
A IMPLEMENTATION DETAILS FOR NPSS

Algorithm 2 shows the NPSS optimization step (OptimizeNPSS) in our Spatial-Channel Optimiza-
tion (SCO) as detailed in the main text.

Algorithm 2: OptimizeNPSS - Optimize over r rows of Pk 2 [0, 1]r⇥c to find the subset of rows
S
⇤ with the highest NPSS score F

⇤.
Input : Pk 2 [0, 1]r⇥c

Output: F
⇤
, S

⇤

1 F
⇤  �1 ;

2 S
⇤  ; ;

3 for ↵ in T = LinearSpace(0, 1) do

4 sorted priority  SortByPriority(r, ↵) ; /* Sort r rows by N↵
c

or the
proportion of p-values < ↵ across c columns. */

5 score, subset = �(sorted priority) ; /* Score r subsets of sorted priority

by iteratively including elements one at a time in the
sorted order using NPSS. */

6 if score > max score then

7 F
⇤  score ;

8 S
⇤  subset ;

9 return F
⇤
, S

⇤

B PATCH-BASED ATTACKS GENERATION

In Figure 7, we can observe the effect of the adversarial attack patch sizes on FlowNetC (Dosovitskiy
et al., 2015) trained on raw KITTI (Geiger et al., 2013) dataset. In Figure 8, we apply Principal
Component Analysis (PCA) on each RGB channel of the clean and attacked samples in KITTI 2015
and visualize the distribution. Even though the clean and attacked samples are from a disjoint set,
it is hard to distinguish the two distributions. In Table 5 we can see the effect of various patch
attack sizes on EPE of the flow estimations from four flow networks we consider, i.e., FlowNetC,
FlowNet2, PWCNet, and RAFT, on KITTI 2015 and MPI-Sintel dataset.

153⇥ 153

102⇥ 102

51⇥ 51

25⇥ 25

Figure 7: Visualization of the effect of adversarial attack patches on FlowNetC (Dosovitskiy et al.,
2015) trained on raw KITTI dataset. In each panel, from left to right: attacked input image 1,
attacked input image 2, original estimation of flow, and attacked estimation of flow.

C EXTENDED RESULTS ON PATCH-BASED ATTACK DETECTION

Figure 9 shows the distribution of Fmax of the clean and attacked set of KITTI 2015 (top) and MPI-
Sintel (bottom) dataset across two patch attack sizes (p = 153, 51) and flow networks (FlowNetC,
FlowNet2, PWCNet, and RAFT) corresponding to the results listed in Table 2. Table 6 shows
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Figure 8: Example image from the clean and attacked set from KITTI 2015 dataset, and distribution
of the two sets after applying Principal Component Analysis (PCA) to reduce their dimension to 2.
Even though the clean and attacked images come from disjoint sets, it is hard to distinguish them
through PCA.

Network Dataset Non-attacked
EPE

Attacked EPE
p = 153 p = 102 p = 51 p = 25

FlowNetC KITTI 2015 11.50 38.85 38.43 31.60 13.29
MPI-Sintel 3.18 42.45 15.16 29.64 3.48

FlowNet2 KITTI 2015 10.07 12.24 12.48 12.09 11.45
MPI-Sintel 2.22 3.10 2.93 2.71 2.56

PWCNet KITTI 2015 12.55 17.01 17.04 16.27 15.21
MPI-Sintel 3.98 5.37 5.10 4.77 4.58

RAFT KITTI 2015 5.86 8.85 8.52 7.37 6.93
MPI-Sintel 1.63 2.85 2.57 2.23 2.00

Table 5: Effect of adversarial patch attacks on four top optical flow estimators, FlowNetC, FlowNet2,
PWC-Net, and RAFT on KITTI2015 and MPI-Sintel dataset. We use p ⇥ p adversarial patches
(p = 153, 102, 51, 25) to attack our test images. These patches are trained on KITTI raw and MPI-
Sintel raw dataset, and are evaluated on KITTI 2015 and MPI-Sintel datasets, respectively, using
end-point error (EPE).

the detection performances (AUC) of all four flow networks across various sizes of patch attacks,
i.e., p = 153, 102, 51, 25, on KITTI 2015 and MPI-Sintel. Overall, we see increasing detection
performances as we increase the patch attack sizes.

D EXTENDED RESULTS ON PATCH LOCALIZATION

Table 7 shows the localization performances (AP/AR) of our proposed work across various patch at-
tack sizes (p = 153, 102, 51, 25) for KITTI 2015 and MPI-Sintel on four flow networks we consider,
FlowNetC, FlowNet2, PWCNet, and RAFT. See Figure 10 for some examples of our localization
predictions across these patch sizes on all four networks. Generally, we see higher localization per-
formances for larger patches. An exception is the results for 153⇥ 153 patch attacks for FlowNetC
on MPI-Sintel, which show higher performances when k is optimized (see Figure 6.)

E EXTENDED RESULTS ON ABLATION STUDY

E.1 PERFORMANCE ACROSS LAYERS

Table 8 shows the detection performances (AUC) across various intermediate layers of each flow
network with Layer 1 being the earliest layer and Layer 5 being the deepest layer we consider. See
Figure 11 for example visualizations of localized attacks on various layers of FlowNetC for across
various patch attack sizes. Similar to the observation in the main paper, we see higher detection
power in the deeper layers for FlowNetC and in the earlier layers for the other three networks.

E.2 PERFORMANCE WITHOUT THE PROPOSED COMPONENTS

Figure 12 shows the overview of our proposed work without the proposed components, i.e., (a)
without PC and (b) without PC and SCO. Figure 13 shows the distribution of Fmax for the clean
and attacked samples, Table 9 lists the corresponding detection performances (AUC), and Figure 14
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Figure 9: Distribution of anomalous scores obtained from the clean and attacked test set on
FlowNetC, FlowNet2, PWCNet, and RAFT corresponding to the results listed in Table 2. Attacked
test set contains samples with p⇥ p patch attacks (p = 153, 51).
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Table 6: Performance (AUC) of patch-based attack detection across various sizes of patch attacks
(p⇥ p) for FlowNetC, FlowNet2, PWCNet, and RAFT on KITTI 2015 and MPI-Sintel dataset.

Method p FlowNetC FlowNet2 PWCNet RAFT

KITTI 2015

Cintas et al. (2020)

153 0.50 0.55 0.53 0.52
102 0.51 0.57 0.51 0.54
51 0.51 0.59 0.54 0.58
25 0.52 0.59 0.57 0.59

ours

153 0.98 0.72 0.58 1.00
102 0.88 0.70 0.68 0.91
51 0.78 0.57 0.52 0.61
25 0.52 0.56 0.53 0.61

MPI-Sintel

Cintas et al. (2020)

153 0.50 0.64 0.66 0.54
102 0.53 0.62 0.65 0.51
51 0.54 0.59 0.63 0.53
25 0.53 0.59 0.62 0.57

ours

153 0.58 1.00 0.88 1.00
102 0.59 0.84 0.83 0.98
51 0.77 0.56 0.62 0.61
25 0.56 0.56 0.54 0.53

Table 7: Localization performances (AP/AR) of our proposed method across various patch attack
sizes (p⇥ p) on four flow networks we consider, i.e., FlowNetC, FlowNet2, PWCNet, and RAFT.

p FlowNetC FlowNet2 PWCNet RAFT
AP AR AP AR AP AR AP AR

KITTI 2015

153 0.95 0.35 0.38 0.27 0.33 0.19 0.95 0.66
102 0.91 0.41 0.36 0.40 0.35 0.32 0.74 0.65
51 0.63 0.73 0.01 0.05 0.02 0.07 0.01 0.04
25 0.00 0.02 0.00 0.04 0.00 0.02 0.00 0.02

MPI Sintel

153 0.02 0.00 0.92 0.66 0.66 0.29 0.95 0.70
102 0.59 0.24 0.59 0.62 0.52 0.48 0.82 0.75
51 0.50 0.73 0.04 0.09 0.19 0.38 0.18 0.34
25 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00

show example visualization of the predicted localization. Using both our proposed components
yields the best performances.

E.3 DETECTED ANOMALOUS CHANNELS

Figure 15 shows the histograms of indices of detected anomalous channels or filters across the four
networks we consider on KITTI 2015 (top) and MPI-Sintel (bottom). Generally, almost all p-values
P across the channel dimension are detected to show anomalous behaviors except for FlowNetC and
RAFT. Our future work will involve understanding this behavior in the channel dimension.
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Attack Size FlowNetC FlowNet2 PWCNet RAFT

153⇥ 153

102⇥ 102

51⇥ 51

25⇥ 25

Figure 10: Example of the detected subset of anomalous locations (white) across four different sizes
of patch attacks for FlowNetC, FlowNet2, PWCNet, and RAFT using the same examples as the ones
in Figure 5 for KITTI 2015 dataset. Each panel shows examples with different sizes of patch attacks
ranging from 153⇥ 153 (top) to 25⇥ 25. In each panel, top row shows the true mask of where the
patch attack occurs, and the bottom row shows the predicted location of the patch attacks.

p Attacked I1 True Attack Mask Encoder Layer Cost Volume Decoder Layer

153⇥ 153

102⇥ 102

51⇥ 51

25⇥ 25

Figure 11: Example of the detected subset of anomalous locations (white) across three layers for
FlowNetC, each from its encoder, correlation, and decoder module using p ⇥ p patch attacks (p =
153, 102, 51, 25).
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Table 8: Performance (AUC) of patch-based attack detection on various intermediate layers of
FlowNetC, FlowNet2, PWCNet, and RAFT on KITTI 2015 and MPI-Sintel dataset.

Network Method Layer 1 Layer 2 Layer 3 Layer 4 Layer 5
K

IT
TI

20
15

FlowNetC Cintas et al. (2020) 0.56 0.60 0.50 0.72 0.77
ours 0.57 0.67 0.98 1.00 0.99

FlowNet2 Cintas et al. (2020) 0.55 0.50 0.51 0.51 0.54

ours 0.72 0.54 0.53 0.55 0.52

PWCNet Cintas et al. (2020) 0.51 0.58 0.53 0.53 0.60

ours 0.58 0.60 0.58 0.54 0.58

RAFT Cintas et al. (2020) 0.85 0.52 0.59 0.54 0.52
ours 0.98 1.00 0.58 0.51 0.55

M
PI

-S
in

te
l

FlowNetC Cintas et al. (2020) 0.63 0.62 0.50 0.60 0.82
ours 0.88 0.54 0.58 1.00 0.88

FlowNet2 Cintas et al. (2020) 0.64 0.57 0.55 0.53 0.52
ours 1.00 0.52 0.50 0.85 0.59

PWCNet Cintas et al. (2020) 0.65 0.61 0.66 0.63 0.64

ours 0.53 0.58 0.88 0.71 0.55

RAFT Cintas et al. (2020) 0.93 0.54 0.65 0.60 0.52
ours 1.00 1.00 0.51 0.58 0.55
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Figure 12: Simplified versions of our proposed method in Figure 2 where for a), we get rid of the
proximity constraint (PC) detailed in Section 13 and apply our spatial-channel optimization step on
the entire map instead of k⇥k region, for b) we remove the spatial-channel optimization (SCO) step
detailed in 13 from a) and optimize once across the spatial location. We show their corresponding
detection performances in Table 9, Fmax distributions in Figure 13, and localization visualizations
in Figure 14.

Table 9: Performance (AUC) changes of patch-based attack detection without some of the proposed
components, i.e., proximity constraint (PC) and spatial-channel optimization (SCO). In each col-
umn, we bold the method with the best detection performance. Our proposed method with all the
components performs the best overall.

SCO PC FlowNetC FlowNet2 PWCNet RAFT
p = 153 p = 51 p = 153 p = 51 p = 153 p = 51 p = 153 p = 51

KITTI 2015
0.98 0.78 0.72 0.57 0.58 0.52 1.00 0.61

0.79 0.52 0.52 0.58 0.58 0.52 0.79 0.51
0.89 0.60 0.55 0.56 0.58 0.52 0.90 0.51

MPI-Sintel
0.58 0.77 1.00 0.56 0.88 0.62 1.00 0.61
0.63 0.54 0.65 0.59 0.65 0.59 0.84 0.55
0.52 0.67 0.59 0.65 0.66 0.59 0.96 0.65
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Figure 13: Distribution of Fmax obtained from the clean and attacked test set on FlowNetC with
different components of our proposed network corresponding to the results in Table 4.
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SCO PC FlowNetC FlowNet2 PWCNet RAFT

Figure 14: Example of the detected subset of anomalous locations (white) with different components
of our proposed method, i.e., proximity constraint (PC) detailed in Section 13, and spatial-channel
optimization (SCO) detailed in Section 13.
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Figure 15: Histogram of the indices of detected anomalous channels or filters across four flow
networks we consider, i.e., FlowNetC, FlowNet2, PWCNet, and RAFT, on KITTI 2015 (top) and
MPI-Sintel (bottom) dataset.
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