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ABSTRACT

Recent development in large language models (LLMs) has demonstrated impres-
sive domain proficiency on unstructured textual or multi-modal tasks. However,
despite with intrinsic world knowledge, their application on structured tabular data
prediction still lags behind, primarily due to the numerical insensitivity and modal-
ity discrepancy that brings a gap between LLM reasoning and statistical tabular
learning. Unlike textual or vision data (e.g., electronic clinical notes or medical
imaging data), tabular data is often presented in heterogeneous numerical values
(e.g., CBC reports). This ubiquitous data format requires intensive expert an-
notation, and its numerical nature limits LLMs’ capability to effectively transfer
untapped domain expertise. In this paper, we propose SERSAL, a general self-
prompting method by synergy learning with small models to enhance LLM tab-
ular prediction in an unsupervised manner. Specifically, SERSAL utilizes the
LLM’s prior outcomes as original soft noisy annotations, which are dynamically
leveraged to teach a better small student model. Reversely, the outcomes from the
trained small model are used to teach the LLM to further refine its real capabil-
ity. This process can be repeatedly applied to gradually distill refined knowledge
for continuous progress. Comprehensive experiments on widely used medical do-
main tabular datasets show that, without access to gold labels, applying SERSAL
to OpenAI GPT reasoning process attains substantial improvement compared to
linguistic prompting methods, which serves as an orthogonal direction for tabu-
lar LLM, and increasing prompting bonus is observed as more powerful LLMs
appear. Codes are available at https://github.com/jyansir/sersal.

1 INTRODUCTION

The advancement of large language models (LLMs) (Zhao et al., 2023) has made waves in both
research and industry communities. Through friendly natural language interaction and powerful in-
context reasoning ability, LLMs have shown their remarkable knowledge generalization to language
processing (Wei et al., 2021; Wang et al., 2022), complex planning (Qin et al., 2023; Zan et al., 2023)
and even vertical domain (e.g., healthcare (Cascella et al., 2023), law (Deroy et al., 2023), chem-
istry (Guo et al., 2023)) tasks compared to past supervised pre-trained language models (Kenton &
Toutanova, 2019; Radford et al., 2019), all achieved with suitable prompting and no fine-tuning, yet
they are still struggling for the numeric tabular data.

For example, GPT-4 achieves 81.7 % accuracy with zero-shot prompting on the United States Med-
ical Licensing Examination (USMLE), which metric will be increased to 90.2 % when meticulous
prompts are designed (Nori et al., 2023). In the left part of Fig. 1(a), our preliminary experiment
exhibits performances of GPT-3.5, GPT-4 and the fully supervised BERT on top-5 ICD coding for
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MIMIC-III discharge summaries. Even with simple zero-shot prompting, GPT-3.5 has already sur-
passed the fine-tuned ClinicalBERT (Huang et al., 2019) and can obtain further improvement with
linguistic prompting tricks (e.g., zero-shot CoT (Kojima et al., 2022)). However, when handling
medical tables with numerical value features, the trend becomes totally different, in the right part of
Fig. 1(a), such significant prompting bonus disappears, suggesting an undeniable void in the current
LLM prompting taxonomy tailored for tabular prediction. There are two key points causing the gap:

(i) Existing competitions for general-purpose LLMs predominantly focus on their capabilities in
processing unstructured data (Zhang et al., 2024a;b), which is naturally different from structured
tabular data characterized by dense heterogeneous numerical features (Borisov et al., 2022; Yan
et al., 2023; Chen et al., 2022), and the prevailing technical landscape of LLMs neglects nuanced
sensitivity and understanding for numerical values (Qian et al., 2023; Yan et al., 2024b).

(ii) Most LLM tasks of interest can be formulated as sample-level data understanding then reasoning
by generation, the input semantics are unstructured and detailed, while the tabular prediction (e.g.,
disease diagnosis with numerical metrics from medical examination and testing) requires overall
statistical relation between numerical features and targets on the whole dataset or a specific task,
which is difficult to access using a single tabular instance in high-level and constrained contexts.

Based on these observations, a straightforward question is, how to harness world knowledge of
existing versatile LLMs, especially these commercial and blackbox (users cannot access the logit)
ones (OpenAI, 2022; 2023), to empower tabular prediction like disease diagnosis using medical
testing results, which serves as a potential breakthrough for LLMs on statistical learning tasks.

To fill the aforementioned technical gap and extend LLM’s capability to tabular prediction, we pro-
pose SERSAL, a synergy learning pipeline between small models and LLMs, requiring no gold
labels. Different from existing prompting techniques designing hard or soft prompts to augment in-
puts for unstructured data understanding, our SERSAL contributes from a brand new perspective that
improves existing LLMs on statistical prediction for numeric tabular data, providing an inter-
face to adapt LLM untapped knowledge to such structured tabular data. SERSAL helps a blackbox
LLM trigger and refine its vertical capabilities for domain tabular data in an unsupervised manner
with the following steps: (1) Using simple zero-shot prompting to gather the LLM’s output confi-
dence as initial coarse annotations of the whole dataset; (2) Teaching a better small tabular model
(e.g., FT-Transformer (Gorishniy et al., 2021)) from scratch based on the LLM’s confidence like
semi-supervised learning with noisy labels; (3) Reversely fine-tuning the LLM using the outcomes
of the trained small model to further update LLM’s annotations in the next loop; The process from
step (1) to (3) can be repeatedly applied to the LLM for continuous progress on specific tabular
dataset. Essentially, SERSAL presents LLM prior knowledge on all tabular samples as “indicators”
to a small model, which serves as a “probe” during learning correct patterns from the well-expressed
clean part to feedback for LLM self-improvement.

In this paper, the main experiment is based on the well-known online blackbox LLMs, OpenAI
GPT-3.5 (OpenAI, 2022) & GPT-4 (OpenAI, 2023), and as a prompting counterpart, our SERSAL
can be directly transferred to other LLMs once the fine-tuning APIs are given. In a nutshell, our
main contributions are:

• For the first time, we bring the common challenge of existing general-purpose LLMs on
numeric tabular prediction, a statistical learning featured task, to the spotlight that has not
been covered by prevailing prompting techniques.

• We propose SERSAL, a novel unsupervised self-prompting method to adapt LLM’s capa-
bility to tabular data prediction, which leverages synergy learning with small models to
capture and feedback correct patterns from LLM intrinsic knowledge.

• Comprehensive experiments reveal that SERSAL is consistently more effective than com-
mon textual prompting methods on medical tabular datasets, with general feasibility in
other vertical domains discussed.

2 SERSAL: AN LLM SELF-PROMPTING LOOP FOR TABULAR PREDICTION

We propose SERSAL, a synergy learning process using small models to trigger LLM’s knowledge
on tabular data, which is a fundamentally distinct prompting method and serves as a novel inter-
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Figure 1: (a) Comparison of prompting effectiveness on unstructured textual data (Mullenbach et al.,
2018) and structured tabular data (Detrano et al., 1989) from medical domain, it is clearly seen, even
with surprising medical expertise (Nori et al., 2023), GPT-4 still struggles to catch up fully super-
vised small models (ClinicalBERT (Huang et al., 2019) for textual tasks and FT-Transformer (Gor-
ishniy et al., 2021) for tabular ones) on tabular data, implying essential task discrepancy that makes
it incompatible to rely on typical prompting techniques to unlock the potential of LLMs for tabular
prediction. (b) Unsupervised SERSAL triggers LLM’s knowledge using a small model.

face to extend current LLMs to tabular data prediction. Principally, SERSAL is inspired by the
semi-supervised learning with noisy labels (LNL) and teacher-student training, while several key
differences exist: (1) LNL setting requires a certain proportion of gold labels as the starting point,
while SERSAL only access the LLM’s soft pseudo labels (i.e., per-sample confidence) on the whole
dataset; (2) In teacher-student paradigm the student model is primarily considered to be compara-
ble to the teacher, while SERSAL conservatively teaches a better student model by dynamically
learning from the relatively clean LLM’s outputs and regularizing on noisy ones to avoid misleading
confirmation bias (Tarvainen & Valpola, 2017), which produces a better small model on the target
task to form a co-teaching manner. The overall framework of SERSAL is outlined in Fig. 1(b) and
formulated in Algorithm 1. Each part is detailed in the following subsections.

2.1 SOFT LLM PSEUDO LABELING

To access the prior knowledge of the LLM on a specific tabular dataset, we first query its confidence
on each sample using simple zero-shot prompt template. Specifically, the prompt consists of a task
description and listed feature specifications, for example, “You are a professional doctor, here are
some clinical metrics of a patient, please give a likelihood between 0 to 1 of suffering from a heart
disease: [Age] 47 (years old); [Gender] Male; [Systolic Blood Pressure] 138 (mmHg); [Blood Lipid]
240 (mg/dL); . . . ”. In this way the LLM’s per-sample confidence on the whole dataset is gathered,
though the initial zero-shot performance is often far away from the one of a supervised small tabular
model (see Fig. 1(a) and Table 2), we can dig into such fine-grained LLM confidence by separately
judging then using underlying clean and noisy supervision signal to teach a robust small model.

2.2 SMALL MODEL TEACHING WITH NOISY LLM’S LABELS

This step aims to teach a better small model with the collected soft outputs from the LLM. Intuitively,
such LLM confidence is a kind of noisy labels, thereby a straightforward insight is to reformulate the
teaching process as learning with noisy labels (LNL). To sufficiently exploit LLM’s prior knowledge,
we adopt a “semi-supervised” learning strategy after dividing training samples into a more reliable
labeled set and another unlabeled set, then the small model is fitted with the soft LLM’s labels in the
labeled set and regularized on the ones of the unlabeled set, the data partition is based on per-sample
loss since deep neural networks tend to fit samples with clean labels faster than one with wrong
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labels according to the LNL theory (Arpit et al., 2017), thus lower loss often indicates relatively
cleaner labels (Chen et al., 2019).

In implementation, we use an adapted version of DivideMix (Li et al., 2019), a common semi-
supervised LNL algorithm for image classification that dynamically fits a Gaussian Mixture Model
on per-sample losses to distinguish probably clean and noisy LLM’s labels and trains a pair of neural
networks simultaneously to keep them diverged to avoid confirmation bias in single-model self-
training (Tarvainen & Valpola, 2017). Apart from adapting DivideMix to tabular data prediction, the
used soft labels naturally apply label smoothing guided by the LLM. Besides, we leverage the pseudo
labels with extreme confidence for early stopping with underlying assumption that annotations with
extreme LLM’s confidence is tend to be more accurate, which is observed in Fig. 2 and Fig. 4, and
discussed in Sec. 3.3. Specifically, we divide a training subset as the early stopping set Des =
{(Xi, ȳi)|max(ŷi) ≥ τ} to perform early stopping and hyper-parameter selection for the teaching
process, where for the i-th sample, ŷi is its LLM’s confidence vector, and ȳi is the corresponding
hard labels (i.e., ȳi = argmax(ŷi)), samples with maximum label confidence larger than threshold
τ (we uniformly set τ = 0.9 in the experiment) are considered to be accurate enough for early
stopping. During “semi-supervised” teaching, samples in the early stopping set are also used since
some domain (e.g., medicine) tabular datasets suffer from data inadequacy, and the reduction on
training subsets may distort data distribution. We formulate this step in the line 3-5 of Algorithm 1
and conduct related ablations in Sec. 3.3.

In summary, this teaching step adopts semi-supervised LNL process to aggregate and distill prior
knowledge into a small model to extend the LLM’s real capabilities to tabular data prediction.

2.3 QUALITY CONTROL

Since SERSAL operates iteratively, it requires a termination mechanism to control the loop exit.
Here we provide three heuristic strategies, users can also define their own control flow in practice.

• Metric-based Control. In Sec. 2.2 we define the high-confidence training subset as the
early stopping set Des which pseudo labels are relatively more accurate (see Fig. 2). There-
fore, users can inspect metrics (e.g., AUC or accuracy scores for classification) by treating
these pseudo labels as the ”ground truth” to control whether to end the loop.

• External Validation Control. If budget permits, human experts can collect and annotate
appropriate external data as a validation set, e.g., in hospitals, regular medical data quality
inspection needs to sample and label a small part of data, and learning quality can be
assessed with such external labeled set.

• Rule-based Control. For example, users can define a fixed iteration time.

For simplicity, in the main experiment we uniformly report one-loop SERSAL performances in med-
ical and other domain datasets (Table 2 & 5), which has significantly surpassed the ones of prevailing
prompting methods, and further discuss the effectiveness of multi-loop SERSAL in Sec. 3.4.

2.4 REVERSE LLM TUNING

The final step is to reversely teach the LLM using the well-trained small model to feedback the ag-
gregated knowledge. Similar to using LLM’s soft confidence to teach the small model in Sec. 2.2,
we also use soft confidence from the small model to fine-tune the LLM (fine-tune the online black-
box GPTs through their APIs in experiment). Specifically, the training samples are re-labeled by the
small model with its guessed probabilities (line 7-8 in Algorithm 1), the same prompt templates in
Sec. 2.1 are used to construct the training corpus for the LLM. To avoid the excessive memorization
of the LLM on the small model outputs (Bordt et al., 2023), we employ a conservative tuning strat-
egy that sets the maximum training epoch to 3 with proper early stopping (the fine-tuning APIs of
GPT-3.5 & GPT-4 provide automatic early stopping in default), making the LLM slightly fitted on
the guessed labels while keeping a non-zero minimum training loss. Then the updated LLM initiates
the next SERSAL loop, forming an iterative process.
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Algorithm 1 Unsupervised SERSAL. Line 2: LLM pseudo labeling (Sec. 2.1); Line 3-5: Small
model teaching (Sec. 2.2); Line 6: Quality control (Sec. 2.3); Line 7-9: Reverse tuning (Sec. 2.4).

Input: Unlabeled training set Xtrain and test set Xtest, large language model f (0)
LLM

Parameter: Confidence threshold τ , quality control function fctr
Output: Improved zero-shot tabular prediction y∗test

1: Let t = 1. // Initialize iteration number
2: Softly labeled dataset D(t)

train = (Xtrain, ŷ
(t)) by current f (t)

LLM.
3: Randomly initialize a small tabular model θ(t).
4: Select early stopping set D(t)

es =
{
(Xi, ȳ

(t)
i )|max(ŷ

(t)
i ) ≥ τ

}
⊆ D

(t)
train.

5: θ∗(t) = DivideMix(D(t)
train, D

(t)
es , θ(t), τ). // Adapted DivideMix (Li et al., 2019)

6: while fctr(θ
∗(t),X) do

7: y(t)sm = Predict(Xtrain; θ
∗(t)). // Soft label guessing by the small model

8: ŷ(t)sm = Sharpen(y(t)
sm, temperature = 0.1). // Simple temperature sharpening

9: f
(t+1)
LLM = Finetune(Xtrain, ŷ(t)sm, f

(t)
LLM). // Reversely tune the LLM with guessed labels

10: t = t+ 1.
11: Repeat Line 2-5. // Self-prompting loop
12: end while
13: y∗test = Predict(Xtest; θ

∗(t)). // Final prediction with the taught small model
14: return y∗test

3 EXPERIMENTS

In this section, we first compare SERSAL with prevailing prompting techniques (using GPT-3.5
& GPT-4) and the fully supervised small tabular models on extensive medical tabular datasets in
Sec. 3.2. Next, we conduct ablation on several key adaptations in semi-supervised learning with
noisy labels (LNL) in Sec. 2.2 and inspect the effectiveness of multi-loop SERSAL in Sec. 3.4. Also,
we discuss the general adaptability of SERSAL on tabular data from other non-medical domains in
Sec. 3.5. Besides, we explore the method interpretability by visualizing Shapely Value variation
during SERSAL process in Sec. 3.6.

3.1 EXPERIMENTAL SETUP

Datasets We evaluate on ten widely recognized medical diagnosis tabular datasets on various dis-
eases: Heart Failure Prediction (HF, Detrano et al. (1989)), Lung Cancer Prediction (LC, Ahmad
& Mayya (2020)), Early Classification of Diabetes (ECD, Islam et al. (2020)), Indian Liver Patient
Records (LI, Ramana et al. (2012)), Hepatitis C Prediction (HE, Hoffmann et al. (2018)), Pima
Indians Diabetes Database (PID, Smith et al. (1988)), Framingham Heart Study (FH, O’Donnell
& Elosua (2008)), Stroke Prediction (ST, Fedesoriano (2020)), COVID-19 Presence(CO, Heman-
thhari (2020)) and Anemia Disease (AN, Kilicarslan et al. (2021)). Besides, datasets in clinical
trail (Wang & Sun, 2022) and open domains (Gorishniy et al., 2021) are added to further inspect
the effectiveness of SERSAL in difficult tasks and general data domains respectively. We split each
tabular dataset (80 % for training and 20 % for testing), and keep the same label distribution in each
split. Statistics of medical diagnosis datasets are given in Table 1. All evaluated datasets are binary
classification tasks.

Dataset HF LC ECD LI HE PID FH ST CO AN

# features 13 15 16 10 12 8 15 7 20 24
# samples 303 309 520 583 615 768 4238 5110 5434 15300
P/N 0.80 6.92 1.60 2.51 0.11 0.54 0.18 0.04 4.17 0.57
disease Heart Lung Diabetes Liver Hepatitis C Diabetes Heart Stroke COVID-19 Anemia

Table 1: Dataset statistics of ten medical diagnosis datasets for binary classification on various
diseases. “P/N” denotes the amount ratio of positive samples and negative ones.
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Compared Methods Since SERSAL serves as an unsupervised self-prompting method for LLM
tabular prediction, we compare with existing linguistic prompting methods for LLM usage in gen-
eral textual and tabular tasks, which focus on meticulously designed prompt texts: (1) Zero-Shot
Prompting (0-shot) is the straightforward prompt that contains no examples; (2) Zero-Shot CoT
Prompting (Kojima et al., 2022) (CoT) is a popular prompting method which asks the LLMs
to answer with intermediate reasoning steps to enable complex reasoning capabilities; (3) 8-shot
Prompting (8-shot) is a common few-shot prompt setting in standard prompting studies (Wei et al.,
2022; Kojima et al., 2022; Nori et al., 2023), it provides eight labeled samples (exemplars) to enrich
prompt contexts and steer the LLM to the better outputs, in the experiment we randomly sample
eight training examples and control the same positive-negative ratio (i.e., “P/N” in Table 1) with
at least one example for each class; (4) TabLLM (Hegselmann et al., 2023) and (5) LIFT (Dinh
et al., 2022) are two recent known linguistic prompt schemes for textualizing tabular data to fine-
tune LLMs with gold labels, though TabLLM was additionally evaluated in zero-shot settings, none
of them are originally proposed for unsupervised tabular scenarios, here we use their zero-
shot schemes for comparison. Additionally, we provide a fully supervised small tabular model
(FSSM) group using FT-Transformer (Gorishniy et al., 2021) for reference representing traditional
supervised learning paradigm by fine-tuning dataset-specific small models.

Implementation Details All experiments are conducted with PyTorch on Python 3.8 and run on
NVIDIA RTX 3090. For the small model, we uniformly use FT-Transformer with the default model
and training configurations provided in the original paper (Gorishniy et al., 2021). For SERSAL, the
only adjustable hyper-parameter is the temperature of DivideMix (Li et al., 2019) with choices of
0.5, 5.0 and 10.0 in line 5 of Algorithm 1, which is selected by the metric of the early stopping set
(D(t)

es in line 4 of Algorithm 1). The LLMs in the experiment includes OpenAI GPT-3.5 & GPT-4 to
inspect the effectiveness of SERSAL across different LLM capabilities.

3.2 WHY WE NEED SERSAL?

HF LC ECD LI HE PID FH ST CO AN

Random guessing 37.22 40.18 46.25 50.28 62.73 63.24 50.39 41.76 71.55 51.28
FSSM∗(supervised FT-T) 88.19 86.61 99.60 78.94 100.00 84.72 66.25 82.98 99.91 99.92

0-shot (GPT-3.5) 71.88 78.87 85.71 76.81 68.51 73.12 60.32 63.01 82.60 90.43
8-shot∗ (GPT-3.5) 73.65 78.87 87.68 76.81 68.51 73.12 58.27 60.85 77.63 87.19
CoT (GPT-3.5) 71.88 78.87 82.36 76.81 68.51 70.83 60.32 63.01 82.60 90.43
TabLLM (GPT-3.5) 76.37 78.87 87.06 78.24 74.39 75.69 61.78 68.48 85.78 89.11
LIFT (GPT-3.5) 78.23 80.69 83.92 73.60 72.57 73.12 60.32 70.92 87.93 90.43
SERSAL (GPT-3.5) 91.39 85.42 86.40 79.39 85.14 78.97 63.97 76.36 96.85 98.37
TabLLM+SERSAL (GPT-3.5) 93.82 85.42 88.39 80.71 89.27 82.54 65.02 81.74 97.51 98.16
SERSAL (GPT-4) 94.18 86.93 92.68 82.51 92.76 82.39 67.14 81.23 97.96 98.82

Table 2: The AUC scores (%) of different tabular prediction schemes on 10 medical diagnosis
datasets. The top part is the traditional supervised small models, the middle one is compared LLM
prompting methods (the top performances are marked in bold), the bottom part is additional com-
binations. Here the results of SERSAL are only based on a single loop. “∗” denotes the groups use
gold labels. “FSSM” is the fully supervised FT-Transformer. The results on more difficult clinical
trial datasets are given in Table 7.

Main Results Analysis The performances of different LLM prompting baselines are reported in
the middle part of Table 2. An overall trend is that, when the GPT-3.5 meets medical domain tab-
ular prediction tasks, the results using common prompting methods are consistently better than the
ones of random guessing, demonstrating the general-purpose LLMs indeed contain medical domain
expertise inherently, but they are still far from the traditional supervised small models (see group
“FSSM”), and further performance enhancement can not be achieved through usual prompting tricks
as in textual tasks (see Fig. 1(a)). Specifically, we observe 8-shot prompting slightly benefits the per-
formances in small-scale datasets (e.g., HF and ECD) but hurts in the larger datasets (e.g., FH, ST,
CO and AN) compared to the 0-shot prompting, which may be explained by the representativeness
of the used examples, since the distribution of the smaller datasets are more likely to be covered by
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few examples, thus 8-shot performs better as data scale decreases, and vice versa. For 0-shot CoT
prompting, it does not affect the overall results in most cases, but we find slight performance decline
in two diabetes datasets (i.e., ECD and PID), this may be caused by the over-consideration of CoT
on noisy features since diabetes can be diagnosed with several prominent features (e.g., blood sugar
and lipid). Although carefully crafted prompt templates from recent LLM in-context tabular learn-
ing studies (i.e., TabLLM and LIFT) show modest improvement, they still follow the linguistic
nature to process numeric tabular data, and are primarily designed for LLM in-context few-
shot learning or supervised fine-tuning. Our SERSAL explores a fundamentally novel prompting
mechanism exploiting the information gain in the LLM’s noisy outputs, which breaks through
the predicament from an orthogonal perspective and serves as an interface to effectively adapt the
LLM’s domain knowledge to numeric tabular data. After applying SERSAL, without access to gold
labels, the GPT-3.5 is able to achieve significantly better reasoning on these medical domain tasks,
with many cases competitive with the supervised small models.

Orthogonal Technical Contribution Based on the above analysis, SERSAL works in a distinct
underlying mechanism, and we can jointly adopt SERSAL and previous linguistic prompting meth-
ods for better combined performances (see group “TabLLM+SERSAL” in Table 2).

Continuous Performance Growth We additionally apply SERSAL to OpenAI GPT-4 on med-
ical diagnosis datasets (the bottom part of Table 2) and more difficult clinical trial datasets (see
Table 7). It can be seen SERSAL can further realize substantial performance gains as the capability
of used LLMs becomes more powerful, which can even surpass the traditional supervised paradigm
(N00041119 and N00312208 datasets in Table 7), indicating ample room for continuous prompting
bonus in SERSAL alongside the emergence of more advanced LLMs.

3.3 SEVERAL KEY ADAPTATIONS

HF LC ECD LI HE PID FH ST CO AN

SERSAL 91.39 85.42 86.40 79.39 85.14 78.97 63.97 76.36 96.85 98.37

w/o soft pseudo 84.58 76.58 87.24 78.25 75.79 75.93 62.58 75.05 93.97 97.53
w/o ES 84.03 74.11 75.92 59.39 47.41 68.43 57.08 74.70 90.57 97.57

Table 3: The AUC scores of ablation on two key adaptations. “w/o soft pseudo” means replacing the
LLM’s soft outputs with hard ones during teaching the student model, “w/o ES” denotes no early
stopping during DivideMix (line 5 in Algorithm 1).
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Figure 2: Performances in different LLM’s confi-
dence ranges on ECD and LI datasets. Extreme-
confidence samples are relatively more reliable.

In Sec. 2.2, to adapt the LLM’s outputs to a
semi-supervised LNL process to teach a small
model, we gather per-sample confidence from
the LLM as soft noisy annotations and heuris-
tically select samples with extreme confidence
for early stopping. In this section, we will ana-
lyze the effect of the two designs which distin-
guish our SERSAL from traditional LNL set-
tings.

The Effect of using Soft Labels We query
soft confidence from the LLM (see Sec. 2.1)
rather than directly using hard outputs for small
model teaching. The prediction probabilities
inherently reflect the LLM’s prior knowledge
as well as uncertainty on the domain tabular
data and can be naturally treated as a kind of la-
bel smoothing. Besides, the probability values
can be used to select relatively reliable labels to
early stop the teaching process and avoid over-
fitting. In Table 3 we compare the effect of using soft labels by replacing it with hard ones during
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SERSAL reasoning (group “w/o soft pseudo”). We find that using hard ones is usually suboptimal
since it loses both prediction uncertainty and label smoothing, which is unable to exploit fine-grained
LLM’s knowledge.

The Effect of Early Stopping In addition to using LLM’s soft outputs, a relatively clean training
subset is selected by threshold clipping on the per-sample confidence (line 4 in Algorithm 1) for
early stopping. Table 3 report the ablation results by directly training 100 epochs (group “w/o
ES”). It can be clearly seen, simply following the original DivideMix is far from the desired results,
since tabular features are heterogeneous and high-level compared to the well-patterned pixels of
images (Chen et al., 2023; Yan et al., 2024b), and in medical tabular domain the typically limited
available data further makes it prone to overfit without early stopping, for example, except large
AN dataset, all other tabular datasets appear to be significantly impacted by removing the early
stopping mechanism. The heuristic design of selecting extreme-confidence sample is inspired from
the empirical assumption that confident predictions from the LLM are more likely to be accurate,
which is supported by the performance variation of different confidence ranges in Fig. 2 and Fig. 4.

3.4 EFFECTIVENESS OF MULTI-LOOP SERSAL

Since SERSAL can be iteratively applied to the LLM (see Fig. 1(b)), we further inspect the effec-
tiveness of multi-loop SERSAL for GPT-3.5 reasoning. Specifically, we repeat the pipeline three
times on ECD and LI datasets, the result variations are reported in Table 4.

# Loop ECD LI

SERSAL LLM 0-shot SERSAL LLM 0-shot

1 86.40 85.71 79.39 76.81
2 87.00 86.42 82.47 80.26
3 89.00 87.81 84.07 82.91

Table 4: The AUC score variation of SERSAL
outputs and zero-shot prompting of the tuned
GPT-3.5 (LLM 0-shot) on LI and ECD datasets
during three loops. “# Loop” is the same as the
variable t in line 1 of of Algorithm 1. LLM 0-shot
group at the first loop is the original LLM.

During three loops, progressive improvement
on both the small model (SERSAL outputs are
from the well-trained small model of each loop)
and the GPT-3.5 is observed. Surprisingly,
even inferior to the 8-shot prompting baseline
on ECD dataset after the first loop (see Ta-
ble 2), we find SERSAL can reduce the gap and
even outperform few-shot baselines after sev-
eral loops. Such continuous progress probably
comes from the synergy learning between the
small model and the LLM that shares a similar
underlying mechanism of co-teaching (Han
et al., 2018), i.e., both sides dynamically learn
from a part of reliable pseudo labels from each
other and it makes them diverged to avoid con-
firmation bias, forming a mutual improvement manner to aggregate and refine LLM’s untapped
domain knowledge for tabular prediction.

3.5 GNERALIZED DATA ADAPTABILITY ON OTHER DOMAINS

Churn Credit Adult Fake

domain Business Finance Sociology N/A
# features 10 10 14 6
# samples 10000 16714 48842 1000

Random guessing 66.35 43.80 58.73 53.85
FSSM∗ 86.27 84.88 91.39 55.31

0-shot (GPT-3.5) 77.81 69.05 75.10 46.28
SERSAL (GPT-3.5) 83.29 79.36 88.72 38.72

Table 5: The dataset statistics and AUC scores on
other non-medical domains. “Fake” is a generated
dataset with random labels and features. The de-
notations follow the ones in Table 1 and Table 2.

In this section, we further explore the data
adaptability of SERSAL on other non-medical
domains. We evaluate on three classic bi-
nary classification datasets: Churn Model-
ing (Iyyer, 2019), Credit (Credit Fusion, 2011)
and Adult (Kohavi et al., 1996), which are
widely included in general tabular prediction
studies (Gorishniy et al., 2021; Yan et al., 2023;
Grinsztajn et al., 2022). Additionally, we build
a dataset “Fake” by randomly generating fea-
tures and binary labels to emulate an extreme
case where the LLM has no relevant knowledge
at all. The data information and the results are
given in Table 5. As in the medical domain, the
GPT-3.5 indeed holds the world knowledge and
can directly achieve the considerable results with simple zero-shot prompting, and SERSAL further
enhances the performance significantly. However, when facing the tabular data from an unknown
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domain (i.e., the Fake dataset), the LLM outputs high confidence on wrong labels, SERSAL is unable
to recognize such totally misleading bias. Therefore, our SERSAL shares the same basic limitation
as other linguistic prompting methods that the applied LLMs require a certain level of knowledge in
the target domain.

3.6 INTERPRETABILITY OF SERSAL

Low

High

Fe
at

ur
e 

va
lu

e

SHAP value (impact on model output)SHAP value (impact on model output)

1st SERSAL loop
AUC: 79.39 %
Accuracy: 65.51 %

2nd SERSAL loop
AUC: 82.47 %
Accuracy: 70.69 %

Age
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Figure 3: Interpretability visualization from feature importance perspective: the variation of the
Shapley Values (treat SERSAL outputs as the targets) and performances on Indian Liver Patient
Records (LI dataset) after one and two SERSAL loops using GPT-3.5.

In Fig. 3 we visualize the variation of Shapely Values on Indian Liver Patient Records (LI) dataset
after one (left) and two (right) SERSAL loops by treating the predictions (i.e., Algorithm 1) as tar-
gets. It can be clearly seen the feature “Age” is adequately considered after one loop self-prompting,
which highlights a strong and reasonable positive correlation between age and the incidence of liver
diseases that aligns with the medical expertise. Besides, a negative correlation with “Total Proteins”,
a guiding clinical metric reflecting the liver’s synthetic function, is captured in the right figure to con-
tribute the prediction, since a lower total protein level indicates a risk of liver cirrhosis. These two
reasonable changes of feature importance interpret the SERSAL prompting is able to iteratively re-
fine the domain expertise in the LLM, calibrating the statistical feature-target relationship for better
reasoning results during the process.

4 RELATED WORK

Prompt Engineering for In-Context Learning Prompt engineering is a flourishing discipline for
better LLM reasoning through meticulously designed linguistic input contexts or interaction process.
The most common and straightforward prompting is the single-round instruction that directly asks
with zero (zero-shot) or several (few-shot) demonstrations (Brown et al., 2020; Wei et al., 2021), but
such prompt style fails to work in more complex reasoning tasks (Wei et al., 2022). To tackle this
deficiency and improve the LLM’s capacity on a wide range of tasks, recently, studies on more ad-
vanced prompting methods are emerging, such as chain-of-thought (CoT) (Wei et al., 2022; Kojima
et al., 2022; Zhang et al., 2023a), tree-of-thought (ToT) (Yao et al., 2023) and self-consistency (Wang
et al., 2023). However, current prompting methods are mostly designed to serve unstructured data
tasks (Zhang et al., 2023b). Although recent studies on LLM in-context learning for tabular data
(e.g., TabLLM (Hegselmann et al., 2023), LIFT (Dinh et al., 2022)) propose table-friendly prompt-
ing strategies, their linguistic nature still hinders the numeric table understanding (Yan et al., 2024b).

Semi-supervised Learning with Noisy Labels Semi-supervised learning treats the unlabeled
samples as regularization for better model generalization (Lee et al., 2013; Tarvainen & Valpola,
2017; Miyato et al., 2019; Berthelot et al., 2019). Recently, the related theory has been introduced
to noisy label learning scenarios (Song et al., 2022) that dynamically divide samples into clean
labeled group and noisy unlabeled one (Li et al., 2019) to achieve robust learning from noisy labels.

9
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LLMs for Tabular Data Prediction As a machine learning task in tabular data applications, tabu-
lar prediction has gained increasing attention from the research community due to the heterogeneous
nature and numerical features of tabular data compared to other unstructured modalities. Previous
studies in tabular prediction models focus on designing tailored neural networks (Arik & Pfister,
2021; Gorishniy et al., 2021; Yan et al., 2024a; Chen et al., 2024) to emulate and surpass traditional
tree-based models (Chen & Guestrin, 2016; Ke et al., 2017) under fully supervised paradigm. More
recently, motivated by the widespread success of pre-trained language models (Brown et al., 2020;
OpenAI, 2022; 2023), the unique bonus of neural networks is exploited in tabular model develop-
ment, such as pre-training (Wang & Sun, 2022) and in-context learning Hollmann et al. (2023), and
open-sourced LLMs have been popular base models to be adaptively pre-trained for better tabular
prediction since their inherent knowledge (Yan et al., 2024b; Wen et al., 2024). However, current ex-
ploration on tabular prediction LLMs involves costly pre-training on large-scale tabular data, which
requires access to LLM codes and parameters, and heavy adaptation to tabular data may impact the
original usability of the LLMs on other unstructured data tasks.

5 CONCLUSIONS

This paper revealed the common challenge of existing general-purpose LLMs on tabular prediction
and proposed SERSAL, a novel unsupervised self-prompting method in non-linguistic mechanism
that triggers the LLM’s domain knowledge for better tabular prediction. This is achieved through
a co-teaching process between the LLM and a well-taught small tabular model which learn from
the other’s noisy outputs to aggregate and refine the LLM’s untapped capabilities. Extensive ex-
periments on medical and non-medical domain tabular datasets demonstrate that, as an orthogonal
prompting landscape, SERSAL is consistently suitable for extending the potential of LLMs to nu-
meric tabular data.
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A LIMITATIONS & IMPACTS

As discussed in Sec. 3.5, though our SERSAL is distinguished from traditional prompting methods
by its non-linguistic mechanism, it still requires the LLMs with latent knowledge in the target do-
main to be effective. Therefore, in practice the user should have prior understanding of the used
LLM’s capability or advantageous application fields. SERSAL contributes to the progress in both
LLM prompting and tabular data community through providing a novel interface to adapt untapped
knowledge in LLMs to the tabular prediction tasks in a zero-shot manner, which is particularly useful
in the regime where limited data or annotation is available.

B DATASETS AND EXPERIMENT DETAILS

We provide detailed data information of the experiment tabular datasets in Table 6. We drop the
samples with missing features and adopt the same preprocessing as Gorishniy et al. (2021) before
training. For MIMIC-III discharge summary dataset (Johnson et al., 2016; Mullenbach et al., 2018)
used in Fig. 1(a), we retain the most frequent 5 labels (medical codes) since our goal is just to
demonstrate the prompting effectiveness on medical textual tasks and conducting validation on the
full label version (several thousands labels) is inconvenient. During conducting zero-shot prompting
for GPT-3.5v and GPT-4v on the MIMIC-III dataset, we follow the PhysioNet Credentialed Data
Use Agreement 1 and enroll in the Azure OpenAI service without human review of the data to
protect the data from third-party access.

Dataset Abbr. # Sample # Feature P/N Source Link
Indian Liver Patient Records LI 583 10 2.51 https://www.kaggle.com/datasets/uciml/indian-liver-patient-records
Pima Indians Diabetes Database PID 768 8 0.54 https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
Framingham Heart Study FH 4238 15 0.18 https://www.kaggle.com/datasets/mohannapd/ramingham-heart-study
Stroke Prediction ST 5110 7 0.04 https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset
Hepatitis C Prediction HE 615 12 0.11 https://www.kaggle.com/datasets/fedesoriano/hepatitis-c-dataset
COVID-19 CO 5434 20 4.17 https://www.kaggle.com/datasets/hemanthhari/symptoms-and-covid-presence
Lung Cancer Prediction LC 309 15 6.92 https://www.kaggle.com/datasets/mysarahmadbhat/lung-cancer
Heart Failure Prediction HF 303 13 0.80 https://archive.ics.uci.edu/dataset/45/heart+disease
Early Classification of Diabetes ECD 520 16 1.60 https://www.kaggle.com/datasets/andrewmvd/early-diabetes-classification
Anemia Disease AN 15300 24 0.57 https://www.kaggle.com/datasets/serhathoca/anemia-disease
Churn Modeling - 10000 10 0.26 -
Give Me Some Credit - 16714 10 1.00 https://www.kaggle.com/c/GiveMeSomeCredit
US Adult Income - 48842 14 0.31 https://www.kaggle.com/datasets/johnolafenwa/us-census-data

Table 6: Detailed data information of used tabular datasets (10 from the medical domain and 3 from
others). “P/N” denotes the amount ratio of positive samples and negative ones.

C RESULTS ON CLINICAL TRIAL DATASETS

We evaluate SERSAL on clinical trail mortality datasets, which require specialized scientific knowl-
edge for clinical trials. Although SERSAL prompting with GPT-3.5 cannot directly achieve good
performance on such vertical tasks, further performance gains are still observed once we use more
powerful GPT-4, indicating room for continuous improvement as more advanced LLMs appear.

N00041119 N00174655 N00312208 N00079274 N00694382

FSSM∗(supervised FT-T) 62.38 89.20 77.83 71.78 73.89

0-shot (GPT-3.5) 56.79 73.08 63.49 59.85 62.70
CoT (GPT-3.5) 56.79 73.08 60.73 59.85 62.70
SERSAL (GPT-3.5) 58.31 82.64 71.92 64.17 66.31
SERSAL (GPT-4) 65.08 88.62 78.39 67.94 71.47

Table 7: The AUC scores (%) of different tabular prediction schemes on clinical trail mortality
datasets used in Wang & Sun (2022) (see ClinicalTrials.gov). The similar denotations are used as
Table 2. No gold labels are used for prompting methods here. It can be seen SERSAL can achieve
continuous improvement and even perform comparably with the traditional supervised paradigm
once more powerful base LLMs are applied.

1https://physionet.org/news/post/415
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D MECHANISM EXPLANATION OF DIVIDEMIX IN SERSAL

To make the paper friendly to the audiences from different background, in this section we provide
detailed mechanism explanation of learning with noisy labels (LNL) and how to learn a better small
(neural network) model from LLM noisy annotations using DivideMix.

DivideMix mechanism in SERSAL In the traditional noisy data learning field, it was theoreti-
cally proved and empirically observed that the “memorization” behavior of neural networks leads to
different optimization behavior on real data and noisy ones that neural networks tend to learn simple
patterns first before fitting label noise (Arpit et al., 2017). Based on this theoretical foundation, a
typical group of LNL methods (Berthelot et al., 2019; Li et al., 2019) exploit per-sample training
loss to judge the noisy labels, for example, in our paper we adopt DivideMix (Li et al., 2019) to learn
a small model using LLM noisy annotations, which models the noise probabilities of each sample
by dynamically fitting a Gaussian Mixture Model (GMM) on per-sample losses, all training samples
are divided into a clean set and a noisy set based on a probability threshold τ . During the DivideMix
training process, samples in the clean set are used for supervised learning (using their soft LLM
annotations), while ones in the noisy set is used in an unsupervised manner (only using their fea-
tures), e.g., learn with regularization loss or reconstruction task. The process will be ended until
the average loss of heuristically selected early stopping subset (high-LLM-confidence samples Des

in Algorithm 1) is converged, i.e., the loss of early stopping subset is not decreased for m epochs.
Notably, clean sample is not equivalent to high-LLM-confidence sample, but the sample which LLM
annotation is easier to fit by the small tabular model. Since the small model (i.e., FT-Transformer
here) is only supervised by clean data and regularized on noisy data, all data is sufficiently and
reasonably exploited to acquire a better pattern.

DivideMix hyperparameters in SERSAL We refer to the original hyperparameter settings in
DivideMix paper [4] and only search the temperature (T ) in {0.5, 5.0, 10.0}, with fixed regular-
ization loss weight Lu to 25, clean probability τ to 0.9, and the learning rate of the small model
(FT-Transformer) to 1e-4. Additionally, we uniformly introduce the early stopping patience m to 5.
The best temperature is selected based on the training loss of early stopping subset Des.

HF LC ECD LI HE PID FH ST CO AN

0-shot GPT-3.5 #1 71.88 78.87 85.71 76.81 68.51 73.12 60.32 63.01 82.60 90.43
SERSAL #1 91.39 85.42 86.40 79.39 85.14 78.97 63.97 76.36 96.85 98.37

0-shot GPT-3.5 #2 87.58 83.74 86.42 80.26 86.18 79.26 63.86 73.62 91.29 93.62
SERSAL #2 92.03 86.15 87.00 82.47 87.32 80.61 65.27 79.58 97.20 98.93

0-shot GPT-3.5 #3 89.26 85.39 87.81 82.91 86.87 81.47 64.12 76.37 93.65 94.13
SERSAL #3 93.58 85.42 89.00 84.07 89.57 81.83 65.27 80.93 97.02 98.60

Table 8: The AUC score variation of SERSAL outputs and zero-shot prompting of the tuned GPT-
3.5 on all datasets from Table 2 during three loops.
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Lung Cancer (LC)Heart Failure (HF) Hepatitis C (HE) Pima Indians Diabetes
(PID)

Framingham Heart Study
(FH)

Stroke (ST) COVID-19 (CO) Anemia Disease (AN)

Figure 4: Performances in different LLM confidence ranges on other eight datasets. The overall
trend of high-confidence samples being relatively more reliable still holds.
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