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GENDATAAGENT: ON-THE-FLY DATASET AUGMENTA-
TION WITH SYNTHETIC DATA

A MORE LLAMA-2 CAPTION PERTURBATION COMPARISON

The reason to combine "A photo of [Classname]" in the prompt is that captioning model BLIP-2
may fail to recognize the fine-grained categories and Figure 1 is one example. It can be observed
that the identical caption with different seeds leads to similar generative images in guidance 7.5.
Although guidance 2.0 introduces more diversity, the quality of generative images drops significantly.
In comparison, using Llama-2 caption perturbation with guidance 7.5 can obtain high-quality yet
diverse synthetic images.
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A photo of american bulldog, which is a dog walking through a field of purple flowers
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Figure 1: Comparison between raw caption with guidance 2.0 and guidance 7.5, as well as our Llama
caption perturbation with guidance 7.5. For simplicity, the perturbed captions omit the prefix "A
photo of [classname]".

B MORE VOG FILTERING EXAMPLES

We show more results of in-distribution synthetic data and outliers for all datasets in Figure 2.

C MULTIPLE RUNS

We conduct experiments with 3 different random seeds for synthetic data augmentation in Table 1.

D THRESHOLD ANALYSIS

Due to the page limit, we put some experiments and analyses in supplementary.

Image Strength. Following Real-Fake (Yuan et al., 2023), we combine the latent prior of real
images to generate synthetic data, with image strength as the threshold for noise added to the reference
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Figure 2: Comparison between in-distribution synthetic data and VoG outliers on all datasets.

image. Higher image strength results in noisier latent codes. We conducted experiments with Image
Strength thresholds of 0.50, 0.75, and 0.90 (Table 2), using a default Marginal score Sampling
Threshold and without VoG Filtering. Results indicate that Flowers prefer lower Image Strength for
consistency with real data, while higher Image Strength benefits Pets, CUB, and Birdsnap datasets,
highlighting the need for diversity in synthetic data.

Marginal score Sampling. In Table 3, we study the impact of different Marginal score Sampling
thresholds without the VoG Filtering algorithm as well, where a specific portion of real data is
sampled as marginal examples and the corresponding synthetic data is generated based on them.
Although the optimal threshold for different datasets may vary, all threshold choices surpass the
Real-Fake settings and show stability in performance.
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Table 1: Mean and standard deviation of Top-1 accuracy and worst-case disparity with 3 different
random seeds on ResNet-50 backbone.

Model Pets CUB Flowers Birdsnap

Top-1 accuracy
Real-Fake‡ (Yuan et al., 2023) 94.0± 0.15 80.5± 2.25 89.2± 0.32 73.1± 0.31
Internet Explorer (15-NN similarity, (Li et al., 2023)) 94.3± 0.25 83.2± 0.36 90.7± 0.44 73.7± 0.15
GenDataAgent (Ours) 94.6± 0.10 84.1± 0.17 91.5± 0.46 74.0± 0.57

Worst-case disparity
Real-Fake‡ (Yuan et al., 2023) 0.48± 0.00 0.00± 0.00 0.50± 0.00 0.00± 0.00
Internet Explorer (15-NN similarity, (Li et al., 2023)) 0.51± 0.02 0.17± 0.07 0.54± 0.03 0.00± 0.00
GenDataAgent (Ours) 0.55± 0.02 0.25± 0.00 0.56± 0.00 0.00± 0.00

Table 2: Top-1 accuracy / Worst-case disparity of different Image Strength thresholds.

Image Strength Pets CUB Flowers Birdsnap Food IN100

0.50 94.0 / 0.44 81.0 / 0.25 89.9 / 0.50 71.4 / 0.00 87.4 / 0.63 88.6 / 0.40
0.75 94.0 / 0.44 82.2 / 0.25 88.4 / 0.40 73.6 / 0.00 87.4 / 0.63 88.7 / 0.40
0.90 94.4 / 0.56 83.6 / 0.25 88.8 / 0.40 73.5 / 0.00 87.4 / 0.61 89.1 / 0.40

Table 3: Top-1 accuracy / Worst-case disparity of different Marginal score Sampling thresholds.

Marginal score Threshold Pets CUB Flowers Birdsnap Food IN100

0 (only real) 93.6 / 0.40 83.1 / 0.13 87.4 / 0.40 73.0 / 0.00 86.8 / 0.63 87.4 / 0.20
1/5 training set 94.4 / 0.56 83.6 / 0.25 90.0 / 0.40 73.6 / 0.00 87.4 / 0.63 89.1 / 0.40
1/4 training set 94.2 / 0.48 83.9 / 0.25 89.9 / 0.50 73.5 / 0.00 87.5 / 0.63 89.6 / 0.40
1/2 training set 94.6 / 0.56 83.6 / 0.25 90.1 / 0.50 73.4 / 0.00 87.8 / 0.64 89.9 / 0.40
Full training set (Real-Fake) 94.2 / 0.48 83.1 / 0.00 89.0 / 0.50 73.0 / 0.00 87.4 / 0.61 88.6 / 0.40

Table 4: Top-1 accuracy / Worst-case disparity of different VoG Filtering thresholds.

VoG Filtering Threshold Pets CUB Flowers Birdsnap Food IN100

0% (Real-Fake) 94.2 / 0.48 83.1 / 0.00 89.0 / 0.50 73.0 / 0.00 87.4 / 0.61 88.6 / 0.40
25% 94.5 / 0.48 83.7 / 0.25 90.6 / 0.50 73.9 / 0.00 87.8 / 0.64 90.1 / 0.40
50% 94.5 / 0.48 83.9 / 0.25 90.1 / 0.50 74.2 / 0.00 87.6 / 0.61 89.6 / 0.40
75% 94.7 / 0.56 83.3 / 0.25 91.0 / 0.56 74.5 / 0.00 87.4 / 0.61 89.6 / 0.40
100% (only-real) 93.6 / 0.40 83.1 / 0.13 87.4 / 0.40 73.0 / 0.00 86.8 / 0.63 87.4 / 0.20

VoG Filtering. As shown in Table 4, different VoG Filtering ratios also show consistent improve-
ment based on the Real-Fake setting, suggesting the removal of outliers is necessary with synthetic
data augmentation. The preference for a relatively high filtering ratio suggests that the quality of
synthetic data still has a gap compared to the real one, which can be a direction of future work.

E DATASETS AND TRAINING DETAILS

E.1 DATASET DETAILS

We adopt the general ImageNet-100 (IN100) dataset (Tian et al., 2020) and 5 popular fine-grained
datasets: Oxford-IIT Pets (Parkhi et al., 2012), Flowers-102 (Nilsback & Zisserman, 2008), Bird-
snap (Berg et al., 2014), CUB-200-2011 (Wah et al., 2011), and Food-101 (Bossard et al., 2014) for
experiments. The dataset statistics are shown in Table 5.

E.2 TRAINING DETAILS

We use the same Stable Diffusion v1.5 (Rombach et al., 2022) as Real-Fake (Yuan et al., 2023). When
adapting the stable diffusion to the target distribution, we use the full format "A photo of [Classname],
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Table 5: Dataset statistics.

Pets CUB Flowers Birdsnap Food IN100

Domain Pet Breed Fine-grain Birds Fine-grain Flowers Fine-grain Birds Fine-grain Foods Natural Image
#Training Data 3,680 5,994 2,040 47,386 75,750 126,689
#Test Data 3,669 5,794 6,149 2,443 25,250 5,000
No. Classes 37 200 102 500 101 100

which is [Raw Image Caption]" as depicted in Section 3.3. Following Yuan et al. (2023), we adapt
the stable diffusion with Low-Rank Adaptation (LoRA) with the same hyperparameters, as well as
the same set of negative prompts "distorted, unrealistic, blurry, out of frame" for generations. For
synthetic data augmentation, we use prompt guidance 7.5 for all datasets. For the only synthetic data
setting, we use prompt guidance 2.0 for all datasets as suggested by Sarıyıldız et al. (2023). The
hyperparameter for training the downstream classification model is listed in Table 6.

Table 6: Training hyperparameters of downstream classification model.

Pets CUB Flowers Birdsnap Food IN100

On-the-fly Iterations 20 20 20 20 20 20
Train Res → Test Res 224 → 224 448 → 448 224 → 224 224 → 224 224 → 224 224 → 224
Training Epochs 200 200 200 200 200 200
Batch size 128 × 8 64 × 8 128 × 8 128 × 8 128 × 8 128 × 8
Optimizer SGD SGD SGD SGD SGD SGD
LR 0.1 0.2 0.1 0.1 0.1 0.1
LR decay multistep multistep multistep multistep multistep multistep
decay rate 0.2 0.2 0.2 0.2 0.2 0.2
decay epochs 50/100/150 50/100/150 50/100/150 50/100/150 50/100/150 50/100/150
Weight decay 5e-4 5e-4 5e-4 5e-4 5e-4 5e-4
Warmup epochs - - - - - -
Label smoothing - - - - - -
Dropout x x x x x x
CE loss → BCE loss x x x x x x
Mixed precision ✓ ✓ ✓ ✓ ✓ ✓

F MORE EXPERIMENTAL RESULTS

Accuracy under common corruptions and perturbations. To evaluate robustness, we introduced
common corruptions such as Gaussian Blur and Speckle Noise, following the methodology outlined
in Hendrycks & Dietterich (2019). All methods were trained on clean images and tested on corrupted
images to assess their robustness. As shown in Table 7, our method consistently outperforms
Real-Fake across all datasets and corruptions.

Table 7: Top-1 accuracy evaluated on Clean / Gaussian Blur / Speckle Noise images.

Top-1 Acc Pets CUB Flowers Birdsnap Food IN100

Real-Fake 94.2 / 93.0 / 90.4 83.1 / 77.3 / 75.4 89.0 / 88.0 / 79.2 73.0 / 72.4 / 71.7 87.4 / 86.6 / 86.1 88.6 / 88.1 / 87.2
GenDataAgent 94.7 / 93.6 / 90.9 83.9 / 79.1 / 76.0 91.0 / 90.3 / 82.4 74.5 / 73.8 / 72.4 87.8 / 87.1 / 86.7 90.1 / 89.7 / 89.0

Train and validation accuracy gap. We present the train accuracy, validation accuracy, and
accuracy gap after convergence for all datasets in Table 8. Notably, the train-validation accuracy gap
is reduced on GenDataAgent, which can be seen as a form of mitigation for overfitting. The reason
might be the synthetic data covers some cases that the real data ignore (the diversity introduced by
LLaMA caption perturbation), thus enhancing the model’s robustness and generalization capabilities.

G LIMITATIONS

Representation Ability of Generative Models. Our method augments real data with synthetic
data generated by stable diffusion. Consequently, the classification model’s representation ability is
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Table 8: Train accuracy / validation accuracy / accuracy gap over all datasets.

Train / Val / Gap Pets CUB Flowers Birdsnap Food IN100

Real-Fake 99.7 / 94.2 / 5.5 93.6 / 83.1 / 10.5 99.1 / 89.0 / 10.1 90.2 / 73.0 / 17.2 96.6 / 87.4 / 9.2 95.4 / 88.6 / 6.8
GenDataAgent 97.8 / 94.7 / 3.1 92.2 / 83.9 / 8.3 98.3 / 91.0 / 7.3 89.1 / 74.5 / 14.6 96.2 / 87.8 / 8.4 94.8 / 90.1 / 4.7

significantly influenced by the generative model’s capabilities, including different models and their
versions.

Efficiency of Generating High-quality Synthetic Data. As shown in the main paper, generating
synthetic data might be the bottleneck of synthetic data augmentation. Fast generative models with
high-quality output are needed to improve efficiency. Despite techniques like those in Bolya &
Hoffman (2023), generation time remains costly and quality can degrade.

Downstream Applications. Currently, synthetic data primarily augments classification tasks. We
aim to expand GenDataAgent’s applicability to more downstream tasks, but this may require specific
design adjustments for stable diffusion.

Adaptive Thresholds. The thresholds in GenDataAgent are manually set. Future work could
explore more automated methods for setting these thresholds.

H BROADER IMPACTS

Most previous works (Sarıyıldız et al., 2023; Yuan et al., 2023) studying synthetic data primarily
focus on the quality of generative images, aiming to closely match the distribution of synthetic data
with the target dataset. However, these studies often overlook the interaction between synthetic data
and downstream classification. Our work bridges this gap by introducing Marginal score sampling
and on-the-fly strategies, emphasizing the creation of focused, diverse, and in-distribution synthetic
data.
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