑
i=1

log (λi) ⟨ϕ(x)|ui⟩ ⟨ui|ϕ(x)⟩ dP(x) + log(h).

Notice that ⟨ϕ(x), ui⟩ ⟨ui, ϕ(x)⟩ corresponds to the squared of the inner product between ϕ(x) and ui,
where the ui’s are the eigenfunctions of CP. Therefore, the quantity − log (λi) ⟨ϕ(x), ui⟩ ⟨ui, ϕ(x)⟩
is always positive. Thus, we can apply Tonelli’s theorem (DiBenedetto & Debenedetto, 2002) to take
the sum out of the integral:

H(P,Pϕ) = −
NH∑
i=1

log (λi)

∫
X

⟨ϕ(x), ui⟩ ⟨ui, ϕ(x)⟩ dP(x) + log(h)

= −
NH∑
i=1

log (λi)

∫
X

⟨ui, ϕ(x)⟩ ⟨ϕ(x), ui⟩ dP(x) + log(h)

= −
NH∑
i=1

log (λi) ⟨ui, CPui⟩+ log(h)

= −
NH∑
i=1

λi log λi + log(h)

= S(CP) + log(h)

A.2 PROOF THEOREM 2

We show in Theorem 1, that the covariance operator entropy estimator is equivalent to a plug-in Parzen
density estimator with convergence and consistency extensively studied. In particular, Dmitriev &

1

https://anonymous.4open.science/r/representationJSD-0705
https://anonymous.4open.science/r/representationJSD-0705

Under review as a conference paper at ICLR 2024

Tarasenko (1974) show that there exists constants C1 and C2 such that

Pr {|H(P)− (S(KX) + h)| < ϵ} > 1− P1(N ; ϵ), (1)

where P1 (N ; ϵ) = C1 exp
(
−C2

16 ϵ
2N

1
10

)
.

Notice, that in the limit when γN →∞, κ(x, x′) = 0 for all x ̸= x′, and therefore, h→ 1, and since
the series

∑∞
N=1 exp(−CN

1
10) converges, this leads to the desired result.

A.3 PROOF THEOREM 3

We approach the convergence problem from the perspective of density estimation. We start by proving
the following lemma:

Lemma 1. Let p̂γ(x) be the empirical kernel density function by a Gaussian kernel with scale
parameter γ. Similarly, let p̂ω(x) be the kernel density function by a Fourier feature mapping
approximating the Gaussian kernel with scale parameter γ

2 , then

sup
x∈X

|p̂γ(x)− p̂ω(x)| ≤ ϵ, (2)

with probability at least 1− 28
(√

dγhγ diam(X)
2ϵ

)2
exp

(
−Dϵ2
h2
γ(d+2)

)
Proof. We follow a similar proof as González et al. (2022) with some revised results.

p̂γ(x) =
1

hγN

N∑
i=1

(
exp

(
−γ||x− xi||

2

2

))2

=
1

hγN

N∑
i=1

exp
(
−γ||x− xi||2

)
Similarly,

p̂ω(x) =
1

hγ
ϕω(x)CCCXϕ

⊤
ω (x) =

1

hγ
ϕω(x)

(
1

N

N∑
i=1

ϕω(xi)
⊤ϕω(xi)

)
ϕ⊤ω (x)

=
1

hγN

N∑
i=1

ϕω(x)ϕω(xi)
⊤ϕω(xi)ϕ

⊤
ω (x) =

1

hγN

N∑
i=1

(
ϕω(x)ϕω(xi)

⊤)2

Now, by Claim 1 by Rahimi & Recht (2007) we have that for a Gaussian kernel with parameter γ2 :

sup
x,x′∈X

∣∣∣∣ϕω(x)ϕω(x′)⊤ − exp

(
−γ||x− x

′||2

2

)∣∣∣∣ ≤ ϵ,
with probability at least 1− 28

(√
dγ diam(X)

ϵ

)2
exp

(
−Dϵ2
4(d+2)

)
= 1−B.

Next, we use this result to bound the difference between the probability distributions.

sup
x∈X

|p̂γ(x)− p̂ω(x)| = sup
x∈X

∣∣∣∣∣ 1

hγN

N∑
i=1

exp
(
−γ||x− xi||2

)
−
(
ϕω(x)ϕω(xi)

⊤)2∣∣∣∣∣
≤ 1

hγN

N∑
i=1

sup
x∈X

∣∣∣exp (−γ||x− xi||2)− (ϕω(x)ϕω(xi)⊤)2∣∣∣
Notice that

2

Under review as a conference paper at ICLR 2024

∣∣∣exp (−γ||x− xi||2)− (ϕω(x)ϕω(xi)⊤)2∣∣∣ ≤∣∣∣∣exp(−γ||x− xi||22

)
− ϕω(x)ϕω(xi)⊤

∣∣∣∣ ∣∣∣∣exp(−γ||x− xi||22

)
+ ϕω(x)ϕω(xi)

⊤
∣∣∣∣

≤ 2

∣∣∣∣exp(−γ||x− xi||22

)
− ϕω(x)ϕω(xi)⊤

∣∣∣∣
Therefore,

sup
x∈X

|p̂γ(x)− p̂ω(x)| ≤
2

hγN

N∑
i=1

sup
x∈X

∣∣∣∣exp(−γ||x− xi||22

)
− ϕω(x)ϕω(xi)⊤

∣∣∣∣
≤ 2

hγN

N∑
i=1

ϵ =
2ϵ

hγ
,

with probability at least 1 − B. Redefining ϵ = 2ϵ
hγ

and plugging this value in the probability we
obtain the desired result.

Next, we use Schuster’s Lemma (Dmitriev & Tarasenko, 1974) which proves that a Gaussian kernel
density estimator can approximate any bounded distribution p(x), and that there exists constants C1

and C2 such that

sup
x∈X

|p̂γ(x)− p(x)| < ϵ, (3)

with probability at least 1 − C1 exp
(

−C2Nϵ
2

2γ

)
, where γ = 1

2σ2
N

and σN = O(ϵ) with σN → 0 as
N →∞.

Combining Eqns. 2 and 3, using ϵ
2 , we obtain by applying triangle inequality that:

sup
x∈X

|p̂ω(x)− p(x)| < |p̂ω(x)− p̂γ(x)|+ |p̂γ(x)− p(x)| ϵ <
ϵ

2
+
ϵ

2
= ϵ,

with probability 1 − max {P3(N ; ϵ), P2(D; ϵ)} where P3 (N ; ϵ) = 1 − C1 exp
(
−C2Nϵ

2

4γ

)
, and

P2 (D; ϵ) = 28
(√

dγhγ diam(X)
ϵ

)2
exp

(
−Dϵ2
h2
γ(d+2)

)
.

Finally, we can adapt Theorem 2 by Dmitriev & Tarasenko (1974) to show the convergence of the
entropy induced by the Fourier features as follows:

Pr {|H(p)−H(p̂ω)| < ϵ} > 1−max {P1(N ; ϵ), P2(D; ϵ)} , (4)

where P1 (N ; ϵ) = C1 exp
(
−C2

16 ϵ
2N

1
10

)
, and P2 (D; ϵ) = 28

(√
dγhγ diam(X)

ϵ

)2
exp

(
−Dϵ2
h2
γ(d+2)

)
.

Following a similar strategy to the proof of Theorem 1, we can conclude that H(p̂ω) = S(CCCX) +

log(hγ). Finally, since both series
∑∞
N=1 exp(−CN

1
10) and

∑∞
D=1 exp(−CD) the theorem holds.

□

3

Under review as a conference paper at ICLR 2024

A.4 PROOF THEOREM 4

Proof. For equation 10 we have the following

Dϕ
JS(CP, CQ) =

1

2
Dϕ
KL(CP, CM) +

1

2
Dϕ
KL(CQ, CM)

=
1

2
Dϕ
KL

(∫
X

ϕ(x)⊗ ϕ(x)dP(x),
∫
X

ϕ(x)⊗ ϕ(x)dM(x)

)
+

+
1

2
Dϕ
KL

(∫
X

ϕ(x)⊗ ϕ(x)dQ(x),

∫
X

ϕ(x)⊗ ϕ(x)dM(x)

)
=
1

2
Dϕ
KL

(∫
X

ϕ(x)⊗ ϕ(x)dP(x),
∫
X

dM
dP

(x)ϕ(x)⊗ ϕ(x)dP(x)
)
+

+
1

2
Dϕ
KL

(∫
X

ϕ(x)⊗ ϕ(x)dQ(x),

∫
X

dM
dQ

(x)ϕ(x)⊗ ϕ(x)dP(x)
)
.

Since Dϕ
KL is jointly convex (Bach, 2022), then

Dϕ
JS(CP, CQ) ≤

1

2

∫
X

Dϕ
KL

(
ϕ(x)⊗ ϕ(x), dM

dP
(x)ϕ(x)⊗ ϕ(x)

)
dP(x)+

+
1

2

∫
X

Dϕ
KL

(
ϕ(x)⊗ ϕ(x), dM

dQ
(x)ϕ(x)⊗ ϕ(x)

)
dQ(x).

Notice that ϕ(x)⊗ ϕ(x) is a rank-1 covariance operator with one eigenvalue equal ∥ϕ(x)∥2 = 1 and
one eigen vector ϕ(x), therefore, it can be simplified as:

Dϕ
JS(CP, CQ) ≤

1

2

∫
X

Dϕ
KL

(
1,
dM
dP

(x)

)
dP(x) +

1

2

∫
X

Dϕ
KL

(
1,
dM
dQ

(x)

)
dQ(x)

=
1

2

∫
X

Dϕ
KL

(
1,
dM
dP

(x)

)
dP(x) +

1

2

∫
X

Dϕ
KL

(
1,
dM
dQ

(x)

)
dQ(x)

=
1

2

∫
X

− log

(
dM
dP

(x)

)
dP(x) +

1

2

∫
X

− log

(
dM
dQ

(x)

)
dQ(x)

=
1

2
DKL(P,M) +

1

2
DKL(Q,M) = DJS(P,Q)

A.5 PROOF THEOREM 5

Proof. Notice that for Gaussian Kernels, the normalizing constant only depends on the scale parameter
γ which is independent of the data, thus hP = hQ. Hence,

H

(
P+Q

2

)
= −

∫
X

log

[
1

2h
⟨ϕ∗(x), CPϕ

∗(x)⟩+ 1

2h
⟨ϕ∗(x), CQϕ

∗(x)⟩
]
dM(x)

= −
∫
X

log

[〈
ϕ∗(x),

(
CP + CQ

2

)
ϕ∗(x)

〉]
dM(x) + log(h)

= S

(
CP + CQ

2

)
+ log(h)

4

Under review as a conference paper at ICLR 2024

where M(x) = P(x)+Q(x)
2 . Using the results from theorem 1, it is straightforward to show that

DJS(P,Q) =S

(
CP + CQ

2

)
− 1

2
(S(CP) + S(CQ)) + log(h)− 1

2
(log(h) + log(h))

= S

(
CP + CQ

2

)
− 1

2
(S(CP) + S(CQ))

= Dϕ∗

JS(CP, CQ).

A.6 PROOF THEOREM 6

Proof. To prove this theorem, we use (Proposition 4.e) by Bach (2022). We have that

Dϕ
KL (CP|CQ) ≥

1

2
∥CP − CQ∥2∗ ≥

1

2
∥CP − CQ∥2HS,

where ∥·∥∗ and ∥·∥HS denote the nuclear norm and the Hilbert-Schmidt norm respectively. Since

Dϕ
JS(CP, CQ) =

1

2
Dϕ
KL(CP, CM) +

1

2
Dϕ
KL(CP, CM)

≥1

4

∥∥∥∥CP −
1

2
(CP + CQ)

∥∥∥∥2
∗
+

1

4

∥∥∥∥CQ −
1

2
(CP + CQ)

∥∥∥∥2
∗

≥1

4

∥∥∥∥12CP −
1

2
CQ

∥∥∥∥2
∗
+

1

4

∥∥∥∥12CQ −
1

2
CP

∥∥∥∥2
∗
=

1

8
∥CP − CQ∥2∗

and thus, Dϕ
JS(CP, CQ) ≥ 1

8 ∥CP − CQ∥2∗ ≥
1
8 ∥CP − CQ∥2HS.

Now, let ϕ : X 7→ H then, and {eα} be an orthonormal basis in H, we have that

Tr (ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y)) =
∑
α

⟨ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y)eα, eα⟩

=
∑
α

⟨ϕ(x)⟨ϕ(x), ϕ(y)⊗ ϕ(y)eα⟩, eα⟩

=
∑
α

⟨ϕ(x)⟨ϕ(x), ϕ(y)⟨ϕ(y), eα⟩⟩, eα⟩

=
∑
α

⟨ϕ(x)⟨ϕ(x), ϕ(y)⟩⟨ϕ(y), eα⟩, eα⟩

=
∑
α

⟨ϕ(x), eα⟩⟨ϕ(x), ϕ(y)⟩⟨ϕ(y), eα⟩

=⟨ϕ(x), ϕ(y)⟩
∑
α

⟨ϕ(x), eα⟩⟨ϕ(y), eα⟩ = ⟨ϕ(x), ϕ(y)⟩⟨ϕ(x), ϕ(y)⟩

=⟨ϕ(x), ϕ(y)⟩2 = κ(x, y)2

Note that for T : H 7→ H, Tr(T ∗T) =
∑
α⟨Teα, T eα⟩ = ∥T∥2HS. In particular, if we have that

T = ϕ(x)⊗ ϕ(x)− ϕ(y)⊗ ϕ(y),
∥ϕ(x)⊗ ϕ(x)− ϕ(y)⊗ ϕ(y)∥2HS =Tr(ϕ(x)⊗ ϕ(x)ϕ(x)⊗ ϕ(x))− 2Tr(ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y))

+ Tr(ϕ(y)⊗ ϕ(y)ϕ(y)⊗ ϕ(y))
=κ2(x, x)− 2κ2(x, y) + κ2(y, y)

Finally, note that
∥CP − CQ∥2HS =Tr(EP[ϕ(x)⊗ ϕ(x)]EP′ [ϕ(x)⊗ ϕ(x)])− 2Tr(EP[ϕ(x)⊗ ϕ(x)]EQ[ϕ(y)⊗ ϕ(y)])

+ Tr(EQ[ϕ(y)⊗ ϕ(y)]EQ′ [ϕ(y)⊗ ϕ(y)])
=Tr(EP,P′ [ϕ(x)⊗ ϕ(x)ϕ(x′)⊗ ϕ(x′)])− 2Tr(EP,Q[ϕ(x)⊗ ϕ(x)ϕ(y)⊗ ϕ(y)])

+ Tr(EQ,Q′ [ϕ(y)⊗ ϕ(y)ϕ(y′)⊗ ϕ(y′)])
=EP,P′ [κ2(x, x′)]− 2EP,Q[κ

2(x, y)] + EQ,Q′ [κ2(y, y′)],

which corresponds to MMD with kernel κ2(·, ·).

5

Under review as a conference paper at ICLR 2024

A.7 PROOF LEMMA 1

Proof. Notice that the sum of covariance matrices in the RKHS corresponds to the concatenation of
samples in the input space, that is:

π1CCCX + π2CCCY =
1

N +M
Φ⊤
XΦX +

1

N +M
Φ⊤
YΦY

=
1

N +M

[
Φ⊤
X Φ⊤

Y

] [ΦX

ΦY

]
=

1

N +M
Φ⊤
ZΦZ = CZ ,

where ΦZ =
[
Φ⊤
X Φ⊤

Y

]⊤ ∈ R(N+M)×D contains the mappings of the mixture (concatenation)
of the samples in the input space Z. Since the spectrum of CCCZ and KZ have the same non-zero
eigenvalues, S(π1CCCX + π2CCCY) = S(CCCZ) = S(KZ)

A.8 CONVERGENCE OF RJSD KERNEL-BASED ESTIMATOR

Bach (2022) shows the following result regarding the convergence of the empirical estimator S(KX)
to S(CP).
Proposition 1. (Bach, 2022)[Proposition 7] Assume that κ is a continuous positive definite kernel on
the compact set X, with κ(x, x) = 1 for all x ∈ X. Also, assume that P has a density with respect to
the uniform measure which is greater than α < 1. Finally, assume that c =

∫∞
0

supx∈X⟨ϕ(x), (CP +

λI)−1ϕ(x)⟩2dλ is finite. Given i.i.d. samples X = {xi}Ni=1, then:

E [S(KX)− S(CP)] ≤
1 + c(8 log(N))2

αN
+

17√
N

(2
√
c+ log(N)). (5)

Since RJSD corresponds to the empirical estimation of three different covariance operator entropies,
and assuming N =M for simplicity, it is easy to show that:

E
[
Dκ
JS(X,Y)−Dϕ

JS(CP, CQ)
]
≤ 3

[
1 + c(8 log(N))2

αN
+

17√
N

(2
√
c+ log(N))

]
. (6)

Therefore, we can conclude that Dκ
JS(X,Y) converges to the population quantity Dϕ

JS(CP, CQ) at a

rate O
(

1√
N

)
.

B ALGORITHMS

Algorithms 1, 2, and 3 describe the procedure to estimate JS divergence regularly and with Exponential
Moving Averages (EMA), and to train GANs based on representation JS divergence.

C EXPERIMENTS IMPLEMENTATION DETAILS

C.1 NEURAL JS DIVERGENCE ESTIMATION

Jensen-Shannon divergence between Cauchy distributions: The Jensen-Shannon for two
Cauchy distributions P ∼ p(x; lp, sp) and Q ∼ p(x; lq, sq) can be estimated as (Nielsen & Okamura,
2022):

DJS(P,Q) = log

(
2
√
(lp − lq)2 + (sp + sq)2√

(lp − lq)2 + (sp + sq)2 + 2
√
spsq

)
In this experiment we set sp = sq = 1, and lp = 0. Then we calculate the value of lq to achieve a
specified divergence value in the set log(2)× {0.2, 0.4, 0.6, 0.8, 0.99}.

6

Under review as a conference paper at ICLR 2024

Algorithm 1 JS divergence estimation
Input: X ∼ P,Y ∼ Q, η

1: ω ← Initialize network parameters parameters.
2: for T = 1 : Number of epochs do
3: ΦX ← ϕω ◦ fω(X)
4: ΦY ← ϕω ◦ fω(Y)
5: CCCX ← 1

NΦ⊤
XΦX

6: CCCY ← 1
MΦ⊤

YΦY

7: Dω
JS(X,Y) = S (π1CCCX + π2CCCY)− (π1S(CCCX) + π2S(CCCY)) ▷ as in

Eqn. 14
8: ω ← ω + η∇AdamD

ω
JS(X,Y) ▷ Maximize the divergence

9: end for
Output: D̂JS(P,Q) = Dω

JS(X,Y)

Algorithm 2 JS divergence estimation EMA
Input: X ∼ P,Y ∼ Q, η, α

1: ω ← Initialize network parameters parameters.
2: for T = 1 : Number of epochs do
3: ΦX ;ΦY ▷ Compute the mappings
4: CCCX;CCCY ▷ Compute the covariance matrices
5: if T = 1 then
6: C

∧

X [T] = CCCX

7: C
∧

Y [T] = CCCY ▷ Store previous covariance matrices
8: else
9: C

∧

X [T]← (1− α)C
∧

X [T − 1] + αCCCX

10: C
∧

Y [T]← (1− α)C
∧

Y [T − 1] + αCCCY ▷ Compute EMA covariance
matrices

11: end if
12: Dω

JS(X,Y) = S
(
π1C
∧

X [T] + π2C
∧

Y [T]
)

−(
π1S(C

∧

X [T]) + π2S(C
∧

Y [T])
)

13: eω ← eω + η∇AdamD
ω
JS(X,Y) ▷ Maximize the divergence

14: end for
Output: D̂JS(P,Q) = Dω

JS(X,Y)

Algorithm 3 Representation JS divergence GAN

Input: XP = {Xi}ki=1 ∼ P
1: θ, ω ← Initialize network parameters parameters.
2: for T = 1 : Number of epochs do
3: for i = 1 : k do
4: Yθ

i = gθ(z) ▷ Generated batch from random noise z
5: ω ← ω + ηd∇AdamD

ω
JS(Xi,Y

θ
i) ▷ Maximize the divergence

6: θ ← θ − ηg∇AdamD
ω
JS(Xi,Y

θ
i) ▷ Minimize the divergence

7: end for
8: end for

Implementation details and hyperparameters: Next, we show all the configurations that we used
to perform the JS divergence estimation using the representation JS divergence. For this experiment,
we use the covariance estimator by using Random Fourier Features (RFFs) to approximate a Gaussian
kernel. We chose 50 RFFs and an initial kernel length scale σ = 2. We set the learning rate as
lr = 0.001 and we use the default β1 and β2 of the Adam optimizer. We did not use a deep neural
network, but the Fourier Features layer by itself. We then applied algorithm 1 to learn ω and σ.
We also implemented a version of the algorithm using exponential moving averages (EMA) of the

7

Under review as a conference paper at ICLR 2024

Table 2: Architectures mode collapse experiments

Generator Discriminator DFFN
Linear(32,256) Linear(2,256) Linear(2,256)
Leaky ReLU(0.01) Leaky ReLU(0.01) Leaky ReLU(0.01)
Linear(256,256) Linear(256,256) Linear(256,256)
Leaky ReLU(0.01) Leaky ReLU(0.01) Leaky ReLU(0.01)
Linear(256,256) Linear(256,256) Linear(256,256)
Leaky ReLU(0.01) Leaky ReLU(0.01) Leaky ReLU(0.01)
Linear(256,256) Linear(256,256) Linear(256,256)
tanH() Leaky ReLU(0.01) Leaky ReLU(0.01)
Linear(256,2) Linear(256, 1) Fourier Features Layer(256, 8)

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Real Data

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Representation JSD

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Wasserstein-gp

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Hinge

Figure 1: Evaluation of differences between the generated modes and the real modes. The generated
data is clustered in 8 modes, and covariances and means are estimated. Then the KL divergence
between the real and generated distributions is computed

covariance matrices. Specifically, we store information from past covariances and applied EMA to
smooth out the estimation. Algorithm 2 shows a detailed explanation of this implementation.

C.2 GENERATIVE ADVERSARIAL NETWORKS

C.2.1 MODE COLLAPSE EXPERIMENTS

To perform the mode collapse experiments, we used the code provided in https://github.com/
ChristophReich1996/Mode_Collapse to compare GAN losses. To make a fair comparison,
the generators of the compared losses are the same. The representation JS divergence does not rely
on a discriminator or classifier, however, we used a Deep Fourier Features Network (DFFN) with a
similar architecture to the discriminator that we used for the compared losses. Table 2 describes in
detail the architectures employed.

For the representation JS divergence, we set the learning rate for the discriminator as ld = 1× 10−4

and the learning rate of the generator as lg = 5× 10−4. For Wasserstein-GP and Hinge losses, we
used ld = lg = 1× 10−4 For the standard GAN loss we used ld = 5× 10−4 and lr = 1× 10−4 .We
chose random uniform noise z ∼ U32[0, 1].

C.2.2 STACKED MNIST IMPLEMENTATION DETAILS

Next, we describe the architecture and hyperparameters selection that we used to train a GAN in the
stacked MNIST dataset, as well as some practical considerations. We used the standard DCGAN
generator architecture (Radford et al., 2015) and slightly modified the discriminator architecture to
incorporate a Fourier Feature Layer. Table 3 describes in detail the architecture employed. As you
can see, we removed all batch norm layers in the discriminator and added two linear layers before the
Fourier Feature mapping to reduce the high dimensionality of the last convolutional layer. We resized
the images to 64× 64× 3 to be compatible with the standard DCGAN architecture.

We draw z from a truncated Gaussian of 100 dimensions, with truncation parameter τ = 0.5, where
values that fall outside τ times the standard deviation are resampled to fall inside the range. This is
known as the truncation trick.

8

https://github.com/ChristophReich1996/Mode_Collapse
https://github.com/ChristophReich1996/Mode_Collapse

Under review as a conference paper at ICLR 2024

Table 3: Architecture GAN on stacked MNIST. We use the following notation for the convolutional
layers: ConvLayer(input channels, output channels, kernel size, stride, padding)

Generator DFFN
ConvTranspose2d(100,512,4,1,0) Conv2d(3, 64, 4, 2, 1)
Batchnorm() LeakyReLU(0.2)
ReLU() Conv2d(64, 128, 4, 2, 1)
ConvTranspose2d(512,256,4,2,1) LeakyReLU(0.2)
Batchnorm() Conv2d(128, 256, 4, 2, 1
ReLU() LeakyReLU(0.2)
ConvTranspose2d(256,128,4,2,1) Conv2d(256, 512, 4, 2, 1)
Batchnorm() LeakyReLU(0.2)
ReLU() Flatten()
ConvTranspose2d(128,64 ,4,2,1) Linear(8192, 512)
Batchnorm() LeakyReLU(0.2)
ReLU() Linear(512, 256)
ConvTranspose2d(64,3,4,2,1) Fourier Features Layer (256, 4)
tanH()

0 2000 4000 6000 8000 10000 12000 14000
Step

0.0

0.2

0.4

0.6

0.8

1.0

D
JS

Loss generator

Figure 2: Loss GAN on the stacked MNIST dataset.

We set the batch size as 64, and we train the GAN for 15 epochs. We set the discriminator’s learning
rate as ld = 2.0 × 10−5 whereas the generator’s as lg = 1.0 × 10−4. We chose β1 = 0.5 and
β2 = 0.999 as the hyperparameters of the Adam optimizer.

Here are some practical considerations to train a GAN with the representation JS divergence. First,
the learning rates are crucial. If we use a high learning rate for the discriminator, it leads to a 0.99
divergence value, which the generator is not able to reduce. In contrast, if the discriminator’s learning
rate is too small, then the divergence will remain close to 0 and the algorithm will not learn. So it
is really important to choose the learning rates so that the divergence can grow quickly in the first
steps but then the generator should be able to lower the divergence quickly too. Figure 2 shows the
loss behavior during training with the selected learning rates. We also observed that a small number
of Fourier Features (4 Fourier features, leading to 8 dimensions) lead to better results and make the
algorithm easier and faster to train. We observed empirically that a large number of Fourier Features
— although they could potentially capture richer information — makes the model prone to overfitting,
yielding a high divergence regardless of what the generator does, the divergence stays high.

C.3 TWO-SAMPLE TESTING

Procedure details The procedure is the following: for synthetic datasets, we create the sets
Xtrain ∈ RN×d and Ytrain ∈ RM×d. Then, we learn the kernel/covariance/classifier for each of the
methods on that training set. We then sample a testing set Xtest ∈ RN×d and Ytest ∈ RM×d and
perform a permutation test. We compute the statistic on the testing set and perform 100 permutations

9

Under review as a conference paper at ICLR 2024

to generate the surrogate of the distribution of the measurement under the null hypothesis. Finally,
we compute the rejection threshold, and if the statistic is greater than this threshold we reject the null
hypothesis. This is done for 100 independent testing sets. Finally, we repeat the experiment ten times
and compute the average test power.

RJSD-D test implementation details In this experiment, we try a slightly different implementation
of the proposed covariance estimator using a deep Fourier Features network. We explore the idea
of deep kernel learning by following a similar approach to Liu et al. (2020), where a characteristic
kernel κω(x, y) is built as follows:

κω(x, y) = [(1− ϵ)κ1(fω(x), fω(y)) + ϵ]κ2(x, y), (7)
= (1− ϵ)κ1(fω(x), fω(y))κ2(x, y) + ϵκ2(x, y) (8)

where fω : X→ F is a deep network that extracts features from the data, allowing the kernel to have
more flexibility to capture more accurately the structure of complicated distributions. 0 < ϵ < 1 and
κ1 and κ2 are Gaussian kernels. Notice, that the kernel of the deep network features, κ1, is multiplied
by another kernel κ2 on the input space. This approach prevents the deep kernel from considering
distant points in the input space as very similar.

In this work, we extend this idea to covariance operators and we propose a similar approach to learn
deep covariance operators by learning an explicit mapping to the RKHS of a deep kernel. In first
place, consider the product κp(x, y) = κ1(fω(x), fω(y))κ2(x, y). Assuming κσ = κ1 = κ2 are
Gaussian kernels with bandwidth σ, then κp(x, y) = κσ(fω(x)⊕ x, fω(y)⊕ y), where ⊕ stands for
concatenation of the dimensions, that is, κp would be the kernel applied to the concatenation of the
features from the deep network and the features in the input space. Afterward, we can use Fourier
Features to learn an explicit mapping ϕω : X ⊕ F → Hϕ to approximate a given shift-invariant
kernel. Notice, that this approach is nothing but a linear layer with random weights eω ∼ p(eω) and
sines and cosines as activation functions. Therefore κp(x, y) ≈ ⟨ϕω(fω(x)⊕ x), ϕω(fω(y)⊕ y)⟩Hϕ

.
κ2(x, y) can be similarly approximated through a Fourier Feature mapping ψω : X→ Hψ applied
directly on the samples in the input space, that is κ2(x, y) ≈ ⟨ψω(x), ψω(y)⟩Hψ

.

Finally, consider the whole kernel κω(x, y) = (1− ϵ)κp(x, y) + ϵκ2(x, y), which is the direct sum
of two kernels with approximated explicit mappings ϕω and ψω respectively. By the properties of
RKHS, it can be shown that:

κω(x, y) = (1− ϵ)κp(x, y) + ϵκ2(x, y)

≈ ⟨φω(x), φω(y)⟩H, (9)

where φω(x) =
[
(1− ϵ) 1

2ϕω(x
′)
]
⊕
[
ϵ

1
2ψω(x)

]
, H = Hψ ⊕Hϕ and x′ = fω(x)⊕ x.

This procedure allows us to obtain an explicit mapping to the RKHS from a deep kernel that can
be used to compute an explicit covariance operator. Consequently, this covariance operator can be
optimized to maximize the JS divergence between the distributions. Note, that we can learn the
parameters of the network fω as well as the Fourier Features eω and the kernel bandwidth σ.

Two-sample testing implementation details We run all baselines using the official implementation,
that is MMD-O and MMD-D (Liu et al., 2020)1, C2ST-S and C2ST-L (Cheng & Cloninger, 2022) 2.
We follow all the configuration and architecture proposed by Liu et al. (2020). To perform RJSD-D,
we used the same architecture as MMD-D, although, we add a Fourier Feature layer where MMD-D
computes a kernel. Table 4 shows the details of the architecture used. The base network consists of
five fully connected layers, and the number of neurons in hidden and output layers is set to 50 for
Blob, 3× d for HDGM, and 20 for the Higgs dataset, where d is the dimension of the dataset. Also,
the number of Fourier Features for all JSD-based tests is set to 50 for Blob, 15 for HDGM, and 15 for
the Higgs dataset.

1https://github.com/fengliu90/DK-for-TST
2https://github.com/xycheng/net_logit_test/tree/main

10

https://github.com/fengliu90/DK-for-TST
https://github.com/xycheng/net_logit_test/tree/main

Under review as a conference paper at ICLR 2024

Table 4: Architecture of the Deep Fourier Features Network (DFFN) and the Deep Convolutional
Fourier Features Network(DCFFN) used in two sample testing. d is the input dimensionality, H is
the number of hidden neurons and FF is the number of Fourier Features. The Convolutional Layers
follow the same notation as 3

DFFN DCFFN (MNIST)
Linear(d, H) Conv2d(3,16,3,2,1)
Softplus() LeakyReLU(0.2)
Linear(H ,H) Conv2d(16,32,3,2,1)
Softplus() LeakyReLU(0.2)
Linear(H ,H) Conv2d(32,64,3,2,1)
Softplus() LeakyReLU(0.2)
Linear(H ,H) Conv2d(64,128,3,2,1)
Fourier Features Layer (H , FF) LeakyReLU(0.2)

Linear (128,512)
ReLU
Linear (512,100)

Two-sample testing implementation details on MNIST DCFFN is the model used on MNIST
and it is described in Table 4. This model is the same proposed by Liu et al. (2020) except that we
remove the batch normalization layers between the convolutional layers. For RJSD-D, we set the
batch size to 100 and the number of epochs to 200 for MNIST. We set the learning rate to 0.05 for
MNIST. We set the number of Fourier Features to 10 for MNIST.

For RJSD-RFF, we use full batch size to train it. We set the number of epochs to 200 for MNIST. We
set the learning rate to 0.01 for MNIST and 0.001. We set the number of Fourier Features to 200 for
MNIST.

For RJSD-FF, we use full batch size to train it. We set the number of epochs to 200 for MNIST. We
set the learning rate to 0.05 for MNIST.

We use Adam optimizer to optimize 1) The kernel length scale σ in RJSD-K and RJSD-RFF 2) the
Fourier Features ω and kernel length scale σ in RJSD-FF and 3) the network parameters ω ∈ Ω, the
Fourier Features ω and the kernel length scale σ in RJSD-D. For the blobs dataset, we set the learning
rate of RJSD-FF, RJSD-RFF and RJSD-D as lr = 1× 10−3. For the HDGM, we set the learning rate
for RJSD-FF and RJSD-RFF as lr = 5× 10−3, and the one for RJSD-D as lr = 5× 10−2. In the
Higgs dataset, we set all the learning rates as lr = 1× 10−2.

Figures 3 4,5,6 show the average test power and the standard deviation of each of the implemented
test.

C.4 LIMITATIONS

Although the representation Jensen-Shannon divergence shows promising results, there are still
some aspects that require further research. So far, the number of Fourier Features to build the
reproducing kernel Hilbert space (RKHS) has been chosen arbitrarily. Empirically, we have found
that choosing D << N usually leads to better results, which could seem counter-intuitive with the
kernel theory that usually induces a high-dimensional space. Also, using the kernel-based estimator
for maximization purposes would require enforcing constraints on the scale of the data since this
estimator can potentially exhibit rank-inconsistency of the matrices, that is maxRank(KZ) =
N +M , maxRank(KX) = N and maxRank(KY) =M . If the data scale is not kept fixed, trivial
maximization of the divergence by just spreading all the samples far apart in the space, or equivalently
for a Gaussian kernel by decreasing the length-scale σ can occur. For this reason, we employed the
covariance-based estimator with a finite dimension (explicit feature space) in most of our experiments.

11

Under review as a conference paper at ICLR 2024

20 40 60 80 100
number of samples per blob

0.25

0.50

0.75

1.00

te
st

p
ow

er

Average test power

20 40 60 80 100
number samples per blob

0.0

0.1

0.2

0.3

S
T

D
te

st
p

ow
er

STD of test power
RJSD-FF

RJSD-RFF

RJSD-D

RJSD-K

MMD-O

MMD-D

C2ST-S

C2ST-L

Figure 3: Power test for the blobs experiment.

2000 4000 6000 8000 10000
number of samples

0.00

0.25

0.50

0.75

1.00

te
st

p
ow

er

Average test power

2000 4000 6000 8000 10000
number samples

0.00

0.05

0.10

0.15

S
T

D
te

st
p

ow
er

STD of test power
RJSD-FF

RJSD-RFF

RJSD-D

MMD-O

MMD-D

C2ST-S

C2ST-L

Figure 4: Power test for HDGM fixed N.

5 10 15 20
dimension

0.00

0.25

0.50

0.75

1.00

te
st

p
ow

er

Average test power

5 10 15 20
dimension

0.0

0.1

0.2

0.3

S
T

D
te

st
p

ow
er

STD of test power
RJSD-FF

RJSD-RFF

RJSD-D

MMD-O

MMD-D

C2ST-S

C2ST-L

Figure 5: Power test for HDGM fixed d.

2500 5000 7500 10000
number of samples

0.25

0.50

0.75

1.00

te
st

p
ow

er

Average test power

2500 5000 7500 10000
number samples

0.0

0.1

0.2

0.3

S
T

D
te

st
p

ow
er

STD of test power
RJSD-FF

RJSD-RFF

RJSD-D

MMD-O

MMD-D

C2ST-S

C2ST-L

Figure 6: Power test for the Higgs dataset.

REFERENCES

Francis Bach. Information theory with kernel methods. IEEE Transactions on Information Theory,
2022.

12

Under review as a conference paper at ICLR 2024

Xiuyuan Cheng and Alexander Cloninger. Classification logit two-sample testing by neural networks
for differentiating near manifold densities. IEEE Transactions on Information Theory, 68(10):
6631–6662, 2022.

Emmanuele DiBenedetto and Emmanuele Debenedetto. Real analysis, pp. 156–157. Springer, 2002.

Yu G Dmitriev and Felix P Tarasenko. On the estimation of functionals of the probability density and
its derivatives. Theory of Probability & Its Applications, 18(3):628–633, 1974.

Fabio A González, Alejandro Gallego, Santiago Toledo-Cortés, and Vladimir Vargas-Calderón.
Learning with density matrices and random features. Quantum Machine Intelligence, 4(2):23,
2022.

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang, Arthur Gretton, and Danica J Sutherland. Learning
deep kernels for non-parametric two-sample tests. In International conference on machine learning,
pp. 6316–6326. PMLR, 2020.

Frank Nielsen and Kazuki Okamura. On f-divergences between cauchy distributions. IEEE Transac-
tions on Information Theory, 2022.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

13

	Proofs of theorems
	Proof Theorem 1
	Proof Theorem 2
	Proof Theorem 3
	Proof Theorem 4
	Proof Theorem 5
	Proof Theorem 6
	Proof Lemma 1
	Convergence of RJSD kernel-based estimator

	Algorithms
	Experiments Implementation Details
	Neural JS divergence estimation
	Generative Adversarial Networks
	Mode Collapse experiments
	Stacked MNIST implementation details

	Two-sample testing
	Limitations

