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ABSTRACT
Long-term time series forecasting is a long-standing challenge in

various applications. A central issue in time series forecasting is that

methods should expressively capture long-term dependency. Fur-

thermore, time series forecasting methods should be flexible when

applied to different scenarios. Although Fourier analysis offers an

alternative to effectively capture reusable and periodic patterns

to achieve long-term forecasting in different scenarios, existing

methods often assume high-frequency components represent noise

and should be discarded in time series forecasting. However, we

conduct a series of motivation experiments and discover that the

role of certain frequencies varies depending on the scenarios. In

some scenarios, removing high-frequency components from the

original time series can improve the forecasting performance, while

in others scenarios, removing them is harmful to forecasting perfor-

mance. Therefore, it is necessary to treat the frequencies differently

according to specific scenarios. To achieve this, we first reformulate

the time series forecasting problem as learning a transfer function of

each frequency in the Fourier domain. Further, we design Frequency

Dynamic Fusion (FreDF), which individually predicts each Fourier

component, and dynamically fuses the output of different frequen-

cies. Moreover, we provide a novel insight into the generalization

ability of time series forecasting and propose the generalization

bound of time series forecasting. Then we prove FreDF has a lower

bound, indicating that FreDF has better generalization ability. Ex-

tensive experiments conducted on multiple benchmark datasets

and ablation studies demonstrate the effectiveness of FreDF.

CCS CONCEPTS
• Computing methodologies→ Spectral methods; Time series

forecasting;

KEYWORDS
Time series forecasting, Fourier analysis, Dynamic fusion, General-

ization analysis

1 INTRODUCTION
Time series forecasting is a well-established problem in various

fields including energy usage [4], economic planning [1], weather
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alerts [10], and traffic forecasting [20]. With the development of

deep learning [17], numerous methods have emerged for this fore-

casting tasks [2, 13, 35, 46]. A central issue in time series forecasting

is that existing methods could not expressively capture long-term

dependency, which is often characterized as periodicity and trends

[5, 7, 11, 18, 36]. However, Fourier analysis has the strong potential

to deal with long-term dependency, thereby makes related methods

more flexible when adapted to different scenarios [37].

In the realm of time series forecasting, an effective approach to

addressing long-term dependency is to utilize Fourier analysis [24,

37, 38, 44, 45]. Fourier analysis is a powerful method that represents

complex time series as a series of cosine functions, each with its

unique frequency [6]. This capability to represent infinitely long-

term trends with a finite set of frequency components makes it

efficiency when applied to long-term time series forecasting.

Existing methods based on Fourier analysis often assume that

high-frequency components represent noise and should be dis-

carded during forecasting tasks [44]. However, we argue that the

role of certain frequencies varies in different scenarios. To validate

this assumption, we conduct experiments on three datasets, elimi-

nating low, middle, and high-frequency components respectively

from the input of the training set to train a vanilla Transformer [34].

The results, depicted in Figure 1, suggest that eliminating certain

frequencies may improve performance in specific datasets while

decreasing in others. In Exchange-rate(Figure 1(e)), we get more

accurate prediction results after eliminating high frequencies. But

it is less precise in Figure 1(b). The same phenomenon occurs at

other frequencies. More detailed experimental setup and analysis

are provided in Section 3.

These findings emphasize that simply marking high-frequency

components as noise is undesirable. Without prior knowledge, de-

termining which frequencies compose noise remains uncertain [11].

Consequently, it is necessary to utilize different frequencies for fore-

casting and assignmore rational weights to these forecasting results

to improve the final prediction.

To separately assess the impact of different frequencies, it is

necessary to predict each frequency individually. To begin with, we

propose a mathematical reformulation of the time series forecasting

task in the Fourier domain. Then we propose Frequency Dynamic

Fusion (FreDF), a novel framework to process time series datasets

in decomposition, forecasting, and dynamic fusion, which individ-

ually forecasts each Fourier component, and dynamically fuses the

output of different frequencies. The advantage of dynamic fusion

lies in its capacity to flexibly adjust the weights of each frequency

component, leading to more precise predictions. Additionally, we

propose the generalization bound of time series forecasting based

on Rademacher complexity [3], and we prove that dynamic fusion

improves the model’s generalization ability. Experimental results on

long-term forecasting datasets also confirm the superiority of FreDF.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The comparison of prediction results using different frequencies on different datasets. (a) ETTm1; (b)ETTm2; (c)ETTh1;
(d)ETTh2; (e) Exchange-rate; (f) Weather.

Overall, our contributions can be summarized as the following four

points:

• We conduct a series of experiments to explore the role of

different frequencies in prediction. Based on experimental

phenomena we discover that the role of certain frequencies

varies depending on the scenarios.

• We reformulate the time series forecasting problem as learn-

ing a transfer function in the Fourier domain. Further, we

design FreDF, which individually forecasts each Fourier com-

ponent, and dynamically fuses the output of different fre-

quencies.

• We propose the generalization bound of time series forecast-

ing. Then we prove FreDF has a lower bound, indicating that

FreDF has better generalization ability.

• Extensive experiments conducted on various benchmark

datasets demonstrate the effectiveness of FreDF.

2 RELATEDWORK
With the advancement of deep learning, various methods, including

CNN [2, 41], RNN [12, 33], and Transformer-based approaches [34],

have been developed for time series forecasting tasks. While most

previous works focus on learning models in the time domain (e.g.,

Informer [19], PeriodFormer [21], GCformer [43], Preformer [9],

and Infomaxformer [32]), the core of these methods lies in utilizing

correlations in the time domain to forecast future data.

In the Fourier domain, FEDformer [45] applies Transformer us-

ing Frequency Enhanced Blocks and Attention modules, and CoST

[37] explores learning seasonal representations. FEDformer and

TimesNet [38] utilize frequency for analysis and period calculation,

mapping one-dimensional time series to two-dimensional. FiLM

[44] retains low-frequency Fourier components. However, these

methods, involving Fourier analysis, do not explicitly model time

series forecasting problems in the Fourier domain. In contrast, we

reformulate the time series forecasting problem as learning a trans-

fer function of each frequency in the Fourier domain.

Classical time series decomposition techniques [5] have been uti-

lized to decompose time series into seasonal and trend components

for interpretability. For instance, Autoformer [39] decomposes the

data into trend and seasonal components, then employs the Trans-

former architecture for independent forecasts. Similarly, CoST [37]

decomposes sequences into trend and seasonal components, car-

rying out separate forecasts in both time and Fourier domains.

Different from these methods, our approach introduces a novel

framework for dynamic decomposition, prediction, and fusion of

time series.

3 EMPIRICAL ANALYSIS
Several studies suggest that high-frequency signals often represent

noise and therefore should be discarded [44]. However, we argue

that the role of certain frequencies is not universal and can be

varied across different scenarios. In some cases, high-frequency

signals may indeed be noise, while in others, theymay hold valuable

information. To confirm this idea, we conduct experiments on three

datasets. The experimental settings and analysis are detailed below.
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Figure 2: Overall structure of FreDF, which consists of an Embedding module 𝑓 for embedding the feature dimension 𝐶 to 𝐷 , a
Projection module 𝑔 for projection back to𝐶, and 𝐿 FDBlocks. In FDBlock, we decompose and forecast in the frequency domain,
and dynamically fuse the prediction results for each Fourier component.

3.1 Experimental Setup
We conduct experiments on six datasets: ETT(ETTm1, ETTm2,

ETTh1, ETTh2), Weather, ECL, and Exchange-rate. For each dataset,

we conduct a set of four forecasting tasks with the lookback length

and prediction length both fixed to 96. The first task is the regular

forecasting task. For the other three tasks, we transform the input

series from the training set to the Fourier domain using Fast Fourier

Transform (FFT) [28] and divide the frequency spectra into three

subsets: the first third of the spectrum as low-frequency, the second

third as middle-frequency, and the final third as high-frequency.

We randomly set the Fourier coefficients corresponding to different

subsets of the frequency spectrum to zero respectively in different

experiments, and convert it back into the time domain as the input

series. This step is to eliminate the influence of a certain subset of

frequencies when training the model. We train an individual vanilla

Transformer [34] following the standard setting [23] for each task

in all three datasets. We visualize the prediction and ground truth

of future series for all tasks and all datasets in Figure 1.

3.2 Experimental Observations and Analysis
Figure 1(a) shows that in the ETTm1 dataset, after eliminating high-

frequency signals, the prediction results are closer to the ground

truth compared to using all frequencies. However, the prediction

results are further from the ground truth after eliminating low-

frequency or mid-frequency signals. Figure 1(b) shows that in the

ETTm2 dataset, we will get more accurate prediction results af-

ter eliminating low-frequency from historical time series. On the

contrary, we will get worse prediction results after eliminating

low-frequency form historical time series, shown in Figure 1(c). In

Figure 1(d), no matter which subsets of the frequency we eliminate

in the ETTh2 dataset, the prediction results are more accurate than

those obtained using the original frequency for prediction, among

which, eliminating high frequency has a better effect. As shown

in Figure 1(e), in the Exchange-rate dataset, the prediction results

are more accurate in the long term after eliminating mid-frequency

or high-frequency signals. Conversely, the results predicted by

eliminating low-frequency signals or using all signals are closer

to ground truth in the mid-term. In the weather dataset, which

is shown in Figure 1(f), the results predicted by eliminating low-

frequency signals are more accurate in the short-term, predicted

by eliminating high-frequency are more accurate in the mid-term,

and predicted by eliminating mid-frequency are more accurate in

the long term.

Yet, with the absence of prior knowledge, it remains challeng-

ing to distinguish noise from vital features. Therefore, we cannot

merely mark high-frequency signals as noise. Considering this, it is

necessary to utilize different frequencies for forecasting and subse-

quently adopt a more rational method to weight these forecasting

results, thus attaining the final prediction.

4 METHOD
In this section, we begin by reformulating the time series forecasting

problem in the Fourier domain. Subsequently, we propose FreDF, a

model designed to predict the output of each frequency component
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respectively, then combine each output of different components us-

ing a dynamic fusion strategy. We also present theoretical evidence

supporting the idea that this dynamic fusion strategy enhances the

generalization ability of FreDF.

4.1 Time series forecasting in Fourier domain
To achieve effective long-term forecasting, the model must go be-

yond merely memorizing past data points; it needs to grasp the

underlying physical rules or inherent dynamics of the observed

phenomena [26]. These dynamics governing the behavior of the

time series, are presumed to be independent and unchanging over

time [30]. In Fourier analysis, any time series can be represented

by a set of orthogonal bases, i.e., the Fourier components; this or-

thogonal characteristic helps represent each rule with the dynamic

of a single Fourier component [16]. In this section, we assume that

the time series forecasting task is under a Linear Time-invariant

(LTI) condition for the independent and time-invariant property of

the inherent dynamics without loss of generality.

Specifically, from [30], let 𝑥 (𝑡) ∈ I be the input function and

𝑦 (𝑡) ∈ O be the output function, they are both functions of time

𝑡 defined in Banach space I and O. The output of the LTI system
can be defined as:

𝑦 (𝑡) =
∫ ∞

0

ℎ(𝑡 − 𝜏)𝑥 (𝜏)𝑑𝜏 . (1)

The goal of time-series forecasting can be regarded as finding a

suitable transfer function ℎ : I → O.

In discrete case, the Equation 1 can be express as:

𝑌 [𝑛] = ℎ[𝑛] ∗ 𝑋 =

∞∑︁
𝑚=0

ℎ[𝑛 −𝑚]𝑋 [𝑚], (2)

here, 𝑋 [𝑛] and 𝑌 [𝑛] is the discrete form of 𝑥 (𝑡) and 𝑦 (𝑡), respec-
tively, 𝑛 ∈ [0, 1, . . . , 𝑁 ], 𝑁 is the length of time series, and ∗ is the
convolution operator. The output series𝑌 = [𝑌 [0], 𝑌 [1], . . . , 𝑌 [𝑁 ]]
are obtained by applying the convolution operator between ℎ and

𝑋 .

The Discrete Fourier Transform (DFT) F [29] can transform 𝑋

from a function of discrete time to a function of Fourier component

𝑘 :

X[𝑘] = F (𝑋 ) [𝑘] =
𝑁−1∑︁
𝑛=0

𝑋 [𝑛] · 𝑒− 𝑗
2𝜋
𝑁
𝑘𝑛, (3)

where 𝑗 is the imaginary unit,X[𝑘] is the 𝑘-th Fourier components,

𝑘 ∈ [0, 1, . . . , 𝐾] and 𝐾 is the total number of Fourier components.

Theorem 4.1. (The convolution theorem [14]). The convolution
theorem states that the Fourier transform of a convolution of two

functions equals the point-wise product of their Fourier transform:

F (ℎ ∗ 𝑋 ) [𝑘] = F (ℎ) [𝑘] · F (𝑋 ) [𝑘] . (4)

Applying DFT to the output sequence 𝑌 according to Theorem

4.1 can convert the convolution in Equation 2 into a multiplication

in the Fourier domain as:

Y[𝑘] = F (ℎ ∗ 𝑋 ) [𝑘] = F (ℎ) [𝑘] · X[𝑘] . (5)

Note that ℎ is an unknown operator in the aforementioned analy-

sis. Therefore we propose to estimate F (ℎ) directly with a learnable

matrix 𝐻𝜃 , where 𝜃 is the parameter. The transfer process is:

ˆY[𝑘] = 𝐻𝜃 · X[𝑘], (6)

where
ˆY is the estimated output in Fourier domain.

Applying inverse Discrete Fourier transform F −1
(iDFT) can

convert the estimated output back to the time domain with:

𝑌 [𝑛] = F −1 ( ˆY) = 1

𝑁

𝐾∑︁
𝑘=1

ˆY[𝑘] · 𝑒 𝑗
2𝜋
𝑁
𝑘𝑛 . (7)

The learning objective for the learnable matrix is then to minimize

the Mean Square Error (MSE) between the estimated output and

the ground truth of the output:

min

𝜃

1

𝑁

𝑁−1∑︁
𝑛=0

(𝑌 [𝑛] − 𝑌 [𝑛])2 . (8)

So far, the time series forecasting problem in the time domain

has been reformulated as learning a transfer function 𝐻𝜃 in the

Fourier domain.

4.2 Frequency Dynamic Fusion
Based on the findings in Section 3, there is no universal criteria

to determine the importance of a specific frequency in different

situations, for the role of certain frequency changes across various

scenarios. For instance, a frequency may be crucial in one scenario

but negatively impact performance in another. To address this

variability, we propose FreDF (Frequency Dynamic Fusion), which

dynamically calculates the weights for the estimated prediction of

each frequency, taking their importance into account. Our proposed

FreDF consists of the Embedding, the FDBlock, and the Projection

layers. We provide the pseudo-code of FreDF in algorithm 1.

To predict the future 𝑆 timestamps, we padding 𝑋 [𝑛] in time

dimension with 𝑆 zeros as unknown data.

4.2.1 Embedding. In the Embedding module, we lift the input time

series into an embedding space:

𝑀1 [𝑛] = 𝑓 (𝑋 [𝑛]), (9)

here,𝑀1 [𝑛] is the embedded representation of the input time series,

𝑓 : R𝐶 → R𝐷 is a multi-layer perceptron (MLP) used for the

embedding, 𝐶 is the number of variables in the input time series,

and 𝐷 is the dimension of the embedding space. It’s crucial to

note that we are embedding the feature dimensions, not the time

dimensions. This means that the transformation does not affect

the temporal characteristics of the data. Therefore, subsequent

operations, such as Fourier transformations that target the time

dimensions, remain unaffected by the embedding process.

4.2.2 FDBlocks. Within each FDBlock, we first apply Fast Fourier

Transform (FFT)[28] to the input embedding𝑀𝑙 [𝑛], transforming it

into the Fourier domain, which is an efficient algorithm to perform

DFT:

M𝑙 [𝑘] = F (𝑀𝑙 ) [𝑘], (10)

hereM𝑙 [𝑘] is the Fourier components, 𝑙 = 1, 2, . . . , 𝐿 denotes the

𝑙-th FDBlock and 𝐿 is the total number of FDBlocks.

To facilitate this independent processing, we propose a decou-

pling strategy. Instead of treating the Fourier componentsM𝑙 [𝑘] ∈
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Algorithm 1 Pseudo-Code of FreDF

Input: Time series data 𝑋 ∈ R𝑇×𝐶 , lookback length 𝑇 , predict

length 𝑆 , variables number 𝐶 , FDBlock number 𝐿, token dimension

𝐷 , 𝐾 is computed as 𝐾 = 𝑇+𝑆
2

+ 1, frequency spectrum length 𝐾 .

1: 𝑋 ′ = ZeroPadTimeSeries(𝑋 , 𝑆) ⊲ X ∈ R(𝑇+𝑆 )×𝐶
2: 𝑀1 = MLP(𝑋 ′

) ⊲ 𝑀1 ∈ R(𝑇+𝑆 )×𝐷
3: for 𝑙 = 1 to 𝐿 do
4: for𝑚 = 1 to 𝐾 do
5: M𝑙 [𝑘] = F (𝑀𝑙 ) [𝑘] ⊲ M𝑙 ∈ R𝐾×𝐷

6: for 𝑘 = 1 to 𝐾 do
7: if 𝑘 ≠𝑚 then
8: M𝑙,𝑚

𝑖𝑛
[𝑘] = 0

9: else
10: M𝑙,𝑚

𝑖𝑛
[𝑘] = M𝑙 [𝑘]

11: end if
12: end for
13: Learn transfer function 𝐻 𝑙,𝑚 ⊲ 𝐻 𝑙,𝑚 ∈ R𝐷×𝐷

14: M𝑙,𝑚
𝑜𝑢𝑡 [𝑘] = M𝑙,𝑚

𝑖𝑛
[𝑘] · 𝐻 𝑙,𝑚

15: 𝑍 𝑙,𝑚 = F −1 (M𝑙,𝑚
𝑜𝑢𝑡 )

16: end for
17: 𝑀𝑙+1 = �̂�𝑙 =

∑𝐾
𝑚=0 𝑍

𝑙,𝑚 ·𝑊𝑚, ⊲ �̂�𝑙 ∈ R(𝑇+𝑆 )×𝐷
18: end for
19: 𝑌 = 𝑀𝐿𝑃 (�̂�𝐿) [𝑇 : 𝑇 + 𝑆, :]
20: return 𝑌 ⊲ Return the prediction results

C𝐾×𝐷
as a whole, we create 𝐾 copies of each frequency compo-

nent and only retain the𝑚-th frequency in each copy, denoted as

M𝑙,𝑚
𝑖𝑛

[𝑘]:

M𝑙,𝑚
𝑖𝑛

(𝑘) =
{

0 if 𝑘 ≠𝑚

M𝑙 (𝑘) if 𝑘 =𝑚
,𝑘 = 0, 1, ..., 𝐾 . (11)

This strategy allows us to maintain the original dimensionality of

the data while enabling independent processing of each frequency.

Next, based on subsection 4.1, we aim to learn transfer functions

𝐻 𝑙,𝑚 ∈ C𝐷×𝐷
, 𝑚 ∈ [1, . . . , 𝐾]for each independent component

M𝑙,𝑚
𝑖𝑛

= M𝑙 [𝑚],𝑚 ∈ [1, . . . , 𝐾], and obtain the estimated output

M𝑙,𝑚
𝑜𝑢𝑡 in the Fourier domain with:

M𝑙,𝑚
𝑜𝑢𝑡 = M𝑙,𝑚

𝑖𝑛
· 𝐻 𝑙,𝑚 . (12)

The estimated output for frequency𝑚 in the time domain𝑍 𝑙,𝑚 [𝑛]
can be obtained by applying inverse Fast Fourier Transform (iFFT)

toM𝑙,𝑚
𝑜𝑢𝑡 . The result of this operation is represented as:

𝑍 𝑙,𝑚 [𝑛] = F −1 (M𝑙,𝑚
𝑜𝑢𝑡 ) [𝑛] . (13)

So farwe have decomposed the prediction process of each individual

frequency𝑚.

Next, we apply a trainable weight vector𝑊 ∈ R𝐾 , where each
component𝑊𝑚 represents the importance of the𝑚-th frequency

when predicting the output embedding. The estimated output �̂�𝑙 [𝑛]
is then represented as a weighted sum of all the individual frequency

predictions 𝑍 𝑙,𝑚 [𝑛], with each prediction multiplied by its corre-

sponding weight𝑊𝑚 . The estimated output �̂�𝑙 [𝑛] is represented as

a weighted sum of all the individual frequency predictions 𝑍 𝑙,𝑚 [𝑛],
as given by the following equation:

�̂�𝑙 [𝑛] =
𝐾∑︁
𝑚=0

𝑍 𝑙,𝑚 [𝑛] ·𝑊𝑚, (14)

where each prediction 𝑍 𝑙,𝑚 [𝑛] is multiplied by its corresponding

weight𝑊𝑚 and the𝑊𝑚 can be either static or dynamic, i.e. fixed or

learnable.

The FDBlock is formulated as an iterative architecture, where

each output �̂�𝑙 [𝑛] of the 𝑙-th layer serves as the input of the (𝑙 +1)-
th layer.

During the training process, we aim to learn the transfer func-

tions𝐻 𝑙,𝑚 ∈ C𝐷×𝐷
and the weight vector𝑊 ∈ R𝐾 byminimizing a

loss function, which measures the difference between the estimated

output 𝑌 [𝑛] and the true output 𝑌 [𝑛].

4.2.3 Projection. After 𝐿 FDBlocks, we apply another MLP 𝑔 :

R𝐷 → R𝐶 to the final estimated output �̂�𝐿 [𝑛], projecting it back
to the variable space. The result of this operation is represented as:

𝑌 [𝑛] = 𝑔(�̂�𝐿 [𝑛]) [𝑇 : 𝑇 + 𝑆, :] . (15)

4.3 Theoretical Analysis
In this subsection, we provide a theoretical analysis to demonstrate

the effectiveness of our dynamic fusion method. Without loss of

generality, time series forecasting methods could be regarded as

auto-regressive models [5], from this perspective, we indicate that

the generalization ability of time series prediction models could

be reflected in the following two aspects: the capacity to capture

the long-term dependency of time series, as well as the capacity to

achieve good prediction results in different scenarios.

For simplicity, consider the fusion strategy in a regression setting

using a mean squared loss function. Firstly, we propose to charac-

terize the generalization error bound using Rademacher complexity

[3] and separate the bound into three components (Theorem 4.2).

Meanwhile, we also give further proof based on the above separa-

tion to illustrate that the dynamic fusion method achieves a better

ability to capture long-term dependency under certain conditions

(Theorem 4.3). Secondly, we demonstrate that the quantity of pa-

rameters in our method is fewer than compared methods, which

indicates that our method is more flexible to apply to more scenar-

ios, experiment results in Section 5.3 also validate our illustration

as well. See Appendix A for details.

Specifically, we use X, Y, and Z to denote the input space (his-

torical sequence), target space (prediction sequence), and latent

space. Define 𝑢 : X −→ Z is a fusion mapping from the input space

to the latent space, 𝑔 : Z −→ Y is a task mapping. Our goal is to

learn the fusion operator 𝑓 = 𝑔 ◦ 𝑢 (𝑥), which is essentially a re-

gression model. Under an 𝐻 frequency components scenario, 𝑓 ℎ is

the frequency-specific composite function of frequency component

𝑥ℎ . The final prediction of the dynamic fusion method is calculated

by: 𝑓 (𝑥) =
∑𝐻
ℎ=1

𝑤ℎ · 𝑓 ℎ (𝑥ℎ), where 𝑓 (𝑥) denotes the final pre-

diction. In contrast to static fusion, i.e., every frequency is given

a predefined weight which is a constant, dynamic fusion calcu-

lates the weights of every frequency dynamically. To distinguish

them, denotes𝑤ℎ
𝑠𝑡𝑎𝑡𝑖𝑐

the weight of frequency ℎ in static situation
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and𝑤ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

the weight of frequency ℎ in dynamic situation. The

generalization error of regression model 𝑓 is defined as:

GError = E(𝑥,𝑦)∼D [𝑙 (𝑓 (𝑥), 𝑦)], (16)

where D is the unknown joint distribution, 𝑙 is mean squared

loss function. For convenience, we simplify the regression loss

𝑙 (𝑓 ℎ (𝑥ℎ), 𝑦) as 𝑙ℎ . Nowwe present the first main result of frequency

fusion.

Theorem 4.2. Given the historical sequence 𝑋𝑇 ∈ R𝑇×𝐶 and

the ground truth of prediction sequence 𝑌𝑇 ′ ∈ R𝑇 ′×𝐶
, 𝐸 (𝑓 ℎ) is the

empirical error of 𝑓 ℎ on frequency ℎ. Then for any hypothesis 𝑓

in the finite set 𝐹 and 1 > 𝛿 > 0, with probability at least 1 − 𝛿 , it
holds that

GError ≤
𝐻∑︁
ℎ=1

E(𝑤ℎ)𝐸 (𝑓 ℎ) +
𝐻∑︁
ℎ=1

E(𝑤ℎ)ℜℎ (𝑓 ℎ)

+
𝐻∑︁
ℎ=1

𝐶𝑜𝑣 (𝑤ℎ, 𝑙ℎ) +𝑀
√︂
𝑙𝑛(1/𝛿)
2𝐻

,

(17)

where E(𝑤ℎ) represents the expectations of fusion weights on joint

distribution D, ℜℎ (𝑓 ℎ) represents Rademacher complexity, and

𝐶𝑜𝑣 (𝑤ℎ, 𝑙ℎ) represents the covariance between fusion weight and

loss.

Theorem 4.2 demonstrates that the generalization error of the

regression model is bounded by the weighted average performances

of all regression operators for each frequency in terms of empirical

loss, model complexity, and the covariance between fusion weight

and regression loss of all frequencies. After the general error bound

is established, the next goal is to verify if dynamic fusion indeed

achieves a tighter bound than that of static fusion. Informally, in

Equation 17, the covariance term measures the joint variability of

𝑤ℎ and 𝑙ℎ . However, in static fusion,𝑤ℎ
𝑠𝑡𝑎𝑡𝑖𝑐

is a constant, which

means that the covariance is equal to zero for any static fusion

method. Thus the generalization error bound of static fusion meth-

ods is reduced to:

GError(𝑓𝑠𝑡𝑎𝑡𝑖𝑐 ) ≤
𝐻∑︁
ℎ=1

(𝑤ℎ𝑠𝑡𝑎𝑡𝑖𝑐 )𝐸 (𝑓
ℎ) (18)

+
𝐻∑︁
ℎ=1

(𝑤ℎ𝑠𝑡𝑎𝑡𝑖𝑐 )ℜℎ (𝑓
ℎ) +𝑀

√︂
𝑙𝑛(1/𝛿)
2𝐻

.

So when the summation of the average empirical loss, the aver-

age complexity is invariant or smaller in dynamic fusion and the

covariance is no greater than zero, we can ensure that dynamic

fusion provably outperforms static fusion. This theorem is formally

presented as:

Theorem 4.3. Let GError(𝑓𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ), GError(𝑓𝑠𝑡𝑎𝑡𝑖𝑐 ) be the up-
per bound of generalization regression error of dynamic and static

fusion method respectively. 𝐸 (𝑓 ℎ) is the empirical error defined in

Theorem 4.2. Then for any hypothesis 𝑓𝑑𝑦𝑛𝑎𝑚𝑖𝑐 , 𝑓𝑠𝑡𝑎𝑡𝑖𝑐 in finite set

𝐹 and 1 > 𝛿 > 0, it holds that

GError(𝑓𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ) ≤ GError(𝑓𝑠𝑡𝑎𝑡𝑖𝑐 ) (19)

with probability at least 1 − 𝛿 , if we have

E(𝑤ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

) = 𝑤ℎ𝑠𝑡𝑎𝑡𝑖𝑐 (20)

and

𝑟 (𝑤ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

, 𝑙ℎ) ≤ 0 (21)

for all frequencies, where 𝑟 is the Pearson correlation coefficient

which measures the correlation between fusion weights𝑤ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

and the loss of each frequency 𝑙ℎ .

Theorem 4.2 and Theorem 4.3 verify that the dynamic fusion

method has a lower generalization bound, which indicates the

capacity to capture the long-term dependency of our method. Fur-

thermore, suppose for each frequency, the regression operator used

in dynamic and static fusion are of the same architecture, then the

intrinsic complexity ℜℎ (𝑓 ℎ) can be invariant. Thus, in this case, it

holds that

𝐻∑︁
ℎ=1

E(𝑤ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

)ℜℎ (𝑓 ℎ) ≤
𝐻∑︁
ℎ=1

(𝑤ℎ𝑠𝑡𝑎𝑡𝑖𝑐 )ℜℎ (𝑓
ℎ). (22)

In Equation 22, it is easy to derive the conclusion that our model

has a lower average complexity, corresponding to a lower quantity

of parameters during the training process. Experiment results in

Section 5.3 also validate this conclusion.

5 EXPERIMENTS
In this section, we first provide the details of the implementation

and datasets. Next, we present the comparison results on eight

benchmark datasets. Lastly, we conduct ablation studies to evaluate

the effectiveness of each module in our method.

5.1 Implement Details
All the experiments are implemented in PyTorch [31] and trained

on NVIDIA V100 32GB GPUs. We use ADAM [15] with an initial

learning rate in {10−3, 10−4} and MSELoss for model optimization.

An early stopping counter is employed to stop the training process

after three epochs if no loss degradation on the valid set is observed.

The mean square error (MSE) and mean absolute error (MAE) are

used as metrics. All experiments are repeated 3 times and the mean

of the metrics is used in the final results. The transfer function is

implemented using the complex 64 data type in PyTorch. The batch

size is set to 4 and the number of training epochs is set to 10. We

set the number of FDBlocks in our proposed model 𝐿 ∈ {1, 2, 3}.
The dimension of series representations 𝐷 ∈ {64, 128, 256, 512}, or
it is not embedded at all. We set the dropout rates in {0, 0.2, 0.4}.

5.2 Main Results
We thoroughly evaluate the proposed FreDF on various long-term

time series forecasting benchmarks. For better comparison, we

follow the experiment settings of iTransformer in [23] the predic-

tion lengths for both training and evaluation vary within the set

𝑆 ∈ {96, 192, 336, 720}, with a fixed lookback length of 𝑇 = 96.

5.2.1 Baselines. We carefully choose 10 well-acknowledged fore-

casting models as our benchmark, including (1) Transformer-based

methods: iTransformer [23], Autoformer [39], FEDformer [45], Sta-

tionary [25], Crossformer [42], PatchTST [27]; (2) Linear-based
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Table 1: Long-term multivariate forecasting results with prediction lengths 𝑆 ∈ {96, 192, 336, 720} and fixed lookback
length 𝑇 = 96. The best Forecasting results in bold and the second underlined. The lower MSE/MAE indicates the
more accurate prediction result.

Models FreDF iTransformer PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer

(Ours) [23] [27] [42] [8] [38] [40] [22] [45] [25] [39]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
1

96 0.324 0.367 0.334 0.368 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475

192 0.365 0.387 0.377 0.391 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496

336 0.391 0.405 0.426 0.420 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537

720 0.459 0.436 0.491 0.459 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.384 0.398 0.407 0.410 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T
T
m
2

96 0.175 0.257 0.180 0.264 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339

192 0.241 0.299 0.250 0.309 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340

336 0.303 0.341 0.311 0.348 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372

720 0.405 0.396 0.412 0.407 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.281 0.323 0.288 0.332 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T
T
h
1

96 0.367 0.397 0.386 0.405 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459

192 0.416 0.424 0.441 0.436 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482

336 0.477 0.443 0.487 0.458 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496

720 0.478 0.458 0.503 0.491 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.435 0.431 0.454 0.447 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T
T
h
2

96 0.292 0.341 0.297 0.349 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388

192 0.376 0.391 0.380 0.400 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452

336 0.415 0.426 0.428 0.432 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486

720 0.420 0.439 0.427 0.445 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.376 0.399 0.383 0.407 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
x
c
h
a
n
g
e

96 0.082 0.199 0.086 0.206 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323

192 0.172 0.294 0.177 0.299 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369

336 0.316 0.405 0.331 0.417 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524

720 0.835 0.687 0.847 0.691 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.87 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.351 0.396 0.360 0.403 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

W
e
a
t
h
e
r

96 0.157 0.208 0.174 0.214 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336

192 0.205 0.246 0.221 0.254 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367

336 0.259 0.287 0.278 0.296 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395

720 0.341 0.339 0.258 0.349 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.241 0.270 0.258 0.279 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

E
C
L

96 0.150 0.242 0.148 0.240 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317

192 0.161 0.253 0.162 0.253 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334

336 0.176 0.268 0.178 0.269 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338

720 0.217 0.311 0.225 0.317 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.176 0.268 0.178 0.270 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

S
o
l
a
r
-
E
n
e
r
g
y

96 0.214 0.247 0.203 0.237 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249 0.884 0.711

192 0.230 0.255 0.233 0.261 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272 0.834 0.692

336 0.242 0.266 0.248 0.273 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296 0.941 0.723

720 0.245 0.271 0.249 0.275 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.295 0.882 0.717

Avg 0.232 0.259 0.233 0.262 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

1
st
Count 34 36 2 2 3 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
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Table 2: Ablation on the influence of transfer function.

Methods Metric

ETTh1 ETTm1 Exchange-rate

96 192 336 720 96 192 336 720 96 192 336 720

W Transfer function

MSE 0.367 0.416 0.477 0.478 0.324 0.365 0.391 0.459 0.082 0.172 0.316 0.835
MAE 0.397 0.424 0.443 0.458 0.367 0.387 0.405 0.436 0.199 0.294 0.405 0.687

W/O Transfer function

MSE 0.439 0.492 0.529 0.522 0.378 0.421 0.441 0.518 0.129 0.218 0.254 0.897

MAE 0.444 0.505 0.561 0.541 0.405 0.432 0.439 0.487 0.251 0.344 0.312 0.709

Table 3: Ablation between static fusion and dynamic fusion.

Models FreDF FreSF

Metric MSE MAE MSE MAE

W
e
a
t
h
e
r 96 0.153 0.199 0.175 0.239

192 0.205 0.246 0.215 0.276

336 0.259 0.587 0.263 0.312

720 0.341 0.339 0.343 0.377

E
x
c
h
a
n
g
e 96 0.082 0.199 0.129 0.239

192 0.172 0.294 0.231 0.332

336 0.316 0.405 0.360 0.451

720 0.835 0.687 0.891 0.741

E
T
T
h
1

96 0.367 0.397 0.428 0.437

192 0.416 0.424 0.475 0.456

336 0.477 0.443 0.509 0.477

720 0.478 0.458 0.509 0.490

E
T
T
h
2

96 0.292 0.341 0.373 0.434

192 0.376 0.391 0.441 0.462

336 0.415 0.426 0.451 0.469

720 0.420 0.439 0.459 0.480

E
T
T
m
1

96 0.324 0.367 0.369 0.401

192 0.365 0.387 0.419 0.430

336 0.391 0.405 0.440 0.438

720 0.459 0.436 0.497 0.468

E
T
T
m
2

96 0.175 0.257 0.210 0.292

192 0.241 0.299 0.279 0.337

336 0.303 0.341 0.338 0.374

720 0.405 0.396 0.449 0.436

Table 4: Comparison of the number of parameters.

Models Ours iTransformer PatchTST FEDformer FiLM

params 151.4K 3.1M 3.5M 14.0M 12.0M

methods: DLinear [40], TiDE [8]; and (3) TCN-based methods:

SCINet [22], TimesNet [38].

5.2.2 Forecasting Results. Table 1 presents the results of FreDF in
long-term multivariate forecasting with the best in bold and the

second underlined. The lower MSE/MAE indicates the more accu-

rate prediction result. Results demonstrate that our model performs

optimally in 70 out of 80 benchmarks. Compared to FEDformer

[45], FreDF shows an average improvement of 13% in terms of

MSE and MAE, reaching up to 33% improvement on the Exchange-

rate dataset. Compared to the best-performing Transformer-based

model:iTransformer [23], FreDF consistently achieves superior per-

formance across almost all datasets.

5.3 Ablation Study
In this section, we conduct ablation studies to examine the influence

of transfer functions, dynamic fusion mechanisms, and the number

of parameters in the proposed FreDF.

5.3.1 Influence of transfer function. We conduct an ablation study

about the influence of the transfer function. We remove the transfer

function in FreDF as the control group, follow the setup in Section

5.2, and carry out predictions on the ETTh1, ETTm1, and Exchange-

rate dataset. We present the results in Table 2, which illustrates the

crucial role of the transfer function and confirms the correctness

of our analysis in Section 4.1.

5.3.2 Influence of dynamic fusion. We conduct an ablation study

to investigate the influence of dynamic fusion. We replace the learn-

able weight vector with a fixed weight vector and name this modi-

fied model FreSF. Predictions are carried out on the ETT(ETTh1,

ETTh2, ETTm1, ETTm2), Weather, and Exchang-rate datasets us-

ing the setup outlined in Section 5.2. The results are presented in

Table 3. Additionally, we visualize the prediction results (with a

prediction length 𝑆 = 96) for both FreSF and FreDF in Appendix

C. The experimental results demonstrate the effectiveness of the

dynamic fusion strategy.

5.3.3 Number of parameters. We use iTransformer [23], patchTST

[27], FEDformer [45] and FiLM [44] for comparison, and calculate

the number of model parameters when forecasting the same task,

present the results in Table 4. Our model despite using a relatively

small number of parameters, can achieve good accuracy in predic-

tion tasks. This also validates the superiority of our model, which

is consistent with the theoretical analysis in Section 4.3.

6 CONCLUSION
In this paper, we experimentally explore the different roles of fre-

quency in various scenarios. To better utilize these distinctions,

we reformulate the problem of time series forecasting as learning

transfer functions in the Fourier domain and design the FreDF

model, which can independently forecast each Fourier component

and dynamically fuse outputs from different frequencies. Then,

we provide a novel understanding of the generalization ability of

time series forecasting. Further, we also propose the generalization

bound for time series forecasting and demonstrate that FreDF has

a lower generalization bound, indicating its better generalization

ability. Extensive experiments validate the effectiveness of FreDF

on multiple benchmark datasets.
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