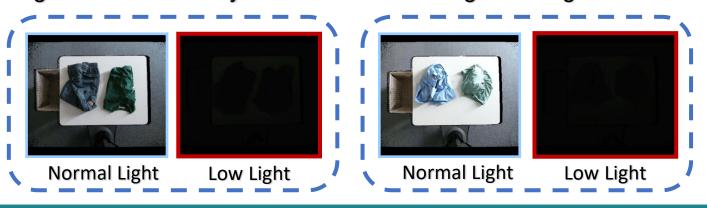
DarkSeg: Infrared-Driven Semantic Segmentation for Garment Grasping Detection in Low-Light Conditions

HANGZHOU 2025

Haifeng Zhong 12, Fan Tang 2, Hyung Jin Chang 3, Xingyu Zhu 12, Yixing Gao 12*

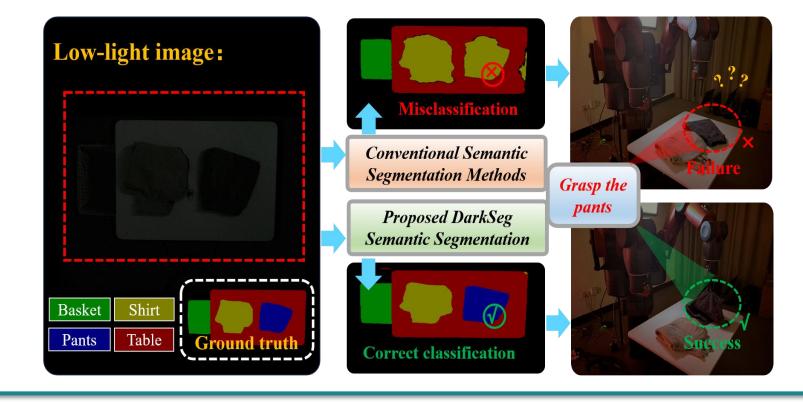

¹School of Artificial Intelligence, Jilin University, China. ²Engineering Research Center of Knowledge-Driven Human-Machine Intelligence, Ministry of Education.

³Institute of Computing Technology, Chinese Academy of Sciences, ⁴University of Birmingham . *Corresponding author.

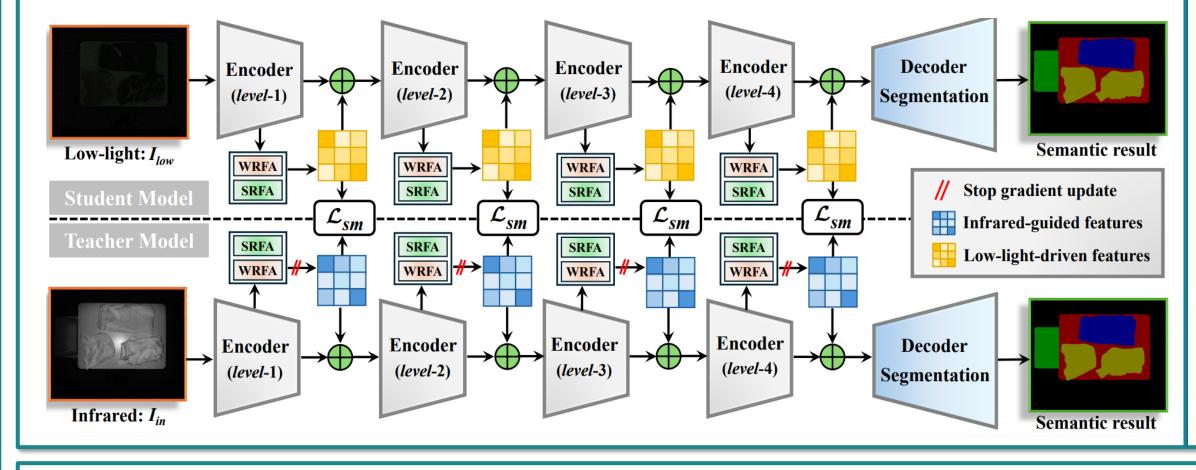
zhonghf23@mails.jlu.edu.cn, gaoyixing@jlu.edu.cn

Problem Description

Under low-light conditions, the limited light reflections captured by imaging sensors result in sparse structural features, leading to high feature similarity across different categories of garments.

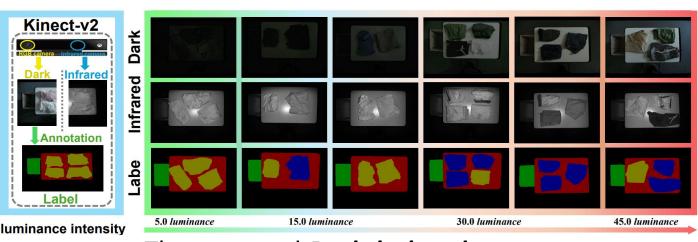


Highlights


- We systematically investigates the challenges posed by low-light conditions for garment recognition and grasping, and provides new insights into low-light garment grasping from the perspective of modeling the structural complementarity between visible and infrared images.
- Our method achieves competitive performance on the DarkSeg low-light garment grasping dataset, and demonstrates promising results in realworld experiments.

Challenges of Existing Methods

Existing methods commonly employ a semantic segmentation model to perceive different categories of garments. However, under low-light conditions, the feature representations of varying garment categories become ambiguous, leading the model to make incorrect classification decisions.


Our DarkSeg framework:

Key contributions

- ♦ We propose the DarkSeg, for low-light garment grasping, which learns illumination-invariant representations by aligning structural features between low-light and infrared modalities.
- ◆ To leverage the prominent structural features in infrared images for reinforcing low-light images, we propose a Short-Range Feature Awareness module and a Wide-Range Feature Awareness module.

Dataset and Experimental Results

The proposed *Darkclothes dataset*

Low-light image	Infrared image	Ground truth	PIDNet	SeMask	MRFS	Our DarkSeg
Low-light image	Infrared image	Ground truth	PIDNet	SeMask	MRFS	Our DarkSeg
Low-light image	Infrared image	Ground truth	PIDNet	SeMask	MRFS	Our DarkSeg

Qualitative Comparison on the *Darkclothes dataset*

	Success R		
Method	Pants	Shirts	Average
PIDNet (RGB)	14 / 25 (64%)	18 / 25 (68%)	64%
MFRS (RGB-T)	18 / 25 (56%)	19 / 25 (72%)	74%
DarkSeg w/o TM	15 / 25 (68%)	19 / 25 (72%)	68%
DarkSeg	22 / 25 (88%)	21 / 25 (84%)	86%

Grasping Comparison on the *Darkclothes dataset*

- We compare the performance of DarkSeg with previous state-of-theart methods on garment detection on the Darkclothes dataset.
- We conduct real-world experiments on a Baxter robot with DarkSeg to validate the effectiveness of the proposed method.
- We further analyze the complexity of our DarkSeg.

This research was supported by the National Natural Science Foundation of China under Grant Nos. 62203184 and W2421093, and the International Cooperation Project of Jilin Province under Grant No. 20250205079GH.