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The Appendix provides supplementary information and additional
details that support the primary discoveries and methodologies pro-
posed in this paper. It is organized into several sections: Appendix
A contains the proof of Theorem 2 and Theorem 3.

A PROOFS
In this section, we will prove Theorem 2 and Theorem 3, which is
used for the theoretical analysis.

A.1 Proof of Theorem 2
Note that 𝑙 is a convex regression loss function, which indicates
that

𝑙 (𝑓 (𝑥), 𝑦) = 𝑙 (
𝐻∑︁
ℎ=1

𝑤ℎ 𝑓 ℎ (𝑥ℎ), 𝑦) ≤
𝐻∑︁
ℎ=1

𝑤ℎ𝑙 (𝑓 ℎ (𝑥ℎ), 𝑦) (1)

Then we take the expectation on both sides of the above equation

E(𝑥,𝑦)∼𝐷𝑙 (𝑓 (𝑥), 𝑦) ≤ E(𝑥,𝑦)∼𝐷
𝐻∑︁
ℎ=1

(𝑤ℎ𝑙 (𝑓 ℎ (𝑥ℎ), 𝑦)), (2)

since expectation is a linear operator and the expected value of
the product is equal to the product of the expected values plus the
covariance, we can further decompose the right-hand side of the
equation into

E(𝑥,𝑦)∼𝐷𝑙 (𝑓 , 𝑦) ≤
𝐻∑︁
ℎ=1
E(𝑥,𝑦)∼𝐷 [𝑤ℎ𝑙 (𝑓 ℎ, 𝑦)]

=

𝐻∑︁
ℎ=1
E(𝑥,𝑦)∼𝐷 (𝑤ℎ)E(𝑥,𝑦)∼𝐷 (𝑙 (𝑓 ℎ, 𝑦))

+𝐶𝑜𝑣 (𝑤ℎ, 𝑙 (𝑓 ℎ, 𝑦))

(3)

Next, we recap the Rademacher complexity measure for model
complexity. We use complexity based learning theory to quantify
the generalization error of the proposed model.

Given the historical sequence and the ground truth of the pre-
diction sequence, 𝐸 (𝑓 ℎ) is the empirical error of 𝑓 ℎ . Then for any
hypothesis 𝑓 in the finite set 𝐹 and 1 > 𝛿 > 0, with probability at
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least 1 − 𝛿 , we have

E(𝑥,𝑦)∼𝐷 (𝑓 ℎ) ≤ 𝐸 (𝑓 ℎ) +ℜℎ (𝐹 ) +
√︂

𝑙𝑛(1/𝛿)
2𝐻

(4)

where ℜℎ (𝐹 ) is the Rademacher complexities.
Finally, it holds with probability at least 1 − 𝛿 that

GError(𝑓 ) ≤
𝐻∑︁
ℎ=1
E(𝑤ℎ)𝐸 (𝑓 ℎ) + E(𝑤ℎ)ℜℎ (𝑓 ℎ)

+𝐶𝑜𝑣 (𝑤ℎ, 𝑙 (𝑓 ℎ, 𝑦) +𝑀

√︂
𝑙𝑛(1/𝛿)
2𝐻 .

(5)

A.2 Proof of Theorem 3
Let GError(𝑓𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ), GError(𝑓𝑠𝑡𝑎𝑡𝑖𝑐 ) be the upper bound of the
generalization regression error of dynamic and static fusionmethod,
respectively. 𝐸 (𝑓 ℎ) is the empirical error defined in Theorem 1.
Theoretically, optimizing over the same function class results in
the same empirical risk. Therefore,

𝐸 (𝑓 ℎ𝑠𝑡𝑎𝑡𝑖𝑐 ) = 𝐸 (𝑓 ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

) (6)

Additionally, the intrinsic complexity is also invariant

ℜℎ (𝑓 ℎ𝑠𝑡𝑎𝑡𝑖𝑐 ) = ℜℎ (𝑓 ℎ𝑑𝑦𝑛𝑎𝑚𝑖𝑐
) . (7)

Thus in this special case, it holds that

𝐻∑︁
ℎ=1
E(𝑤ℎ

𝑑𝑦𝑛𝑎𝑚𝑖𝑐
)𝐸 (𝑓 ℎ) ≤

𝐻∑︁
ℎ=1

(𝑤ℎ
𝑠𝑡𝑎𝑡𝑖𝑐 )𝐸 (𝑓

ℎ), (8)

and
𝐻∑︁
ℎ=1
E(𝑤ℎ

𝑑𝑦𝑛𝑎𝑚𝑖𝑐
)ℜℎ (𝑓 ℎ) ≤

𝐻∑︁
ℎ=1

(𝑤ℎ
𝑠𝑡𝑎𝑡𝑖𝑐 )ℜℎ (𝑓 ℎ). (9)

if E(𝑤ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

) = 𝑤ℎ
𝑠𝑡𝑎𝑡𝑖𝑐

.
Since the covariance and the correlation coefficient have the

same sign, when 𝑟 (𝑤ℎ, 𝑙ℎ) ≤ 0, the covariance 𝐶𝑜𝑣 (𝑤ℎ, 𝑙ℎ) is also
less than or equal to zero. Therefore, it holds that

GError(𝑓𝑑𝑦𝑛𝑎𝑚𝑖𝑐 ) ≤ GError(𝑓𝑠𝑡𝑎𝑡𝑖𝑐 ) (10)

with probability at least 1 − 𝛿 , if we have

E(𝑤ℎ
𝑑𝑦𝑛𝑎𝑚𝑖𝑐

) = 𝑤ℎ
𝑠𝑡𝑎𝑡𝑖𝑐 (11)

and
𝑟 (𝑤ℎ

𝑑𝑦𝑛𝑎𝑚𝑖𝑐
, 𝑙 (𝑓 ℎ)) ≤ 0 (12)

for all frequencies ℎ.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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B DATASET DESCRIPTIONS
In this paper, we conducted tests using eight real-world datasets.
These datasets include:

• ETT contains two sub-datasets: ETT1 and ETT2, collected
from two electricity transformers at two stations. Each of
them has two versions in different resolutions (15 minutes
and 1h). ETT dataset contains multiple series of loads and
one series of oil temperatures.

• Weather covers 21 meteorological variables recorded at 10-
minute intervals throughout the year 2020. The data was
collected by the Max Planck Institute for Biogeochemistry’s
Weather Station, providing valuable meteorological insights.

• Exchange-rate, which contains daily exchange rate data span-
ning from 1990 to 2016 for eight countries. It offers infor-
mation on the currency exchange rates across different time
periods.

• ECL contains the electricity consumption of 370 clients for
short-term forecasting while it contains the electricity con-
sumption of 321 clients for long-term forecasting. It is col-
lected since 01/01/2011. The data sampling interval is every
15 minutes.

• Solar-Energy is about the solar power collected by the Na-
tional Renewable Energy Laboratory. We choose the power
plant data points in Florida as the data set which contains 593
points. The data is collected from 01/01/2006 to 31/12/2016
with the sampling interval of every 1 hour.

We follow the same data processing and train-validation-test set
split protocol used in iTransformer, where the train, validation, and
test datasets are strictly divided according to chronological order to
make sure there are no data leakage issues. As for the forecasting
settings, the lookback length is set to 96, while their prediction
length varies in {96, 192, 336, 720}. The details of the datasets are
provided in Table 1.

C INFLUENCE OF DYNAMIC FUSION
We conduct an ablation study to investigate the influence of dy-
namic fusion. We replace the learnable weight vector with a fixed
weight vector and name this modified model FreSF. Predictions are
carried out on the ETT(ETTh1, ETTh2, ETTm1, ETTm2), Weather,
and Exchang-rate datasets. We visualize the prediction results (with
a prediction length 𝑆 = 96) for both FreSF and FreDF in Figure 1.
In the ETTh1 and ETTm1 datasets, static fusion manages to cap-
ture the overall trends and detailed shifts, but the predicted values
deviate significantly from the actual figures. This issue can be ef-
fectively addressed by employing dynamic fusion. Similarly, in the
ETTh2 and ETTm2 datasets, static fusion’s predictions are not quite
accurate at the extreme points, a problem that dynamic fusion can
effectively solve. Likewise, when dynamic fusion is applied to the
Weather and Exchange-rate datasets, the prediction curve aligns
more closely with the ground truth.

D ABLATION ON THE INFLUENCE OF
OPERATION SEQUENCE

We conduct an ablation study about the influence of operation
sequence. Our model initially conducts an inverse fast Fourier

transform(iFFT) on the spectrumM𝑙,𝑚
𝑜𝑢𝑡 obtained from the transfer

function for each frequencyM𝑙,𝑚
𝑖𝑛

. We then dynamically fusion the
predicted results 𝑍 𝑙,𝑚 for each frequency. In this section, we first
dynamically fuse the spectrumsM𝑙,𝑚

𝑜𝑢𝑡 obtained from the transfer
function for each frequency, followed by an iFFT on the result of
this fusion. We prevent the result in Table 3

E ABLATION ON THE INFLUENCE OF
FDBLOCK NUMBER: 𝐿

To further figure out the impact of different numbers of FDBlock,
we perform experiments with three different 𝐿 ranging from 1 to 3.
As shown in Table 4. And 𝐿 = 1 is a generally good choice.

F MOTIVATION EXPERIMENTS
We present the full results of motivation experiments in Table 2. Af-
ter eliminating low-frequency, we observe enhanced accuracy in the
ETTm2 and ETTh2 datasets. Similarly, eliminating mid-frequency
signals led to improved results in the ETTh2 and Exchange-rate
datasets. The elimination of high-frequency results in more pre-
cise results in ETTh1, ETTm2, ETTh1, ETTh2, Exchange-rate, and
weather datasets. The most significant improvement is seen when
eliminating high-frequency signals. Nevertheless, removing low-
frequency and mid-frequency signals can also improve prediction
performance on some datasets.

G LOOKBACKWINDOW: MODERNTCN VS US
At the 2024 International Conference on Learning Representations
(ICLR), a groundbreaking approach, ModernTCN, was presented
for time series forecasting. However, it’s worth mentioning that the
lookback window length used in their study consistently surpasses
96. In our case, all experiments utilize a lookback window length
of 96, which makes a direct comparison not feasible.
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Table 1: Detailed dataset descriptions. Dim denotes the variate number of each data set. Dataset Size
denotes the total number of time points in (Train, Validation, Test) split, respectively. Prediction
Length denotes the future time points to be predicted, and four prediction settings are included in
each data set. Frequency denotes the sampling interval of time points.

Dataset Dim Prediction Length Dataset Size Frequency Information

ETTh1,ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1,ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy
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Figure 1: Visualization comparing FreSF and FreDF.
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Table 2: The comparison of prediction results using different frequencies on six datasets. The best Forecasting results in bold.
The lower MSE/MAE indicates the more accurate prediction result.

Models W all frequency W/O low-frequency W/O mid-frequency W/O high-frequency

Metric MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.0221 0.0954 0.0839 0.1827 0.0723 0.1683 0.0116 0.0583

ETTm2 0.0601 0.1544 0.0185 0.0850 0.0852 0.1468 0.0511 0.1149

ETTh1 0.0475 0.1352 0.1333 0.2351 0.0543 0.1432 0.0409 0.1193

ETTh2 0.5288 0.4734 0.2559 0.3178 0.1396 0.2217 0.1041 0.1848

Exchange 0.0436 0.1218 0.0482 0.1292 0.0156 0.0745 0.0157 0.0733

Weather 0.0011 0.0217 0.0015 0.0207 0.0041 0.0379 0.0011 0.0186

Table 3: Ablation on the influence of operation sequence.

Methods Metric Weather ECL Exchange-rate
96 192 336 720 96 192 336 720 96 192 336 720

Dynamic Fusion on 𝑍 𝑙,𝑚 (Our) MSE 0.157 0.205 0.259 0.341 0.150 0.161 0.176 0.217 0.082 0.172 0.316 0.835
MAE 0.208 0.246 0.287 0.339 0.242 0.253 0.268 0.311 0.199 0.294 0.405 0.687

Dynamic Fusion on spectrums M𝑙,𝑚
𝑜𝑢𝑡

MSE 0.161 0.209 0.262 0.345 0.154 0.163 0.176 0.221 0.083 0.174 0.318 0.839
MAE 0.214 0.253 0.292 0.347 0.242 0.253 0.270 0.313 0.199 0.295 0.406 0.670

Table 4: Ablation on the number of FDBlock.

FDBlock ETTh2 ETTm2 Weather

Metric MSE MAE MSE MAE MSE MAE

𝐿 = 1

96 0.292 0.341 0.175 0.257 0.157 0.208
192 0.376 0.391 0.242 0.300 0.205 0.246
336 0.419 0.428 0.303 0.341 0.260 0.287
720 0.420 0.439 0.405 0.396 0.341 0.339

𝐿 = 2

96 0.295 0.342 0.176 0.257 0.157 0.209
192 0.377 0.390 0.241 0.300 0.206 0.246
336 0.415 0.426 0.304 0.343 0.259 0.287
720 0.422 0.440 0.406 0.398 0.342 0.339

𝐿 = 3

96 0.293 0.341 0.176 0.258 0.158 0.208
192 0.378 0.394 0.241 0.299 0.207 0.248
336 0.416 0.426 0.304 0.345 0.262 0.289
720 0.421 0.440 0.407 0.397 0.343 0.340


	A Proofs
	A.1 Proof of Theorem 2
	A.2 Proof of Theorem 3

	B Dataset Descriptions
	C Influence of dynamic fusion
	D Ablation on the influence of operation sequence
	E Ablation on the influence of FDBlock number: L
	F Motivation Experiments
	G Lookback Window: ModernTCN vs Us

