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A APPENDIX

A.1 EXPERIMENTAL DETAILS

For all of the experiments and all the baselines, we fix the architecture of the meta-learner fy to be a
multi-layer perceptron with 3 hidden layers of 64 hidden units together with ReLU activations. We
use a meta batch size of 10 tasks and train all the models with Adam Kingma & Ba (2014) optimizer
with a learning rate of 1072, We use the inner learning rate o = 0.1 for the adaptation step and
MSE as the adaptation loss. All experiments were run for 5 different seeds to compute mean and
standard deviations. For LLAMA we use ) = 10~6, for PLATIPUS we scale the KL loss by 0.1, for
BMAML we use 10 particles and use MSE rather than the chaser loss for a fair comparison. Other
experiment-specific details include:

Sine and Polynomial regression: models are trained for 10° outer loss steps, and the
dimension of the context used is equal to the task’s dimensionality.
Mass-Spring: models are trained for 10° outer loss steps, the dimension of the context used
is 6, the ODE dynamics are defined as:

d’y . dy
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where k, m, b are sampled uniformly in [0.5, 2.0].
Double Pendulum: models are trained for 10° outer loss steps, the dimension of the context
used is 4. The dynamics are described through the canonical Hamiltonian equations as:

Pl — paly cos(ag — a)
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A, = P1p2 Sln(0.¢12— az) (19)
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A _ p%mglg — 2p1p2m21112 COS(O&l — 0[2) + p%(ml + m2)l% (20)
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for angles a1, ais between the pendulums and generalized momenta p1, p2. From this, we
find the coordinate (2, y2) of tip of the pendulum as
T = ll sin(al) + lQ sin(ag) (21)

ya = —ly cos(ay) — Iz cos(az). (22)

We sample parameters as my, mo ~ U[0.5,1.5]% and g ~ U[5, 15]. The pendulum lengths
l1, 15 are both constants with a value of 2.0.

Multi Mass-Spring: models are trained for 10% outer loss steps, the dimension of the
context used equals 8. The dynamics can be simulated by iterating through each of the
particles and summing the forces applied by the other particles:

F;
Vi = U; + At* (23)
m

r; = x; + Atw; 24)
where v;, z; denotes the velocity and position of particle ¢ respectively and m denotes the
mass. F; denotes the total spring force acted upon particle ¢:

Fi=) Fy (25)
j=1
T; — T4
Fij = Kij(1 = ||l — mj”)m' (26)
i Jj
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Algorithm 1 LAVA Pseudo-Code

Require: p(7) distribution of tasks
Require: «, 7, € hyperparameters.
Ensure: Output results

1: Randomly initialize 6,

2: while not done do

Sample batch of tasks 7 ~ p(T)
4 forall 7 € 7 do

5: Sample DY, D@ ~ 7

6: for all (z;,v;) € D? do
7
8

Evaluate 91 =6y — aVeL(0o,xi,yi)
Evaluate H; = %ﬁ(éi, iy Yi)

9: Evaluate H; = 1 (H; + €I)
10: end for _

11: Evalvate H = ), H;

12: Evaluate §, = H! > H,6;

13: end for

14:  Update 6y = 0o — 7V, 3. 7 L(07, D?) using each DY
15: end while

where F;; denotes the force acted upoin particle ¢ by particle j. We sample spring constant
K;; = Kj; between particle ¢, j uniformly in [0.5, 2.0]. We let mass m = 1 and use a total
of 4 particles.

* Omnipush: models are trained for 2 x 105 outer loss steps, and the dimension of the context
used is 8.

A.2 GRADIENT-BASED META-LEARNING IS AN UNBIASED ESTIMATOR
Here, we show that GBML is an unbiased estimator. Define the loss for one task as:

L£O,7)= E [£(6,2)] (27)

a~p(alr)

Then the gradient w.r.t § is an unbiased estimator:

E [Vol(0,2)]=Ve E [£(0,2)] = VeL(0,T) (28)

zr~p(z|T) zr~p(x|T)

Moreover, we measure empirically the bias of GBML and LAVA estimators. As a comparison, we
include a fully learned network implemented as a HyperNetwork Ha et al.|(2016) that takes as input
the entire support dataset and outputs the adapted parameters directly. Both the adaptation and the
aggregation are learned end-to-end together with the downstream task.

We train these three models until convergence on the sine regression dataset. Then, we measure their
performance on each task corrupted by Gaussian noise with a standard deviation of 3 on the support
labels. The experiment is designed to test how the performance changes when increasing the support
size. Figure[d]shows the difference in the loss between adaptation with and without noise for the three
models and for different support sizes. Thus, we are effectively testing the ability of these estimators
to recover the performances of the noiseless adaptation. Ideally, an unbiased estimator converges to
the correct posterior with enough samples as long as the noise has zero mean. As can be seen in the
figure, GBML methods are much more robust to these kinds of perturbations, while learned networks
are not unbiased.
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Figure 4: Scaled MSE when adding noise to the support labels for the sine experiment with increasing

support size.

A.3 VARIANCE REDUCTION

Below we give an account of the proof of Proposition[I] Consider the variance reduction problem

defined in Equation[T2]

mwl/n Var <Z WZZ¢> subject to Z W,=1

i=1 i=1
We have that

i=1

Var (zn: WiZi> = zn: WS, Wl
=1

By introducing a Lagrange multiplier A, we reach the following optimization problem:

min  F(Z,W)
W

F(Z, W) = zn: Wi, W 4+ (i: W; — I)

i=1 i=1

By taking the derivative w.r.t W; and using the fact that 2; is symmetric we find that

dF
= 2W;%; — A
aw;

Setting this equal to 0, we get
A

W, =3t

2 K3

From the condition defined in[29] we have

A= o
5;& =1
n -1
A=2<22;1>
i=1

Plugging this into Equation[34] it follows that

n -1
W = (Z 2;1> !
=1

(29)

(30)

3D

(32)

(33)

(34)

(35)

(36)

(37)

(38)

Given these weights, W;, the distribution of E?:l W, Z; follows a normal distribution which is

equivalent to Equation [0} [
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Models |D%| =5 |DS| =10 |D%| =20
MAML 0.8344+0.129  0.518 £0.071  0.316 4 0.042
meta-SGD 0.63 4+ 0.08 0.35 4 0.05 0.20 4+ 0.02
ANIL 0.72 +0.09 0.41 4 0.05 0.23 +0.03
PLATIPUS  0.9214+0.165  0.386+0.064  0.134 +0.024
CAVIA 0.651+0.105  0.372+0.059  0.199 4+ 0.029
LLAMA 0.647+0.112  0.371 £0.058  0.199 4 0.028
BMAML 0.599 £0.120  0.349 £0.075  0.190 & 0.035
VFML 0.64 +0.08 0.38 +0.05 0.21 +0.02
MetaMix 0.76 +0.10 0.67 4 0.09 0.58 +0.09
LAVA 0.047 +0.020 0.016 +0.003 0.010 + 0.002

Table 3: Test MSE on sine regression with different support sizes.

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL SINE RESULTS

Here we provide additional results for the sine regression experiment. Using the same experimental
settings described in Section[6.]and Appendix we present MSE and standard deviations for 5
seeds for LAVA and baselines in Table[3] Additional qualitative results are shown in Figure[5]

B.2 ADDITIONAL COMPUTATIONAL TIME EXPERIMENTS

We present additional results on computational times for the polynomial experiment in Figure [§ for
different number of degrees and size of support.

B.3 MINI-IMAGENET

We further experiment with classification on the Mini-Imagenet dataset|Vinyals et al.[|(2016). We use
the training-set split as used in Ravi & Larochelle|(2017) which leaves 64 classes for training, 16
for validation and 20 for test. We experiment with 5-way classification in either a 1-shot or 5-shot
setting. We train the models for 1000 epochs and perform model selection by choosing the one with
the best performance on the validation set. We present results on the test set in Table[d] In the 1-shot
setting, we achieve results comparable to Meta-SGD and ANIL, outperforming Bayesian alternatives
such as BMAML. In the 5-shot classification, we find that our model outperforms BMAML while
being within the error bars of standard GBML methods such as CAVIA, MAML and Meta-SGD.

Standard classification benchmarks such as Mini-Imagenet test the capability of the model to incorpo-
rate high-dimensional data in the form of images. Some of the methods, such as the best-performing
method BOIL, are optimized towards image data and attempt to efficiently learn a well-structured
representation space of images, such that the adaptation reduces to modifying decision boundaries.
In particular, few-shot image classification problems in this form are inherently discrete problems
that do not suffer as extensively from the task-overlap assumption as outlined in[2]

B.4 A NOTE ON COMPUTATIONAL COMPLEXITY

A limitation of the described method lies in an increased time complexity. Computing the Hessian
on each single support point can, in fact, severely affect the training time of methods that already
require complex second-order calculations like in GBML. As a first consideration, we point out that
the Hessian is computed on the contextual parameters only, leading to a more efficient computation
rather than the full model parameters. When the network is expressive enough, this should lead to no
difference in performance over the full adaptation framework.

Nevertheless, the Hessian computation can result in a sensible increase in computational time and
LAVA is, in fact, more expensive than the standard GBML model. However, this computational
complexity increase is paired with stronger performances. LAVA provides a more effective adaptation
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Figure 5: Qualitative results for the sine experiment for CAVIA and LAVA with 5 and 10 support size

—— ground truth —== prior —— posterior b 4 supportdata}

Model 5-ways 1-shot  5-ways 5-shot
ANIL 4594 +0.94  62.86 = 0.26
BMAML 4243 +7.44  59.76 £ 0.43
BOIL 50.124+0.33  64.72£0.40
CAVIA 47.84+0.41  63.09£0.51
LLAMA 40.19+£0.85  56.50 £ 0.15
MAML 48.60 £ 0.80 63.19 +1.57
Meta-SGD  46.18 £0.45  62.82+0.36
PLATIPUS 34.71+0.68  42.84+0.99
LAVA 46.69 +1.45 61.51 +£0.97

Table 4: Results Mini-Imagenet with support sizes 1 and 5

technique as one of its main features is the efficient use of the limited information given by the
support. In this regard, LAVA provides a better trade-off between performances and computational
complexity. To better analyze this trade-off we compared LAVA’s performances against CAVIA in
the Polynomial regression experiment by varying the number of inner loop adaptation steps. Figure[7]
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Figure 6: Computational times for the polynomial experiment of various degrees.
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Figure 7: Computational times for third-degree polynomials with different sizes of support. The blue
line represents results for CAVIA over a different number of adaptation steps. In comparison, LAVA
achieves a computational time comparable to 6 inner-steps of CAVIA, while showcasing superior
performance.

shows how LAVA has a computation complexity comparable to CAVIA with between 5 and 6 inner
loop gradient steps. However, the performances of LAVA are consistently lower. A more extensive
analysis is given in the Appendix in Figure[d]

There exists an inherent trade-off between computational complexity and model performance. Recent
work exemplifies how deep learning modules benefit from more computational complexity, an
example being the shift to Transformers from CNNs in computer vision tasks. LAVA represents
another step in this direction as one of its main features is the efficient use of the limited information
given by the support size at the expense of complex computations.
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