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Abstract

We propose the first, to our knowledge, loss function for approximate Nash equi-1

libria of normal-form games that is amenable to unbiased Monte Carlo estimation.2

This construction allows us to deploy standard non-convex stochastic optimiza-3

tion techniques for approximating Nash equilibria, resulting in novel algorithms4

with provable guarantees. We complement our theoretical analysis with exper-5

iments demonstrating that stochastic gradient descent can outperform previous6

state-of-the-art approaches.7

1 Introduction8

Nash equilibrium famously encodes stable behavioral outcomes in multi-agent systems and is arguably9

the most influential solution concept in game theory. Formally speaking, if n players independently10

choose n, possibly mixed, strategies (xi for i ∈ [n]) and their joint strategy (x =
∏
i xi) constitutes a11

Nash equilibrium, then no player has any incentive to unilaterally deviate from their strategy. This12

concept has sparked extensive research in various fields, ranging from economics [30] to machine13

learning [16], and has even inspired behavioral theory generalizations such as quantal response14

equilibria which allow for more realistic models of boundedly rational agents [28].15

Unfortunately, when considering Nash equilibria beyond the special case of the 2-player, zero-sum16

scenario, two significant challenges arise. First, it becomes unclear how a group of n independent17

players would collectively identify a Nash equilibrium when multiple equilibria are possible, giving18

rise to the equilibrium selection problem [18]. Secondly, even approximating a single Nash equilib-19

rium is known to be computationally intractable and specifically PPAD-complete [11]. Combining20

both problems together, e.g., testing for the existence of equilibria with welfare greater than some21

fixed threshold is NP-hard and it is in fact even hard to approximate (i.e., finding a Nash equilibrium22

with welfare greater than ω for any ω > 0, even when the best equilibrium has welfare 1− ω) [2].23

From a machine learning (ML) practitioner’s perspective, however, such computational complexity24

results hardly give pause for thought as collectively we have become all too familiar with the25

unreasonable effectiveness of ML heuristics in circumventing such obstacles. Famously, non-convex26

optimization is NP-hard, even if the goal is to compute a local minimizer [31], however, stochastic27

gradient descent (and variants thereof) succeed in training models with billions of parameters [7].28

Unfortunately, computational techniques for Nash equilibrium have so far not achieved anywhere29

near the same level of success. In contrast, most modern Nash equilibrium solvers for n-player,30

m-action, general-sum, normal-form games (NFGs) are practically restricted to a handful of players31

and/or actions per player except in special cases (e.g., symmetric [38] or mean-field games [34]). This32

is partially due to the fact that an NFG is represented by a tensor with an exponential nmn entries;33

even reading this description into memory can be computationally prohibitive. More to the point, any34
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computational technique that presumes exact computation of the expectation of any function sampled35

according to x similarly does not have any hope of scaling beyond small instances.36

This inefficiency arguably lies at the core of the differential success between ML optimization and37

equilibrium computation. For example, numerous techniques exist that reduce the problem of Nash38

equilibrium computation to finding the minimum of the expectation of a random variable (see related39

work section). Unfortunately, unlike the source of randomness in ML applications where batch40

learning suffices to easily produce unbiased estimators, these techniques do not extend easily to game41

theory which incorporates non-linear functions such as maximum, best-response amongst others.42

This raises our motivating goal:43

Can we solve for Nash equilibria via unbiased stochastic optimization?

Our results. Following in the successful steps of the interplay between ML and stochastic optimiza-44

tion, we reformulate the approximation of Nash equilibria in an NFG as a stochastic non-convex45

optimization problem admitting unbiased Monte-Carlo estimation. This enables the use of powerful46

solvers and advances in parallel computing to efficiently enumerate Nash equilibria for n-player,47

general-sum games. Furthermore, this re-casting allows practitioners to incorporate other desirable48

objectives into the problem such as “find an approximate Nash equilibrium with welfare above ω”49

or “find an approximate Nash equilibrium nearest the current observed joint strategy” resolving the50

equilibrium selection problem in effectively ad-hoc and application tailored manner. Concretely, we51

make the following contributions by producing:52

• A loss function L(x) 1) whose global minima coincide with interior Nash equilibria in normal53

form games, 2) admits unbiased Monte-Carlo estimation, and 3) is Lipschitz and bounded.54

• A loss function Lτ (x) 1) whose global minima coincide with logit equilibria (QREs) in normal55

form games, 2) admits unbiased Monte-Carlo estimation, and 3) is Lipschitz and bounded.56

• An efficient randomized algorithm for approximating Nash equilibria in a novel class of games. The57

algorithm emerges by employing a recent X -armed bandit approach to Lτ (x) and connecting its58

stochastic optimization guarantees to approximate Nash guarantees. For large games, this enables59

approximating equilibria faster than the game can even be read into memory.60

• An empirical comparison of stochastic gradient descent against state-of-the-art baselines for61

approximating NEs in large games. In some games, vanilla SGD actually improves upon previous62

state-of-the-art; in others, SGD is slowed by saddle points, a familiar challenge in deep learning [12].63

Overall, this perspective showcases a promising new route to approximating equilibria at scale in64

practice. We conclude the paper with discussion for future work.65

2 Preliminaries66

In an n-player, normal-form game, each player i ∈ {1, . . . , n} has a strategy set Ai =67

{ai1, . . . , aimi
} consisting of mi pure strategies. These strategies can be naturally indexed, so68

we redefine Ai = {1, . . . ,mi} as an abuse of notation. Each player i also has a utility function,69

ui : A =
∏
iAi → [0, 1], (equiv. “payoff tensor”) that maps joint actions to payoffs in the unit-70

interval . Note that equilibria are invariant to payoff shift and scale [27] so we are effectively assuming71

we know bounds on possible payoffs. We denote the average cardinality of the players’ action sets72

by m̄ = 1
n

∑
kmk and maximum by m∗ = maxkmk. Player i may play a mixed strategy by73

sampling from a distribution over their pure strategies. Let player i’s mixed strategy be represented74

by a vector xi ∈ ∆mi−1 where ∆mi−1 is the (mi − 1)-dimensional probability simplex embedded75

in Rmi . Each function ui is then extended to this domain so that ui(x) =
∑

a∈A ui(a)
∏
j xjaj76

where x = (x1, . . . , xn) and aj ∈ Aj denotes player j’s component of the joint action a ∈ A. For77

convenience, let x−i denote all components of x belonging to players other than player i.78

The joint strategy x ∈
∏
i∆

mi−1 is a Nash equilibrium if and only if, for all i ∈ {1, . . . , n},79

ui(zi, x−i) ≤ ui(x) for all zi ∈ ∆mi−1, i.e., no player has any incentive to unilaterally deviate from80

x. Nash is typically relaxed with ϵ-Nash, our focus: ui(zi, x−i) ≤ ui(x) + ϵ for all zi ∈ ∆mi−1.81

As an abuse of notation, let the atomic action ai = ei also denote themi-dimensional “one-hot" vector82

with all zeros aside from a 1 at index ai; its use should be clear from the context. We also introduce83

2



Loss Function Obstacle
Exploitabilty maxk ϵk(x) max of r.v.
Nikaido-Isoda (NI)

∑
k ϵk(x) max of r.v.

Fully-Diff. Exp
∑
k

∑
ak∈Ak

[max(0, uk(ak, x−i)− uk(x))]2 max of r.v.

Gradient-based NI NI w/ BRk ← aBRk = Π∆

(
xk + η∇xk

uk(x)
)

Π∆ of r.v.
Unconstrained Loss + Simplex Deviation Penalty sampling from xi ∈ Rmk

Table 1: Previous loss functions for NFGs and their obstacles to unbiased estimation.

∇ixi
as player i’s utility gradient. And for convenience, denote by Hi

il = Ex−il
[ui(ai, al, x−il)] the84

bimatrix game approximation [20] between players i and l with all other players marginalized out;85

x−il denotes all strategies belonging to players other than i and l and ui(ai, al, x−il) separates out l’s86

strategy xl from the rest of the players x−i. Similarly, denote by T iilq = Ex−ilq
[ui(ai, al, aq, x−ilq)]87

the 3-player tensor approximation to the game. Note player i’s utility can now be written succinctly88

as ui(xi, x−i) = x⊤i ∇ixi
= x⊤i H

i
ilxl = xiT

i
ilqxlxq for any l, q where we use Einstein notation for89

tensor arithmetic. For convenience, define diag(z) as the function that places a vector z on the90

diagonal of a square matrix, and diag3 : z ∈ Rd → Rd×d×d as a 3-tensor of shape (d, d, d) where91

diag3(z)iii = zi. Following convention from differential geometry, let TvM be the tangent space92

of a manifoldM at v. For the interior of the d-action simplex ∆d−1, the tangent space is the same at93

every point, so we drop the v subscript, i.e., T∆d−1. We denote the projection of a vector z ∈ Rd94

onto this tangent space as ΠT∆d−1(z) = z − 1
d1

⊤z. We drop d when the dimensionality is clear95

from the context. Finally, let U(S) denote a discrete uniform distribution over elements from set S.96

3 Related Work97

Representing the problem of computing a Nash equilibrium as an optimization problem is not new. A98

variety of loss functions and pseudo-distance functions have been proposed. Most of them measure99

some function of how much each player can exploit the joint strategy by unilaterally deviating:100

ϵk(x)
def
= uk(BRk, x−k)− uk(x) where BRk ∈ argmax

z
uk(z, x−k). (1)

As argued in the introduction, we believe it is important to be able to subsample payoff tensors of101

normal-form games in order to scale to large instances. As Nash equilibria can consist of mixed102

strategies, it is advantageous to be able to sample from an equilibrium to estimate its exploitability ϵ.103

However none of these losses is amenable to unbiased estimation under sampled play. Each of the104

functions currently explored in the literature is biased under sampled play either because 1) a random105

variable appears as the argument of a complex, nonlinear (non-polynomial) function or because 2) how106

to sample play is unclear. Exploitability, Nikaido-Isoda (NI) [32] (also known by NashConv [21] and107

ADI [15]), as well as fully-differentiable options ([36], p. 106, Eqn 4.31) introduce bias when a max108

over payoffs is estimated using samples from x. Gradient-based NI [35] requires projecting the result109

of a gradient-ascent step onto the simplex; for the same reason as the max, this is prohibitive because110

it is a nonlinear operation which introduces bias. Lastly, unconstrained optimization approaches ([36],111

p. 106) that instead penalize deviation from the simplex lose the ability to sample from strategies112

when iterates are no longer proper distributions. Table 1 summarizes these complications.113

4 Nash Equilibrium as Stochastic Optimization114

We will now develop our proposed loss function which is amenable to unbiased estimation. Our key115

technical insight is to pay special attention to the geometry of the simplex. To our knowledge, prior116

works have failed to recognize the role of the tangent space T∆. Proofs are in the appendix.117

4.1 Stationarity on the Simplex Interior118

Lemma 1. Assuming player i’s utility, ui(xi, x−i), is concave in its own strategy xi, a strategy in119

the interior of the simplex is a best response BRi if and only if it has zero projected-gradient1 norm:120

1Not to be confused with the nonlinear (i.e., introduces bias) projected gradient operator introduced in [19].
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BRi ∈
(
int∆ ∩ argmax

z
ui(z, x−i)− ui(xi, x−i

))
⇐⇒ (BRi ∈ int∆) ∧ (||ΠT∆[∇iBRi ]|| = 0).

(2)

In NFGs, each player’s utility is linear in xi, thereby satisfying the concavity condition of Lemma 1.121

4.2 Projected Gradient Norm as Loss122

An equivalent description of a Nash equilibrium is a joint strategy x where every player’s strategy is123

a best response to the equilibrium (i.e., xi = BRi so that ϵi(x) = 0). Lemma 1 states that any interior124

best response has zero projected-gradient norm, which inspires the following loss function125

L(x) =
∑
k

ηk||ΠT∆(∇kxk
)||2 (3)

where ηk > 0 represent scalar weights, or equivalently, step sizes to be explained next.126

Proposition 1. The loss L is equivalent to NashConv, but where player k’s best response is approxi-127

mated by a single step of projected-gradient ascent with step size ηk: aBRk = xk + ηkΠT∆(∇kxk
).128

This connection was already pointed out in prior work for unconstrained problems [15, 35], but this129

result is the first for strategies constrained to the simplex.130

4.3 Connection to True Exploitability131

In general, we can bound exploitability in terms of the projected-gradient norm as long as each132

player’s utility is concave (this result extends beyond gradients to subgradients of non-smooth133

functions).134

Lemma 2. The amount a player can gain by exploiting a joint strategy x is upper bounded by a135

quantity proportional to the norm of the projected-gradient:136

ϵk(x) ≤
√
2||ΠT∆(∇kxk

)||. (4)

This bound is not tight on the boundary of the simplex, which can be seen clearly by considering xk137

to be part of a pure strategy equilibrium. In that case, this analysis assumes xk can be improved upon138

by a projected-gradient ascent step (via the equivalence pointed out in Proposition 1). However, that139

is false because the probability of a pure strategy cannot be increased beyond 1. We mention this to140

provide further intuition for why L(x) is only valid for interior equilibria.141

Note that ||ΠT∆(∇kxk
)|| ≤ ||∇kxk

|| because ΠT∆ is a projection. Therefore, this improves the naive142

bounds on exploitability and distance to best responses given using the “raw” gradient∇kxk
.143

Lemma 3. The exploitability of a joint strategy x, is upper bounded by a function of L(x):144

ϵ ≤
√

2n

mink ηk

√
L(x) def

= f(L). (5)

4.4 Unbiased Estimation145

As discussed in Section 3, a primary obstacle to unbiased estimation of L(x) is the presence of146

complex, nonlinear functions of random variables, with the projection of a point onto the simplex147

being one such example (see Π∆ in Table 1). However, ΠT∆, the projection onto the tangent space148

of the simplex, is linear! This is the key that allows us to design an unbiased estimator (Lemma 5).149

Our proposed loss requires computing the squared norm of the expected value of the gradient150

under the players’ mixed strategies, i.e., the l-th entry of player k’s gradient equals ∇kxkl
=151

Ea−k∼x−k
uk(akl, a−k). By analogy, consider a random variable Y . In general, E[Y ]2 ̸= E[Y 2].152

This means that we cannot just sample projected-gradients and then compute their average norm to153

estimate our loss. However, consider taking two independent samples from two corresponding identi-154

cally distributed, independent random variables Y (1) and Y (2). Then E[Y (1)]2 = E[Y (1)]E[Y (2)] =155
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Exact Sample Others Sample All
Estimator of∇k(p)xk uk(akl, x−k) uk(akl, a−k ∼ x−k) mkuk(akl ∼ U(Ak), a−k ∼ x−k)el
∇̂k(p)xk Bounds [0, 1] [0, 1] [0,mk]

∇̂k(p)xk Query Cost
∏n
i=1mi mk 1

L Bounds ± 1
4

∑
k ηkmk ± 1

4

∑
k ηkmk ± 1

4

∑
k ηkm

3
k

L Query Cost n
∏n
i=1mi 2nm̄ 2n

Table 2: Examples and Properties of Unbiased Estimators of Loss and Player Gradients (∇̂k(p)xk ).

E[Y (1)Y (2)] by properties of expected value over products of independent random variables. This is156

a common technique to construct unbiased estimates of expectations over polynomial functions of157

random variables. Proceeding in this way, define∇k(1)xk as a random variable distributed according to158

the distribution induced by all other players’ mixed strategies (j ̸= k). Let∇k(2)xk be independent and159

distributed identically to∇k(1)xk . Then160

L(x) = E[
∑
k

ηk(∇̂k(1)xk
− 1

mk
(1⊤∇̂k(1)xk

)1︸ ︷︷ ︸
projected-gradient 1

)⊤(∇̂k(2)xk
− 1

mk
(1⊤∇̂k(2)xk

)1︸ ︷︷ ︸
projected-gradient 2

)] (6)

where ∇̂k(p)xk is an unbiased estimator of player k’s gradient. This unbiased estimator can be con-161

structed in several ways. The most expensive, an exact estimator, is constructed by marginalizing162

player k’s payoff tensor over all other players’ strategies. However, a cheaper estimate can be obtained163

at the expense of higher variance by approximating this marginalization with a Monte Carlo estimate164

of the expectation. Specifically, if we sample a single action for each of the remaining players, we165

can construct an unbiased estimate of player k’s gradient by considering the payoff of each of its166

actions against the sampled background strategy. Lastly, we can consider constructing a Monte Carlo167

estimate of player k’s gradient by sampling only a single action from player k to represent their entire168

gradient. Each of these approaches is outlined in Table 2 along with the query complexity [3] of169

computing the estimator and bounds on the values it can take (derived via Lemma 19).170

We can extend Lemma 3 to one that holds under T samples with probability 1− δ by applying, for171

example, a Hoeffding bound: ϵ ≤ f
(
L̂(x) +O(

√
1
T ln(1/δ)

)
.172

4.5 Interior Equilibria173

We discussed earlier that L(x) captures interior equilibria. But some games may only have pure174

equilibria. We show how to circumvent this shortcoming by considering quantal response equilibria175

(QREs), specifically, logit equilibria. By adding an entropy bonus to each player’s utility, we can176

• guarantee all equilibria are interior,177

• still obtain unbiased estimates of our loss,178

• maintain an upper bound on the exploitability ϵ of any approximate equilibrium in the179

original game (i.e., the game without an entropy bonus).180

Define uτk(x) = uk(x) + τS(xk) where the Shannon entropy S(xk) = −
∑
l xkl ln(xkl) is a 1-181

strongly concave function with respect to the 1-norm [6]. Also define Lτ (x) as before except where182

∇kxk
is replaced with∇kτxk

= ∇xk
uτk(x), i.e., the gradient of player k’s utility with the entropy bonus.183

It is well known that Nash equilibria of entropy-regularized games satisfy the conditions for logit184

equilibria [23], which are solutions to the fixed point equation xk = softmax(
∇k

xk

τ ). The appearance185

of the softmax makes clear that all probabilities have positive mass at positive temperature.186

Recall that in order to construct an unbiased estimate of our loss, we simply needed to construct187

unbiased estimates of player gradients. The introduction of the entropy term to player k’s utility is188

special in that it depends entirely on known quantities, i.e., the player’s own mixed strategy. We189

can directly and deterministically compute τ dS
dxk

= −τ(ln(xk) + 1) and add this to our estimator of190

∇k(p)xk : ∇̂kτ(p)xk = ∇̂k(p)xk + τ dS
dxk

. Consider our refined loss function with changes in blue:191
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Figure 1: Upper Bound (ϵ ≤ f(Lτ )) Heatmap Visualization. The first row examines the loss land-
scape for the classic anti-coordination game of Chicken (Nash equilibria: (0, 1), (1, 0), (2/3, 1/3))
while the second row examines the Prisoner’s dilemma (Unique Nash equilibrium: (0, 0)). Tem-
perature increases for each plot moving to the right. For high temperatures, interior (fully-mixed)
strategies are incentivized while for lower temperatures, nearly pure strategies can achieve minimum
exploitability. For zero temperature, pure strategy equilibria (e.g., defect-defect) are not captured by
the loss as illustrated by the bottom-left Prisoner’s Dilemma plot with a constant loss surface.

Lτ (x) =
∑
k

ηk||ΠT∆(∇kτxk
)||2. (7)

As mentioned above, the utilities with entropy bonuses are still concave, therefore, a similar bound192

to Lemma 2 applies. We use this to prove the QRE counterpart to Lemma 3 where ϵQRE is the193

exploitability of an approximate equilibrium in a game with entropy bonuses.194

Lemma 4. The entropy regularized exploitability, ϵQRE , of a joint strategy x, is upper bounded as:195

ϵQRE ≤
√

2n

mink ηk

√
Lτ (x) def

= f(Lτ ). (8)

Lastly, we establish a connection between quantal response equilibria and Nash equilibria that allows196

us to approximate Nash equilibria in the original game via minimizing our modified loss Lτ (x).197

Lemma 14 (Lτ Scores Nash Equilibria). Let Lτ (x) be our proposed entropy regularized loss198

function with payoffs bounded in [0, 1] and x be an approximate QRE. Then it holds that199

ϵ ≤ nτ(W (1/e) +
m̄− 2

e
) + 2

√
nmaxkmk

mink ηk

√
Lτ (x) (9)

where W is the Lambert function: W (1/e) =W (exp(−1)) ≈ 0.278.200

This upper bound is plotted as a heatmap for familiar games in Figure 1. Notice how pure equilibria201

are not visible as minima for zero temperature, but appear for slightly warmer temperatures.202

5 Analysis203

In the preceding section we established a loss function that upper bounds the exploitability of an204

approximate equilibrium. In addition, the zeros of this loss function have a one-to-one correspondence205

with quantal response equilibria (which approximate Nash equilibria at low temperature).206

Here, we derive properties that suggest it is “easy” to optimize. While this function is generally207

non-convex and may suffer from a proliferation of saddle points and local maxima (Figure 2) , it is208

Lipschitz continuous (over a subset of the interior) and bounded. These are two commonly made209

assumptions in the literature on non-convex optimization, which we leverage in Section 6. In addition,210

we can derive its gradient, its Hessian, and characterize its behavior around global minima.211

6



Figure 2: We reapply the analysis of [12], originally designed to understand the success of SGD in
deep learning, to “slices” of several popular extensive form games. To construct a slice (or meta-
game), we randomly sample 6 deterministic policies and then consider the corresponding n-player,
6-action normal-form game at τ = 0.1 (with payoffs normalized to [0, 1]). The index of a critical
point xc (∇xLτ (xc) = 0) indicates the fraction of negative eigenvalues in the Hessian of Lτ at xc;
α = 0 indicates a local minimum, 1 a maximum, else a saddle point. We see a positive correlation
between exploitability and α indicating a lower prevalence of local minima at high exploitability.

Lemma 15. The gradient of Lτ (x) with respect to player l’s strategy xl is212

∇xl
Lτ (x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (10)

where Bll = −τ [I − 1
ml

11⊤]diag( 1
xl
) and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.213

Lemma 17. The Hessian of Lτ (x) can be written214

Hess(Lτ ) = 2
[
B̃⊤B̃ + TΠT∆(∇̃τ )

]
(11)

where B̃kl =
√
ηkBkl, ΠT∆(∇̃τ ) = [η1ΠT∆(∇1τ

x1
), . . . , ηnΠT∆(∇nτxn

)], and we augment T (the215

3-player approximation to the game, T klqk) so that T llll = τdiag3( 1
x2
l
).216

At an equilibrium, the latter term disappears because ΠT∆(∇kτxk
) = 0 for all k (Lemma 1). If X217

was Rnm̄, then we could simply check if B̃ is full-rank to determine if Hess ≻ 0. However, X is a218

simplex product, and we only care about curvature in directions toward which we can update our219

equilibrium. Toward that end, define M to be the n(m̄+ 1)× nm̄ matrix that stacks B̃ on top of a220

repeated identity matrix that encodes orthogonality to the simplex:221

M(x) =



−τ√η1ΠT∆(
1
x1
)
√
η1ΠT∆(H

1
12) . . .

√
η1ΠT∆(H

1
1n)

...
...

...
...√

ηnΠT∆(H
n
n1) . . .

√
ηnΠT∆(H

n
n,n−1) −τ√ηnΠT∆(

1
xn

)

1⊤
1 0 . . . 0
...

...
...

...
0 . . . 0 1⊤

n


(12)

where ΠT∆(z ∈ Ra×b) = [Ia − 1
a1a1

⊤
a ]z subtracts the mean from each column of z and 1

xi
is222

shorthand for diag( 1
xi
). If M(x)z = 0 for a nonzero vector z ∈ Rnm̄, this implies there exists a z223

that 1) is orthogonal to the ones vectors of each simplex (i.e., is a valid equilibrium update direction)224

and 2) achieves zero curvature in the direction z, i.e., z⊤(B̃⊤B̃)z = z⊤(Hess)z = 0, and so Hess225

is not positive definite. Conversely, if M(x) is of rank nm̄ for a quantal response equilibrium x, then226

the Hessian of Lτ at x in the tangent space of the simplex product (X =
∏
i Xi) is positive definite.227

In this case, we call x well-isolated because it implies it is not connected to any other equilibria.228

By analyzing the rank of M , we can confirm that many classical matrix games including Rock-229

Paper-Scissors, Chicken, Matching Pennies, and Shapley’s game all induce strongly convex Lτ ’s at230

zero temperature (i.e., they have unique mixed Nash equilibria). In contrast, a game like Prisoner’s231

Dilemma has a unique pure strategy that will not be captured by our loss at zero temperature.232
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Figure 3: Comparison of SGD on Lτ=0 against baselines on four games evaluated in [15]. From left
to right: 2-player, 3-action, nonsymmetric; 6-player, 5-action, nonsymmetric; 4-player, 66-action,
symmetric; 3-player, 286-action, symmetric. SGD struggles at saddle points in Blotto.

6 Algorithms233

We have formally transformed the approximation of Nash equilibria in NFGs into a stochastic234

optimization problem. To our knowledge, this is the first such formulation that allows one-shot235

unbiased Monte-Carlo estimation which is critical to introduce the use of powerful algorithms capable236

of solving high dimensional optimization problems. We explore two off-the-shelf approaches.237

Stochastic gradient descent is the workhorse of high-dimensional stochastic optimization. It comes238

with guaranteed convergence to stationary points [10], however, it may converge to local, rather than239

global minima. It also enjoys implicit gradient regularization [4], seeking “flat” minima and performs240

approximate Bayesian inference [26]. Despite the lack of global convergence guarantee, in the next241

section, we find it performs well empirically in games previously examined by the literature.242

We explore one other algorithmic approach to non-convex optimization based on minimizing regret,243

which enjoys finite time convergence rates. X -armed bandits [8] systematically explore the space of244

solutions by refining a mesh over the joint strategy space, trading off exploration versus exploitation245

of promising regions.2 Several approaches exist [5, 37] with open source implementations (e.g., [24]).246

6.1 High Probability, Polynomial Convergence Rates247

We use a recent X -armed bandit approach called BLiN [14] to establish a high probability Õ(T−1/4)248

convergence rate to Nash equilibria in n-player, general-sum games under mild assumptions. The249

quality of this approximation improves as τ → 0, at the same time increasing the constant on the250

convergence rate via the Lipschitz constant
√
L̂ defined below. For clarity, we assume users provide251

a temperature in the form τ = 1
ln(1/p) with p ∈ (0, 1) which ensures all equilibria have probability252

mass greater than p
m∗ for all actions (Lemma 9). Lower p corresponds with lower temperature.253

The following convergence rate depends on bounds on the exploitability in terms of the loss254

(Lemma 14), bounds on the magnitude of estimates of the loss (Lemma 8), Lipschitz bounds on the255

infinity norm of the gradient (Corollary 2), and the number of distinct strategies (nm̄ =
∑
kmk).256

Theorem 1 (BLiN PAC Rate). Assume ηk = η = 2/L̂, τ = 1
ln(1/p) , and a previously pulled arm is257

returned uniformly at random (i.e., t ∼ U([T ])). Then for any w > 0258

ϵt ≤ w
[ n

ln(1/p)

(
W (1/e) +

m̄− 2

e

)
+ 4(1 + (4c2)1/3)

√
nm∗L̂

( lnT
T

) 1
2(dz+2)

]
(13)

with probability (1 − w−1)(1 − 2T−2) where W is the Lambert function (W (1/e) ≈ 0.278),259

m∗ = maxkmk, c ≤ 1
4
nm̄
L̂

(
ln(m∗)
ln(1/p) + 2

)2

≤ 1
4

(
ln(m∗)
ln(1/p) + 2

)
upper bounds the range of stochastic260

estimates of Lτ (see Lemma 8), and L̂ =
(

ln(m∗)
ln(1/p) + 2

)(
m∗2

p ln(1/p) + nm̄
)

(see Corollary 2).261

This result depends on the near-optimality [37] or zooming-dimension dz = nm̄(αhi−αlo

αloαhi
) ∈ [0,∞)262

(Theorem 2) where αlo and αhi denote the degree of the polynomials that lower and upper bound the263

function Lτ ◦ s locally around an equilibrium. For example, in the case where the Hessian is positive264

definite, αlo = αhi = 2 and dz = 0. Here, s : [0, 1]n(m̄−1) →
∏
i∆

mi−1 is any function that maps265

from the unit hypercube to a product of simplices; we analyze two such maps in the appendix.266

2Zhou et al. [39] developed a similar approach but only for pure Nash equilibria.
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Figure 4: Bandit-based (BLiN) Nash solver applied to an artificial 7-player, symmetric, 2-action
game. We search for a symmetric equilibrium, which is represented succinctly as the probability of
selecting action 1. The plot shows the true exploitability ϵ of all symmetric strategies in black and
indicates there exist potentially 5 NEs (the dips in the curve). Upper bounds on our unregularized
loss L capture 4 of these equilibria, missing only the pure NE on the right. By considering our
regularized loss, Lτ , we are able to capture this pure NE (see zoomed inset). The bandit algorithm
selects strategies to evaluate, using 10 Monte-Carlo samples for each evaluation (arm pull) of Lτ .
These samples are displayed as vertical bars above with the height of the vertical bar representing
additional arm pulls. The best arms throughout search are denoted by green circles (darker indicates
later in the search). The boxed numbers near equilibria display the welfare of the strategy.

Note that Theorem 1 implies that for games whose corresponding Lτ has zooming dimension dz = 0,267

NEs can be approximated with high probability in polynomial time. This general property is difficult268

to translate concisely into game theory parlance. For this reason, we present the following more269

interpretable corollary which applies to a more restricted class of games.270

Corollary 1. Consider the class of NFGs with at least one QRE(τ ) whose local polymatrix approx-271

imation indicates it is isolated (i.e., M from equation (12) is rank-nm̄ implies Hess ≻ 0 implies272

dz = nm̄( 2−2
4 ) = 0). Then by Theorem 1, BLiN is a fully polynomial-time randomized approximation273

scheme (FPRAS) for QREs and is a PRAS for NEs of games in this class.274

To convey the impact of stochastic optimization guarantees more concretely, assume we are given275

that an interior well-isolated NE exists. Then for a 20-player, 50-action game, it is 1000× cheaper to276

compute a 1/100-NE with probability 95% than it is to just list the nmn payoffs that define the game.277

6.2 Empirical Evaluation278

Figure 3 shows SGD is competitive with scalable techniques to approximating NEs. Shapley’s game279

induces a strongly convex L (see Section 5) leading to SGD’s strong performance. Blotto shows280

signs of convergence to low, but nonzero ϵ, demonstrating the challenges of local minima.281

We demonstrate BLiN (applied to Lτ ) on a 7-player, symmetric, 2-action game. Figure 4 shows the282

bandit algorithm discovers two equilibria, settling on one near x = [0.7, 0.3]× 7 with a wider basin283

of attraction (and higher welfare). In theory, BLiN can enumerate all NEs as T →∞.284

7 Conclusion285

In this work, we proposed a stochastic loss for approximate Nash equilibria in normal-form games.286

An unbiased loss estimator of Nash equilibria is the “key” to the stochastic optimization “door”287

which holds a wealth of research innovations uncovered over several decades. Thus, it allows the288

development of new algorithmic techniques for computing equilibria. We consider bandit and vanilla289

SGD methods in this work, but theses are only two of the many options now at our disposal (e.g,290

adaptive methods [1], Gaussian processes [9], evolutionary algorithms [17], etc.). Such approaches as291

well as generalizations of these techniques to imperfect-information games are promising directions292

for future work. Similarly to how deep learning research first balked at and then marched on to train293

neural networks via NP-hard non-convex optimization, we hope computational game theory can294

march ahead to make useful equilibrium predictions of large multiplayer systems.295
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A Loss: Connection to Exploitability, Unbiased Estimation, and Upper428

Bounds429

A.1 KKT Conditions Imply Fixed Point Sufficiency430

Consider the following constrained optimization problem:431

max
x∈Rd

f(x) (14)

s.t.gi(x) ≤ 0 ∀i (15)
hj(x) = 0 ∀j (16)

where f is concave and gi and hj represent inequality and equality constraints respectively. If gi432

and hi are affine functions, then any maximizer x∗ of f must satisfy the following KKT conditions433

(necessary and sufficient):434

• Stationarity: 0 ∈ ∂f(x∗)−
∑
j λj∂hj(x

∗)−
∑
i µi∂gi(x

∗)435

• Primal feasibility: hj(x∗) = 0 for all j and gi(x∗) ≤ 0 for all i436

• Dual feasibility: µi ≥ 0 for all i437

• Complementary slackness: µigi(x∗) = 0 for all i.438

Lemma 1. Assuming player i’s utility, ui(xi, x−i), is concave in its own strategy xi, any best439

response in the interior of the simplex has zero projected-gradient norm:440

z∗ ∈
(
int∆ ∪ argmax

z
ui(z, x−i)− ui(xi, x−i

)
⇐⇒ (z∗ ∈ int∆) ∧ (||Π∆[∇iz∗ ]|| = 0). (17)

Proof. Consider the problem of formally computing expi(x) = maxz∈int∆ ui(z, x−i)−ui(xi, x−i):441

max
z∈Rd

ui(z, x−i)− ui(xi, x−i) (18)

s.t.− zi + xmin ≤ 0 ∀i (19)

1−
∑
i

zi = 0. (20)

where xmin > 0 is some constant that captures our given assumption that the solution z∗ lies in442

the interior of the simplex. Note that the objective is linear (concave) in z and the constraints are443

affine, therefore the KKT conditions are necessary and sufficient for optimality. Mapping the KKT444

conditions onto this problem yields the following:445

• Stationarity: 0 ∈ ∂ui(z∗, x−i) + λ1+
∑
i µiei446

• Primal feasibility:
∑
i z

∗
i = 1 and z∗i ≥ xmin for all i447

• Dual feasibility: µi ≥ 0 for all i448

• Complementary slackness: µiz∗i = 0 for all i.449

For any point z ∈ int∆, primal feasibility will be satisfied for some xmin > 0. This implies each zj450

is strictly positive. By complementary slackness and dual feasibility, each µi must be identically zero.451

This implies the stationarity condition can be simplified to 0 ∈ ∂ui(z∗, x−i) + λ1. Rearranging452

terms we find that for any z∗, there exists a λ such that453

∂ui(z
∗, x−i) ∈ λ1. (21)

Equivalently, ∂ui(z∗, x−i) ∝ 1 at z∗ ∈ int∆. Any vector proportional to the ones vector has zero454

projected-gradient norm, completing the claim.455
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A.2 Norm of Projected-Gradient and Equivalence to NFG Exploitability with Approximate456

Best Responses457

Proposition 1. The loss L is equivalent to NashConv, but where player k’s best response is approxi-458

mated by a single step of projected-gradient ascent with step size ηk: aBRk = xk + ηkΠ∆[∇kxk
].459

Proof. Define an approximate best response as the result of a player adjusting their strategy via a460

projected-gradient ascent step, i.e., aBRk = xk + ηkΠ∆[∇kxk
] for player k.461

In a normal form game, player k’s utility at this new strategy is uk(aBRk, x−k) = (∇kxk
)⊤(xk +462

ηkΠ∆[∇kxk
]) = uk(x) + ηk(∇kxk

)⊤Π∆[∇kxk
].463

Therefore, the amount player k gains by playing aBR is464

ϵ̂k(x) = uk(aBRk, x−k)− uk(x) (22)

= ηk(∇kxk
)⊤Π∆[∇kxk

] (23)

= ηk(∇kxk
− 1

mk
(1⊤∇kxk

)1)⊤Π∆[∇kxk
] (24)

= ηk||Π∆[∇kxk
]||2 (25)

where the third equality follows from the fact that the projected-gradient, Π∆[∇kxk
], is orthogonal to465

the ones vector.466

A.3 Connection to True Exploitability467

Lemma 2. The amount a player can gain by deviating is upper bounded by a quantity proportional468

to the norm of the projected-gradient:469

ϵk(x) ≤
√
2||Π∆(∇kxk

)||. (26)

Proof. Let z be any point on the simplex. Then470

uk(z, x−k)− uk(x) ≤ (∇kxk
)⊤(z − xk) (27)

= (∇kxk
)⊤(z − xk)−

1

mk
(1⊤∇kxk

)

1−1=0︷ ︸︸ ︷
1⊤(z − xk) (28)

= (Π∆[∇kxk
])⊤(z − xk) (29)

≤
√
2||Π∆(∇kxk

)||. (30)

471

Continuing, we can prove a bound on NashConv in terms of projected-gradient loss:472

Lemma 3. The exploitability, ϵ, of a joint strategy x, is upper bounded as a function of our proposed473

loss:474

ϵ ≤
√

2n

mink ηk

√
L(x). (31)
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Proof.

ϵ = max
k

max
z

uk(z, x−k)− uk(x) (32)

≤
∑
k

max
z

uk(z, x−k)− uk(x) (33)

≤
∑
k

√
2||Π∆(∇kxk

)||2 (34)

=
√
2
∣∣∣∣∣∣||Π∆(∇1

x1
)||2, . . .

√
2||Π∆(∇nxn

)||2
∣∣∣∣∣∣
1

(35)

≤
√
2n

∣∣∣∣∣∣||Π∆(∇1
x1
)||2, . . . ||Π∆(∇nxn

)||2
∣∣∣∣∣∣
2

(36)

=
√
2n

√∑
k

||Π∆(∇kxk
)||22 (37)

≤
√
2n

√∑
k

( 1

ηk

)
ηk||Π∆(∇kxk

)||22 (38)

≤
√

2n

mink ηk

√∑
k

ηk||Π∆(∇kxk
)||22 (39)

=

√
2n

mink ηk

√
L(x) (40)

475

Lemma 4. The entropy regularized exploitability, ϵQRE , of a joint strategy x, is upper bounded as a476

function of our proposed loss:477

ϵQRE ≤
√

2n

mink ηk

√
Lτ (x). (41)

Proof. Recall that uτk(xk, x−k) is also concave with respect to xk. Then478

ϵQRE = max
k

max
z

uτk(z, x−k)− uτk(x) (42)

≤
∑
k

max
z

uτk(z, x−k)− uτk(x) (43)

≤
∑
k

√
2||Π∆(∇kτxk

)||2 (44)

=
√
2
∣∣∣∣∣∣||Π∆(∇1τ

x1
)||2, . . .

√
2||Π∆(∇nτxn

)||2
∣∣∣∣∣∣
1

(45)

≤
√
2n

∣∣∣∣∣∣||Π∆(∇1τ
x1
)||2, . . . ||Π∆(∇nτxn

)||2
∣∣∣∣∣∣
2

(46)

=
√
2n

√∑
k

||Π∆(∇kτxk
)||22 (47)

≤
√
2n

√∑
k

( 1

ηk

)
ηk||Π∆(∇kτxk

)||22 (48)

≤
√

2n

mink ηk

√∑
k

ηk||Π∆(∇kτxk
)||22 (49)

=

√
2n

mink ηk

√
Lτ (x) (50)

479
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A.4 Unbiased Estimation480

Lemma 5. An unbiased estimate of L(x) can be obtained by drawing two samples (pure strategies)481

from each players’ mixed strategy and observing payoffs.482

Proof. Define ∇kxk
as the random variable distributed according to the distribution induced by all483

players’ mixed strategies. Let ∇k(1)xk and ∇k(2)xk represent two other independent random variables,484

distributed identically to∇kxk
. Then485

Eak∼xk∀k[L(x)] = Eak∼xk∀k[
∑
k

ηk(||∇kxk
||2 − 1

mk
(1⊤∇kxk

)2)] (51)

=
∑
k

ηk(Eak∼xk∀k[||∇kxk
||2]− 1

mk
Eak∼xk∀k[(1

⊤∇kxk
)2]) (52)

=
∑
k

ηk(Eak∼xk∀k[
∑
l

(∇kxkl
)2]− 1

mk
Eak∼xk∀k[(

∑
l

∇kxkl
)2]) (53)

=
∑
k

ηk(
∑
l

Eak∼xk∀k[(∇kxkl
)2]− 1

mk
Eak∼xk∀k[(

∑
l

∇kxkl
)2]) (54)

=
∑
k

ηk

(∑
l

Eak∼xk∀k[∇k(1)xkl
]Eak∼xk∀k[∇k(2)xkl

] (55)

− 1

mk
Eak∼xk∀k[

∑
l

∇k(1)xkl
]Eak∼xk∀k[

∑
l

∇k(2)xkl
]
)

(56)

=
∑
k

ηk

(∑
l

Eaj∼xj∀j ̸=k[∇k(1)xkl
]Eaj∼xj∀j ̸=k[∇k(2)xkl

] (57)

− 1

mk
Eaj∼xj∀j ̸=k[

∑
l

∇k(1)xkl
]Eaj∼xj∀j ̸=k[

∑
l

∇k(2)xkl
]
)

(58)

=
∑
k

ηk

([
∇̂k(1)xk

]⊤∇̂k(2)xk
− 1

mk
(1⊤∇̂k(1)xk

)(1⊤∇̂k(2)xk
)
)

(59)

=
∑
k

ηk(∇̂k(1)xk
− 1

mk
(1⊤∇̂k(1)xk

)1︸ ︷︷ ︸
appx. br gradient

)⊤ ∇̂k(2)xk︸ ︷︷ ︸
exp. payoffs

(60)

where ∇̂k(p)xk is an unbiased estimator of player k’s gradient.486

487

Lemma 6. The loss formed as the sum of the squared norms of the projected-gradients, Lτ , can be488

decomposed into three terms as follows:489

Lτ (x) =
∑
k

ηkx
⊤
q B

⊤
kqBkqxq︸ ︷︷ ︸

(A)

+2
∑
k

ηkE
⊤
k Bkqxq︸ ︷︷ ︸

(B)

+
∑
k

ηkE
⊤
k Ek︸ ︷︷ ︸

(C)

(61)

where q is any player other than k.490
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Proof. Let Sτ = −τ
∑
l xkl log(xkl) so that ∂Sτ

∂xk
= −τ(ln(xk) + 1). Note that ΠT∆[

∂Sτ

∂xk
] =491

−τ ln(xk).492

Lτ (x) =
∑
k

ηk(ΠT∆[∇kxk
])⊤ΠT∆[∇kxk

] (62)

=
∑
k

ηk[H
k
kqxq +

∂Sτ

∂xk
]⊤[I − 1

mk
11⊤][I − 1

mk
11⊤][Hk

kqxq +
∂Sτ

∂xk
] (63)

=
∑
k

ηk

(
x⊤q [H

k
kq]

⊤[I − 1

mk
11⊤]2[Hk

kq]xq + 2[
∂Sτ

∂xk
]⊤[I − 1

mk
11⊤]2[Hk

kqxq] (64)

+ [
∂Sτ

∂xk
]⊤[I − 1

mk
11⊤]2[

∂Sτ

∂xk
]
)

(65)

=
∑
k

ηkx
⊤
q B

⊤
kqBkqxq︸ ︷︷ ︸

(A)

+2
∑
k

ηkE
⊤
k Bkqxq︸ ︷︷ ︸

(B)

+
∑
k

ηkE
⊤
k Ek︸ ︷︷ ︸

(C)

(66)

where Bkq = [I − 1
mk

11⊤]Hk
kq and Ek = [I − 1

mk
11⊤][∂S

τ

∂xk
] = −τ ln(xk).493

494

A.5 Bound on Loss495

By equation (51), we can also rewrite this loss as a weighted sum of 2-norms, L(x) =
∑
k ηk||∇kxk

−496

µk||22 where µk = 1
mk

(1⊤∇kxk
) ∈ [0, 1] for brevity. This will allow us to more easily analyze our497

loss.498

Lemma 7. Assume payoffs are bounded by 1, then setting ηk ≤ 4
nmk

or ηk ≤ 4
nm̄ or

∑
k ηk ≤

4
m̄499

ensures 0 ≤ L(x) ≤ 1 for all x ∈ X .500

Proof.

0 ≤ L(x) =
∑
k

ηk||∇kxk
− µk||22 (67)

=
∑
k

ηkmk

[ 1

mk

∑
l

(∇kxkl
− µk)2

]
(68)

=
∑
k

ηkmkV ar[∇kxk
] (69)

≤ 1

4

∑
k

ηkmk (70)

≤ 1

4
(max

k
ηk)(

∑
k

mk) (71)

=
1

4
(max

k
ηk)nm̄ ≤ 1 (72)

=⇒ (max
k

ηk) ≤
4

nm̄
. (73)

501
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The kth element of the sum in the loss does not depend on agent k’s strategy. We will rewrite the loss502

to make its dependence on all other players’ strategies more obvious (l, q ̸= k below).503

L(x) =
∑
k

ηk
(
[Hk

klxl]
⊤[Hk

kqxq]−
1

mk
(1⊤[Hk

klxl])(1
⊤[Hk

kqxq])
)

(74)

=
∑
k

ηk
(
[Hk

klxl]
⊤[Hk

kqxq]−
1

mk
[Hk

klxl]
⊤11⊤[Hk

kqxq]
)

(75)

=
∑
k

ηk[H
k
klxl]

⊤[I − 1

mk
11⊤][Hk

kqxq] (76)

=
∑
k

ηkx
⊤
l [H

k
kl]

⊤[I − 1

mk
11⊤][Hk

kq]xq (77)

=
∑
k

ηkx
⊤
q [H

k
kq]

⊤[I − 1

mk
11⊤][Hk

kq]xq isolate dep. on q (78)

=
∑
k

ηkx
⊤
q [H

k
qk][I −

1

mk
11⊤][Hk

kq]xq (79)

=
∑
k

ηkx
⊤
q Aqkqxq. (80)

where Aqkq = [Hk
qk][I − 1

mk
11⊤][Hk

kq] does not depend on xk.504

Note this means we can also write L(x) =
∑
k ηkx

⊤
l Alkqxq for any l, q ̸= k.505

Lemma 8. Assume payoffs are bounded in [0, 1], then506

|Lτ (x)| ≤ 1

4
(max

k
ηk)nm̄

( ln(m∗)

ln(1/p)
+ 2

)2

(81)

for any x such that xkl ≥ p
m∗ ∀k, l.507

Proof. Starting from the definition of Lτ and applying Lemma 19 along with intermediate results508

from Lemma 16, we find509

|Lτ (x)| = |
∑
k

ηk||ΠT∆(∇kxk
)||2| (82)

≤ 1

4

∑
k

ηkmk(τ ln(
1

xmin
) + 1)2 (83)

=
1

4

∑
k

ηkmk

( 1

ln(1/p)
ln

(m∗

p

)
+ 1

)2

(84)

=
1

4

∑
k

ηkmk

( ln(m∗)

ln(1/p)
+ 2

)2

(85)

=
1

4
(max

k
ηk)nm̄

( ln(m∗)

ln(1/p)
+ 2

)2

. (86)

510

B QREs Approximate NEs at Low Temperature511

Lemma 9. Setting τ = ln(1/p)−1 with p ∈ [0, 1) ensures that all QREs contain probabilities greater512

than p
maxkmk

.513
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Proof. What must τ be to ensure xlp ≥ xmin for any l, p? We can check the case where ∇ = ei. Let514

m∗ = maxkmk. Then515

xmin = min
k

min
∇k

xk

min
l

[
softmax(

∇kxk

τ
)
]
l

(87)

=
e0

(m∗ − 1)e
1
τ + e0

(88)

=
1

(m∗ − 1)e
1
τ + 1

(89)

=⇒ e
1
τ =

1

m∗ − 1

( 1

xmin
− 1

)
(90)

=⇒ τ =
1

ln
(

1
m∗−1

(
1

xmin
− 1

)) . (91)

If xmin = p
m∗ with p ∈ [0, 1], then516

τ∗ =
1

ln
(

1
m∗−1

(
1

xmin
− 1

)) (92)

=
1

ln
(

1
m∗−1

(
m∗

p − 1
)) (93)

=
1

ln
(
m∗−p
m∗−1

1
p

) (94)

≤ 1

ln( 1p )
. (95)

This implies if we set τ = ln(1/p)−1, then we are guaranteed that all QREs contain probabilities517

greater than xmin = p
maxk mk

.518

Lemma 10 (Repeated from Lemma 1 of [29]). Let∇kxk
be player k’s gradient (mk ≥ 2) with payoffs519

bounded in [0, 1] and x be a QRE at temperature τ . Then it holds that520

uk(BRk, x−k)− uk(x) = max(∇kxk
)− (∇kxk

)⊤softmax
(∇kxk

τ

)
≤ τ(W (1/e) +

mk − 2

e
) (96)

where W is the Lambert function (W (1/e) ≈ 0.278).521

Lemma 11 (Slightly modified from Proposition 5.1a of [6]). Let ψe(xk) =
∑
l xkl ln(xkl) if522

xk ∈ ∆mk−1 else +∞. Then ψe(xk) is 1-strongly convex over int∆mk−1 w.r.t. the || · ||1 and || · ||2523

norms, i.e.,524

⟨∇ψe(x)−∇ψe(y), x− y⟩ ≥ ||x− y||21 ≥ ||x− y||22 (97)

=⇒ ψe(y) ≥ ψe(x) +∇ψe(x)⊤(y − x) +
1

2
||y − x||22. (98)

for all x, y ∈ int∆mk−1.525

Lemma 12. Let l(x|xk) = ⟨∇fk(xk), x⟩ + 1
tk
Bψe(x, xk) where tk > 0, fk(z) = −ϵk(z) =526

−[uk(z, x−i) + Sτ (z) − uk(x) − Sτ (xk)], and Bψe(x, xk) = ψe(x) − ψe(y) − ⟨x − y,∇ψe(y)⟩527

with ψe defined in Lemma 11. Finally, let xk+1 = argminx∈int∆ l(x|xk). Then528

||xk − xk+1|| ≤ 2||Π∆(∇kτxk
)||. (99)

Proof. Plugging ψe(xk) =
∑
l xkl ln(xkl) = −S(xk) on int∆ into Bψe

(x, xk), we find529

Bψe
(x, xk) = S(xk)− S(x)− ⟨ln(xk) + 1, x− xk⟩ (100)

= S(xk)− S(x)− ⟨ln(xk), x− xk⟩ (101)
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for all x, xk ∈ int∆. Note that −S(x) is 1-strongly convex on int∆, therefore, Bψe(x, xk) is also530

1-strongly convex in x. Continuing, this also implies l(x|xk) is 1-strongly convex.531

Let xk+1 = argminx∈int∆ l(x|xk) and note that∇fk(xk) = −∇ϵk = −∇kτxk
. Strong convexity of532

l implies533

l(xk+1) ≥ l(xk) +∇xl(xk)⊤(xk+1 − xk) +
1

2
||xk+1 − xk||22 (102)

=⇒ ||xk − xk+1||22 ≤ 2
[
l(xk+1)− l(xk)︸ ︷︷ ︸

≤0

+∇xl(xk)⊤(xk − xk+1)
]

(103)

≤ 2∇xl(xk)⊤(xk − xk+1) = 2(∇fk(xk) +
1

tk
[ln(xk) + 1− ln(xk)])

⊤(xk − xk+1)

(104)

= 2∇fk(xk)⊤(xk − xk+1) = 2(∇kτxk
)⊤(xk+1 − xk) = 2(Π∆(∇kτxk

))⊤(xk+1 − xk)
(105)

≤ 2||Π∆(∇kτxk
)||||xk − xk+1||. (106)

Rearranging the inequality achieves the desired result.534

Lemma 13. [Low Temperature Approximate QREs are Approximate Nash Equilibria] Let∇kτxk
be535

player k’s entropy regularized gradient with payoffs bounded in [0, 1] and x be an approximate QRE.536

Then it holds that537

uk(BRk, x−k)− uk(x) ≤ τ(W (1/e) +
mk − 2

e
) + 2

√
mk||Π∆(∇kτxk

)|| (107)

where W is the Lambert function (W (1/e) ≈ 0.278).538

Proof. First note that xk = softmax(ln(xk)) for xk ∈ int∆. Recall that the softmax is invariant539

to constant offsets to its argument, i.e., softmax(z + c1) = softmax(z) for any c ∈ R. Then540

softmax(
∇kxk

τ
) = softmax(ln(xk)−

1

τ
[−∇kxk

+ τ ln(xk)]) (108)

= softmax(ln(xk)−
1

τ
[−∇kxk

+ τ ln(xk) + τ1]) (109)

= softmax(ln(xk)−
1

τ
∇fk(xk)) (110)

= argmin
x∈int∆

l(x|xk) with tk =
1

τ
(111)

= x∗k (112)

where the closed-form solution to the minimization problem as a softmax formula comes from541

inspecting the Entropic Descent Algorithm (EDA) of [6].542

Then, beginning with the definition of exploitability, we find543

uk(BRk, x−k)− uk(x) = uk(BRk, x−k)− (∇kxk
)⊤xk (113)

= uk(BRk, x−k)− (∇kxk
)⊤softmax(

∇kxk

τ
)− (∇kxk

)⊤(xk − softmax(
∇kxk

τ
))

(114)

≤ τ(W (1/e) +
mk − 2

e
) + ||∇kxk

|| · ||xk − softmax(
∇kxk

τ
)|| (115)

= τ(W (1/e) +
mk − 2

e
) + ||∇kxk

|| · ||xk − x∗k|| (116)

≤ τ(W (1/e) +
mk − 2

e
) + 2

√
mk||Π∆(∇kτxk

)||. (117)

544
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Lemma 14. [Lτ Scores Nash Equilibria] Let Lτ (x) be our proposed entropy regularized loss545

function with payoffs bounded in [0, 1] and x be an approximate QRE. Then it holds that546

ϵ ≤ nτ(W (1/e) +
m̄− 2

e
) + 2

√
nmaxkmk

mink ηk

√
Lτ (x) (118)

where W is the Lambert function (W (1/e) ≈ 0.278).547

Proof. Beginning with the definition of exploitability and applying Lemma 13, we find548

ϵ = max
k

uk(BRk, x−k)− uk(x) (119)

≤
∑
k

uk(BRk, x−k)− uk(x) (120)

≤
∑
k

[
τ(W (1/e) +

mk − 2

e
) + 2

√
mk||Π∆(∇kτxk

)||
]

(121)

= nτ(W (1/e) +
m̄− 2

e
) + 2

∑
k

√
mk||Π∆(∇kτxk

)|| (122)

≤ nτ(W (1/e) +
m̄− 2

e
) + 2

√
max
k

mk

∑
k

||Π∆(∇kτxk
)|| (123)

≤ nτ(W (1/e) +
m̄− 2

e
) + 2

√
nmaxkmk

mink ηk

√
Lτ (x). (124)

where the last inequality follows from the same steps outlined in Lemma 3, which established the549

relationship between L(x) and ϵ.550

551

C Gradient of Loss552

Lemma 15. The gradient of Lτ (x) with respect to player l’s strategy xl is553

∇xl
L(x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (125)

where Bll = −τ [I − 1
ml

11⊤]diag( 1
xl
) and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.554

Proof. Recall from Lemma 6 that the loss can be decomposed as Lτ (x) = (A) + (B) + (C).555

Then556

Dxl
[(A)] = Dxl

[
∑
k

ηkx
⊤
q B

⊤
kqBkqxq] = 2

∑
k ̸=l

ηkB
⊤
klBklxl (126)

where q ̸= k and Bkq = [I − 1
mk

11⊤][Hk
kq] does not depend on xk.557

Also, letting Bll = −τ [I − 1
ml

11⊤]diag( 1
xl
),558

Dxl
[(B)] = Dxl

[−2τ
∑
k

ηk ln(xk)
⊤Bkqxq] (127)

= −2τ
[
ηlDxl

[ln(xl)
⊤Blqxq] +

∑
k ̸=l

ηkDxl
[ln(xk)

⊤Bklxl]
]

(128)

= −2τ
[
ηldiag(

1

xl
)Blqxq +

∑
k ̸=l

ηkB
⊤
kl ln(xk)

]
(129)

= −2τ
[
ηl([I −

1

ml
11⊤]diag(

1

xl
))⊤ΠT∆(∇l) +

∑
k ̸=l

ηkB
⊤
kl ln(xk)

]
(130)

= 2
[
ηlB

⊤
llΠT∆(∇l)− τ

∑
k ̸=l

ηkB
⊤
kl ln(xk)

]
. (131)
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And559

Dxl
[(C)] = Dxl

[
∑
k

ηkτ
2 ln(xk)

⊤[I − 1

mk
11⊤] ln(xk)] (132)

= 2τ2
[
ηldiag(

1

xl
)[I − 1

ml
11⊤] ln(xl)

]
(133)

= −2τηl([I −
1

ml
11⊤]diag(

1

xl
))⊤ΠT∆(−τ ln(xl)) (134)

= 2ηlB
⊤
llΠT∆(−τ ln(xl)). (135)

Putting these together, we find560

∇xl
L(x) = 2

∑
k ̸=l

ηkB
⊤
kl(Bklxl − τ ln(xk)) + 2ηlB

⊤
ll

[
ΠT∆(∇l) + ΠT∆(−τ ln(xl))

]
(136)

= 2ηlB
⊤
llΠT∆(∇kτxk

) + 2
∑
k ̸=l

ηkB
⊤
klΠT∆(∇kτxk

) (137)

= 2
∑
k

ηkB
⊤
klΠT∆(∇kτxk

). (138)

561

C.1 Unbiased Estimation562

In order to construct an unbiased estimate of Alkl, we will need to form two independent unbiased563

estimates of Hk
kl. Recall that Hk

kl is simply the expected bimatrix game between players k and l564

when all other players sample their actions according to their current strategies.565

C.2 Bound on Gradient / Lipschitz Property566

Lemma 16. Assume payoffs are upper bounded by 1, then the infinity norm of the gradient is bounded567

as568

||∇xLτ (x)||∞ ≤
1

2
(max

k
ηk)(τ ln

( 1

xmin

)
+ 1)

[
τm∗( 1

xmin
− 1

)
+ nm̄

]
. (139)

Proof. Recall from Lemma 15 that the gradient of L(x) with respect to player l’s strategy xl is569

∇xl
L(x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (140)

where Bll = −τ [I − 1
ml

11⊤]diag( 1
xl
) and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.570

For payoffs in [0, 1], the entries in ∇kτxk
= ∇kxk

− τ ln(xk) are bounded within [0, τ ln( 1
xmin

) + 1]571

with a range τ ln( 1
xmin

) + 1. Similarly, the entries in −τdiag( 1
xl
) are bounded within [−τ 1

xmin
,−τ ]572

with a range of τ( 1
xmin
− 1).573
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The infinity norm of the gradient can then be bounded as574

||∇xLτ (x)||∞ = max
l
||∇xl

L(x)||∞ (141)

= max
l
||2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

)||∞ (142)

≤ 2
∑
k

ηkmax
l
||B⊤

klΠT∆(∇kτxk
)||∞ (143)

≤ 1

2

∑
k ̸=l∗

ηkmk(τ ln
( 1

xmin

)
+ 1) +

1

2
ηl∗ml∗τ

( 1

xmin
− 1

)
(τ ln

( 1

xmin

)
+ 1)

(144)

=
1

2
(τ ln

( 1

xmin

)
+ 1)

[
ηl∗ml∗τ

( 1

xmin
− 1

)
+

∑
k ̸=l∗

ηkmk

]
(145)

≤ 1

2
(max

k
ηk)(τ ln

( 1

xmin

)
+ 1)

[
τml∗

( 1

xmin
− 1

)
+

∑
k ̸=l∗

mk

]
(146)

≤ 1

2
(max

k
ηk)(τ ln

( 1

xmin

)
+ 1)

[
τm∗( 1

xmin
− 1

)
+ nm̄

]
(147)

where the second inequality follows from Lemma 19.575

576

Corollary 2. If τ is set according to Lemma 9, then the infinity norm of the gradient is bounded as577

||∇xLτ (x)||∞ ≤
1

2
(max

k
ηk)

[ ln(m∗)

ln(1/p)
+ 2

][ m∗2

p ln(1/p)
+ nm̄

]
=

1

2
(max

k
ηk)L̂ (148)

where m∗ = maxkmk and L̂ is defined implicitly for convenience in other derivations.578

Proof. Starting with Lemma 16 and applying Lemma 9 (i.e., τ = ln(1/p)−1 and xmin = p
m∗ where579

m∗ = maxkmk), we find580

||∇xLτ (x)||∞ ≤
1

2
(max

k
ηk)(τ ln

( 1

xmin

)
+ 1)

[
τm∗( 1

xmin
− 1

)
+ nm̄

]
(149)

=
1

2
(max

k
ηk)

[ ln(m∗/p)

ln(1/p)
+ 1

][ m∗

ln(1/p)

(m∗

p
− 1

)
+ nm̄

]
(150)

≤ 1

2
(max

k
ηk)

[ ln(m∗)

ln(1/p)
+ 2

][ m∗2

p ln(1/p)
+ nm̄

]
. (151)

As p→ 0+, the norm of the gradient blows up because the gradient of Shannon entropy blows up581

for small probabilities. As p → 1, the norm of the gradient blows up because we require infinite582

temperature τ to guarantee all QREs are nearly uniform; recall τ is the regularization coefficient on583

the entropy bonus terms which means our modified utilities blow up for large τ . In practice, setting p584

to O(1), e.g., p = 1
10 is sufficient.585

D Hessian of Loss586

We will now derive the Hessian of our loss. This will be useful in establishing properties about global587

minima that enable the application of tailored minimization algorithms. Let Dz[f(z)] denote the588

differential operator applied to (possibly multivalued) function f with respect to z. For example,589

Dxq
[Hk

lk] = Dxq
[xqT

k
qlk] = T kqlk where T kqlk is player k’s payoff tensor according to the three-way590

approximation between players k, l, and q to the game at x.591

Lemma 17. The Hessian of Lτ (x) can be written592

Hess(Lτ ) = 2B̃⊤B̃ + TΠT∆(∇̃τ ) (152)

where B̃kl =
√
ηkBkl, ΠT∆(∇̃τ ) = [η1ΠT∆(∇1τ

x1
), . . . , ηnΠT∆(∇nτxn

)], and we augment T (the593

3-player tensor approximation to the game, T klqk) so that T llll = τdiag3( 1
x2
l
) and otherwise 0.594
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Proof. Recall the gradient of our proposed loss:595

∇xl
L(x) = 2

∑
k

ηkB
⊤
klΠT∆(∇kτxk

) (153)

where Bll = −τ [I − 1
ml

11⊤]diag( 1
xl
) and Bkl = [I − 1

mk
11⊤]Hk

kl for k ̸= l.596

Consider the following Jacobians, which will play an auxiliary role in our derivation of the Hessian:597

Dl[Bll] = τ [I − 1

ml
11⊤]diag3(

1

x2l
) (154)

Dq[Bll] = 0 (155)
Dl[Bkl] = 0 (156)

Dq[Bkl] = [I − 1

mk
11⊤]T kklq (157)

Dk[ΠT∆(∇kτxk
)] = [I − 1

mk
11⊤]Dk[∇kτxk

] (158)

= [I − 1

mk
11⊤]Dk[∇kxk

− τ ln(xk)] (159)

= [I − 1

mk
11⊤][−τdiag( 1

xk
)] (160)

= Bkk (161)

Dl[ΠT∆(∇kτxk
)] = [I − 1

mk
11⊤]Dl[∇kτxk

] (162)

= [I − 1

mk
11⊤]Dl[∇kxk

− τ ln(xk)] (163)

= [I − 1

mk
11⊤][Hk

kl] (164)

= Bkl. (165)

We can derive the diagonal blocks of the Hessian as598

Dll[L(x)] = Dl[∇xl
L(x)] (166)

= 2Dl[
∑
k

ηkB
⊤
klΠT∆(∇kτxk

)] (167)

= 2
[
ηlDl

[
B⊤
llΠT∆(∇lτxl

)
]
+

∑
k ̸=l

ηkDl

[
B⊤
klΠT∆(∇kτxk

)
]]

(168)

= 2
[
ηl
[
Dl[Bll]

⊤ΠT∆(∇lτxl
) +B⊤

llDl[ΠT∆(∇lτxl
)]
]

(169)

+
∑
k ̸=l

ηk
[
����Dl[Bkl]

⊤ΠT∆(∇kτxk
) +B⊤

klDl[ΠT∆(∇kτxk
)]
]]

(170)

= 2
[
ηl
[
τdiag3(

1

x2l
)[I − 1

ml
11⊤]ΠT∆(∇lτxl

) +B⊤
llBll

]
+

∑
k ̸=l

ηkB
⊤
klBkl

]
(171)

= 2
[
τηldiag

(
[
1

x2l
]⊙ΠT∆(∇lτxl

)
)
+
∑
k

ηkB
⊤
klBkl

]
(172)
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and the off-diagonal blocks as599

Dlq[L(x)] = Dq[∇xl
L(x)] (173)

= 2Dq[
∑
k

ηkB
⊤
klΠT∆(∇kτxk

)] (174)

= 2
[
ηlDq

[
B⊤
llΠT∆(∇lτxl

)
]
+

∑
k ̸=l

ηkDq

[
B⊤
klΠT∆(∇kτxk

)
]]

(175)

= 2
[
ηl
[
����Dq[Bll]

⊤ΠT∆(∇lτxl
) +B⊤

llDq[ΠT∆(∇lτxl
)]
]

(176)

+
∑
k ̸=l

ηk
[
Dq[Bkl]

⊤ΠT∆(∇kτxk
) +B⊤

klDq[ΠT∆(∇kτxk
)]
]]

(177)

= 2
[
ηlB

⊤
llBlq +

∑
k ̸=l

ηk
[
T klqk[I −

1

mk
11⊤]ΠT∆(∇kτxk

) +B⊤
klBkq

]]
(178)

= 2
[∑

k

ηkB
⊤
klBkq +

∑
k ̸=l

ηkT
k
lqkΠT∆(∇kτxk

)
]
. (179)

Therefore, the Hessian can be written concisely as600

2
[
B̃⊤B̃ + TΠT∆(∇̃τ )

]
(180)

where B̃kl =
√
ηkBkl, ΠT∆(∇̃τ ) = [η1ΠT∆(∇1τ

x1
), . . . , ηnΠT∆(∇nτxn

)], and we augment T (the601

3-player tensor approximation to the game, T klqk) so that T llll = τdiag3( 1
x2
l
) and otherwise 0.602

603

E Regret Bounds604

Lemma 18. [Loss Regret to Exploitability Regret] Assume exploitability of a joint strategy x is upper605

bounded by f(Lτ (x)) where f is a concave function and Lτ is a loss function. Let xt be a joint606

strategy randomly drawn from the set of predictions made by an online learning algorithm A over T607

steps. Then the expected exploitability of xt is bounded by the average regret of A:608

E[ϵt] ≤ f(
1

T

∑
t

Lt). (181)

Proof.

E[ϵt] = E[f(L(xt))] (182)
≤ f(E[L(xt)]) (183)

= f(
1

T

∑
t

L(xt)) (184)

where the second inequality follows from Jensen’s inequality.609

Theorem 1. [BLiN PAC Rate] Assume ηk = η = 2/L̂ as defined in Lemma 2, τ = 1
ln(1/p) so that all610

equilibria place at least p
m∗ mass on each strategy, and a previously pulled arm is returned uniformly611

at random (i.e., t ∼ U(T )). Then for any w > 0,612

ϵt ≤ w
[
nτ(W (1/e) +

m̄− 2

e
) + 4(1 + (4c2)1/3)

√
nm∗L̂

( lnT
T

) 1
2(dz+2)

]
(185)

with probability (1 − w−1)(1 − 2T−2) where W is the Lambert function (W (1/e) ≈ 0.278),613

m∗ = maxkmk, and c ≤ 1
4
nm̄
L̂

(
ln(m∗)
ln(1/p) + 2

)2

is an upper bound on the maximum sampled value614

from Lτ (see Lemma 8).615
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Proof. Assume ηk = η = 2
L̂

as defined in Lemma 2 so that Lτ is 1-Lipschitz with respect to || · ||∞.616

Also assume a previously pulled arm is returned uniformly at random. Starting with Lemma 14 and617

applying Corollary 9, we find618

E[ϵt] ≤ nτ(W (1/e) +
m̄− 2

e
) + 2

√
nmaxkmk

mink ηk

√
Lτ (x) (186)

=
n

ln(1/p)
(W (1/e) +

m̄− 2

e
) +

√
2nm∗L̂

√
8(1 + (4c2)1/3)2T

−1
(dz+2) lnT

1
(dz+2) (187)

=
n

ln(1/p)
(W (1/e) +

m̄− 2

e
) + 4(1 + (4c2)1/3)

√
nm∗L̂

( lnT
T

) 1
2(dz+2)

(188)

with probability 1− 2T−2 where W is the Lambert function (W (1/e) ≈ 0.278), m∗ = maxkmk,619

and c ≤ 1
4
nm̄
L̂

(
ln(m∗)
ln(1/p) + 2

)2

is an upper bound on the range of sampled values from Lτ (see620

Lemma 8).621

Recall L̂ =
[
ln(m∗)
ln(1/p) + 2

][
m∗2

p ln(1/p) + nm̄
]
. Therefore,622

c ≤ 1

4

nm̄

L̂

( ln(m∗)

ln(1/p)
+ 2

)2

(189)

=
1

4
nm̄

( ln(m∗)
ln(1/p) + 2

m∗2

p ln(1/p) + nm̄

)
. (190)

Markov’s inequality then allows us to bound the pointwise exploitability of any arm returned by the623

algorithm as624

ϵt ≤ w
[ n

ln(1/p)
(W (1/e) +

m̄− 2

e
) + 4(1 + (4c2)1/3)

√
nm∗L̂

( lnT
T

) 1
2(dz+2)

]
(191)

with probability (1− w−1)(1− 2T−2) for any w > 0.625

F Complexity626

F.1 Polymatrix Games627

Interestingly, at zero temperature (where QRE = Nash), M is constant for a polymatrix game, so628

the rank of this matrix can be computed just once to extract information about all possible interior629

equilibria in the game. Furthermore, the Hessian is positive semi-definite over the entire joint strategy630

space, implying the loss function is convex (see Figure 1 (left) for empirical support). This indicates,631

by convex optimization theory, 1) all mixed Nash equilibria in polymatrix games form a convex set632

(i.e., they are connected) and 2) assuming mixed equilibria exist, they can be computed simply by633

stochastic gradient descent on L. If M is rank-nm̄, then this interior equilibrium is unique.634

Complexity Approximation of Nash equilibria in polymatrix games is known to be PPAD-hard [13].635

In contrast, if we restrict our class of polymatrix games to those with at least one interior Nash636

equilibrium, our analysis proves we can find an approximate Nash equilibrium in deterministic,637

polynomial time (Corollary 3). This follows directly from the fact that L is convex, our decision638

set X =
∏
i Xi is convex, and convex optimization theory admits polynomial time approximation639

algorithms (e.g., gradient descent). We consider the assumption of the existence of an interior Nash640

equilibrium to be relatively mild3, so this positive complexity result is surprising.641

Also, note that the Hessian of the loss at Nash equilibria is encoded entirely by the polymatrix642

approximation at the equilibrium. Therefore, approximating the Hessian of L about the equilibrium643

(which amounts to observing near-equilibrium behavior [25]) allows one to recover this polymatrix644

approximation (up to constant offsets of the columns which equilibria are invariant to [27]).645

3Marris et al. [27] shows 2-player, 2-action polymatrix games with interior Nash equilibria make up a
non-trivial 1/4 of the space of possible 2× 2 games.
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Corollary 3 (Approximating Nash Equilibria of Polymatrix Games with Interior Equilibria). Con-646

sider the class of polymatrix games with interior Nash equilibria. This class of games admits a fully647

polynomial time deterministic approximation scheme (FPTAS).648

Proof. Lemma 3 relates the approximation of Nash equilibria to the minimization of the loss function649

L(x). By Lemma 1, this loss function attains its minimum value of zero if and only if x is a650

Nash equilibrium. For polymatrix games, Hessian of this loss function is everywhere finite and651

positive definite (Lemma 17), therefore, this loss function is convex. The decision set for this652

minimization problem is the product space of simplices, therefore it is also convex. Given that we653

only consider polymatrix games with interior Nash equilibria, we know that our loss function attains654

a global minimum within this set. By convex optimization theory, this function can be approximately655

minimized in a polynomial number of steps by, for example, (projected) gradient descent. Gradient656

descent requires computing the gradient of the loss function at each step. From Lemma 15, we see657

that computing the gradient (at zero temperature) simply requires reading the polymatrix description658

of the game (i.e., each bi-matrix game Hk
kl between players), which is clearly polynomial in the size659

of the input (the polymatrix description). The remaining computational steps of gradient descent660

(e.g., projection onto simplices) are polynomial as well. In conclusion, gradient descent approximates661

a Nash equilibrium in polynomial number of steps (logarithmic if strongly-convex), each of which662

costs polynomial time, therefore the entire scheme is polynomial.663

F.2 Normal-Form Games664

Corollary 1. Consider the class of NFGs with at least one QRE(τ ) whose local polymatrix approx-665

imation indicates it is isolated (i.e., M from equation (12) is rank-nm̄ implies Hess ≻ 0 implies666

dz = nm̄( 2−2
4 ) = 0). Then by Theorem 1, BLiN is a fully polynomial-time randomized approximation667

scheme (FPRAS) for QREs and is a PRAS for NEs of games in this class.668

Proof. If α = 0, an ϵ-QRE can be obtained with BLiN in a number of iterations that is polynomial in669

the game description length (nmn). The same holds for an ϵ-NE, however, the temperature must be670

exponentially small to achieve a given ϵ; hence, we lose the fully qualifier. Specifically,671

p ≤ e−
8n
ϵ

(
W (1/e)+ m̄−2

e

)
. (192)

This, in turn, causes the Lipschitz constant L̂ to grow exponentially large, leading to an exponential672

blow up in the number of iterations required for convergence.673

F.2.1 Concrete Example674

The end of Section 6 stated a concrete result for a 20-player, 50-action game assuming we are given675

that the game as an interior Nash equilibrium. This result requires re-deriving a rate similar to676

Theorem 1, but for the unregularized game.677

For example, revisiting Corollary 2 but for zero temperature, we find L̂ = nm̄. Let η = 2
L̂

as678

before. Now, consulting Table 2, we find that samples from L are constrained to a range of size679

c = 1
2nm̄η = 1. Applying Corollary 9 to Lemma 3, we find:680

ϵt ≤ w
[
2
√
2(1 + 41/3)n

√
m̄
( lnT
T

) 1
4
]

(193)

with probability (1−w−1)(1−2T−2) = 0.95(1−2T−2). Plugging in w = 20, n = 20, andm = 50681

and solving for T numerically, we find that T ≤ 1028.7. For such large T , 0.95(1− 2T−2) ≈ 0.95.682

Again consulting Table 2, each call (arm pull) of BLiN costs 2nm, implying a total query cost of683

1032.0. In contrast, there exist 1035.2 scalar entries in the nmn payoff tensor, which is a factor larger684

by 1000.685

G Helpful Lemmas and Propositions686

Proposition 2. The matrix I − 1
mk

11⊤ is a projection matrix and therefore idempotent. It is also687

symmetric, which implies it is its own square root.688
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Proof.

[I − 1

mk
11⊤]⊤[I − 1

mk
11⊤] = I − 2

mk
11⊤ +

1

m2
k

1(1⊤1)1⊤ (194)

= I − 2

mk
11⊤ +

1

mk
11⊤ (195)

= [I − 1

mk
11⊤]. (196)

689

Proposition 3. The matrix I − 1
mk

11⊤ is positive semi-definite.690

Proof. Let z ∈ Rmk . Then691

z⊤[I − 1

mk
11⊤]z = ||z||22 −

1

mk
⟨z,1⟩2 (197)

≥ ||z||22 −
1

mk
⟨|z|,1⟩2 (198)

= ||z||22 −
1

mk
||z||21 (199)

≥ ||z||22 − ||z||22 = 0 ∀z (200)

=⇒ [I − 1

mk
11⊤] ⪰ 0. (201)

692

Proposition 4. The matrix I − 1
mk

11⊤ has rank mk − 1 and its 1-d nullspace lies along 1k.693

Proof. Note that rank(A+B) ≤ rank(A)+rank(B) for matricesA andB of the same dimension.694

Let A = I − 1
mk

11⊤ and B = 1
mk

11⊤ and apply rank(A) ≥ rank(A+B)− rank(B):695

rank(I − 1

mk
11⊤) ≥ rank(I)− rank( 1

mk
11⊤) = mk − 1. (202)

We can confirm the nullspace by inspection:696

[I − 1

mk
11⊤]1 = 1− mk

mk
1 = 0. (203)

697

Lemma 19. The product A[Im − 1
m1m1⊤

m]pB for any p > 0 has entries whose absolute value is698

bounded by m
4 (Amax−Amin)(Bmax−Bmin) where Amin, Amax, Bmin, Bmax represent the minima699

and maxima of the matrices respectively.700

Proof. The matrix [I − 1
m11⊤] is idempotent so we can rewrite the product for any p as701

A[I − 1

m
11⊤][I − 1

m
11⊤]B. (204)

The matrix [I − 1
m11⊤] has the property that it removes the mean from every row of a matrix when702

right multiplied against it, i.e., A[I − 1
m11⊤] removes the means from the rows of A. Similarly, left703

multiplying it removes the means from the column. Let Ã and B̃ represent these mean-centered results704

respectively. The absolute value of the ijth entry in the resulting product can then be recognized as705

|
∑
k

ÃikB̃kj | = |
∑
k

(Aik −
1

m

∑
k′

Aik′)(Bkj −
1

m

∑
k′

Bk′j)| (205)

= |m · Corr(Ai,·, B·,j) · σAi,·σB·,j | (206)

≤ mσAi,·σB·,j . (207)

The variance of a bounded random variable X is upper bounded by V ar[X] ≤ 1
4 (maxX −minX)2.706

Hence its standard deviation is bounded by Std[X] ≤ 1
2 (maxX −minX). Plugging these bounds707

for A and B into equation (207) completes the claim.708
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H Maps from Hypercube to Simplex Product709

In this section, we derive properties of a map s from the unit-hypercube to the simplex product. This710

map is necessary to to adapt our proposed loss Lτ to the commonly assumed setting in the X -armed711

bandit literature [8]. We derive relevant properties of two such maps: the softmax and a mapping712

that interprets dimensions of the hypercube as angles on a unit-sphere that is then ℓ1-normalized.713

Lemma 20. Let f(x) = −L(s(x)). Then ||∇f(x)||∞ ≤ ||J(s(x))⊤||∞||∇L(s(x))||∞.714

Proof.

||∇f(x)||∞ = ||J(s(x))⊤∇L(s(x))||∞ ≤ ||J(s(x))⊤||∞||∇L(s(x))||∞. (208)

715

Lemma 21. The∞-norm of the Jacobian-transpose of a transformation s(x) applied elementwise716

to a product space is bounded by the∞-norm of the Jacobian-transpose of a single transformation717

from that product space, i.e., ||J(s(x))⊤||∞ ≤ maxxi∈Xi ||J(s(xi))⊤||∞ for any i.718

Proof. Let x ∈ X =
∏n
i=1 Xi, Z =

∏n
i=1Zi and S : X → Z = [s(x1); · · · ; s(xn)]⊤ where ;719

denotes column-wise stacking, xi ∈ Xi. Also, Xi = Xj and Zi = Zjfor all i and j. Then the720

Jacobian of S(x) is721

J(S(x))⊤ =


J(s(x1))

⊤ 0 . . . 0
0 J(s(x2))

⊤ . . . 0

0 0
. . . 0

0 0 . . . J(s(xn))
⊤

 . (209)

The∞-norm of this matrix is the max 1-norm of any row. This matrix is diagonal, therefore, the722

∞-norm of each elementwise Jacobian-transpose represents the max 1-norm of the rows spanned723

by its block. Given that the domains, ranges, and transformations s for all blocks are the same,724

their∞-norms are also the same. The max∞ over the blocks is then equal to the∞-norm of any725

individual J(s(xi))⊤.726

H.1 Hessian of Bandit Reward Function727

Lemma 22. Let s(x) be a function that maps the unit hypercube to the simplex product (mixed728

strategy space). Then the objective function f(x) = −L(s(x)). The Hessian of−f(x) at an optimum729

x∗ in direction ∆ is ∆x⊤[Ds(x)⊤HL(x)Ds(x)]
∣∣∣
x∗
∆x where HL is the Hessian of L and Ds(x) is730

the Jacobian of s(x).731

Proof.

(D2(L ◦ s)(x∗))(∆x,∆x) = ∆x⊤
[∑

i

=0 at x=x∗︷ ︸︸ ︷
∂iL(s(x))D2hi(x)

]∣∣∣
x∗
∆x+∆x⊤[Ds(x)⊤HL(x)Ds(x)]

∣∣∣
x∗
∆x

(210)

= ∆x⊤[Ds(x)⊤HL(x)Ds(x)]
∣∣∣
x∗
∆x. (211)

732

Lemma 23. Let s(x) : X →
∏
k∆

mk−1 be an injective function, i.e., x ̸= y =⇒ s(x) ̸= s(y).733

Also let J = J(s(x)) be the Jacobian of s with respect to x and ∆x be a nonzero vector in the734

tangent space of X . Then735

J∆x ̸= 0. (212)
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Proof. Recall that the ijth entry of the Jacobian represents ∂si
∂xj

so that the ith entry of J∆x is736

[J∆x]i =
∑
j

∂si
∂xj

∆xj = dsi. (213)

Assume J∆x = 0. This would imply a change in x ∈ X results in no change in s (ds = 0),737

contradicting the fact that s is injective. Therefore, we must conclude the claim that J∆x ̸= 0.738

Lemma 24. Let J be the Jacobian of the softmax operator. Then ||J ||∞ ≤ 2 and ||J⊤||∞ ≤ 2.739

Proof. Let Si represent the ith entry of S = softmax(z) for any z ∈ Rm. Then the 1-norm of row i740

is upper bounded as741

DjSi = Si(δij − Sj) (214)

=⇒
∑
j

|DjSi| =
∑
j

|Si(δij − Sj)| (215)

≤
∑
j

|δijSi|+ |SiSj | (216)

= Si +
∑
j

SiSj (217)

= Si + Si
∑
j

Sj (218)

= 2Si (219)
≤ 2 ∀i. (220)

Also, the 1-norm of row j is upper bounded similarly as742

(221)∑
i

|DjSi| =
∑
i

|Si(δij − Sj)| (222)

≤
∑
i

|δijSi|+ |SiSj | (223)

= Sj +
∑
i

SiSj (224)

= Si + Sj
∑
i

Si (225)

= 2Sj (226)
≤ 2 ∀j. (227)

The∞-norm of a matrix is the maximum 1-norm of any row. Therefore, ||J ||∞ and ||J⊤||∞ are both743

upper bounded by 2.744

Lemma 25. Let J = J(s(x)) be the Jacobian of any composition of transformations s = st ◦ . . . s1745

where st(z) = [zi/
∑
j zj ]i. Then J∆x lies in the tangent space of the simplex.746

Proof. We aim to show 1⊤J∆x = 0 for any ∆x and x. By chain rule, the Jacobian of s is747

J = J(s) =
∏t′=1
t′=t J(s

′
t). Therefore, 1⊤J∆x = 1⊤(

∏t′=1
t′=t J(s

′
t))∆x. Consider the first product:748

1⊤J(st) = 0 (228)

by Lemma 27. Therefore 1⊤J∆x = 1⊤J(st)(
∏t′=1
t′=t−1 J(s

′
t))∆x = 0⊤(

∏t′=1
t′=t−1 J(s

′
t))∆x = 0.749

This implies J∆x is orthogonal to 1 for any x ∈ X and ∆x, therefore J∆x lies in the tangent space750

of the simplex for any x ∈ X and ∆x.751

For spherical coordinates, s(x) = n(l(c(x))) where c(x) = π/2x, l(ψ) maps angles to the unit752

sphere, and n(z) = [zi/
∑
j zj ]i.753
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Definition 1. Define l(ψ) as the transformation to the unit-sphere using spherical coordinates:754

l1(ψ) = cos(ψ1) (229)
l2(ψ) = sin(ψ1) cos(ψ2) (230)
l3(ψ) = sin(ψ1) sin(ψ2) cos(ψ3) (231)

... =
... (232)

lm−1(ψ) = sin(ψ1) sin(ψ2) . . . cos(ψm−1) (233)
lm(ψ) = sin(ψ1) sin(ψ2) . . . sin(ψm−1). (234)

Lemma 26. Let J be the Jacobian of the transformation to the unit-sphere using spherical coordinates,755

i.e. z = l(ψ) where ||l||2 = 1 and ψi ∈ [0, π2 ] represents an angle for each i. Then ||J ||F ≤
√
m.756

Proof. The Jacobian of the transformation is757

J(l) =


− sin(ψ1) 0 · · · 0

cos(ψ1) cos(ψ2) − sin(ψ1) sin(ψ2) · · · 0
...

...
. . .

...
cos(ψ1) sin(ψ2) . . . cos(ψm−1) · · · · · · − sin(ψ1) . . . sin(ψm−2) sin(ψm−1)
cos(ψ1) sin(ψ2) . . . sin(ψm−1) · · · · · · sin(ψ1) . . . sin(ψm−2) cos(ψm−1)


(235)

and it square is758

J(l) =


t1 0 · · · 0

cos(ψ1)
2 cos(ψ2)

2 sin(ψ1)
2t2 · · · 0

...
...

. . .
...

cos(ψ1)
2 sin(ψ2)

2 . . . cos(ψm−1)
2 · · · · · · sin(ψ1)

2 . . . sin(ψm−2)
2tm−1

cos(ψ1)
2 sin(ψ2)

2 . . . sin(ψm−1)
2 · · · · · · sin(ψ1)

2 . . . sin(ψm−2)
2tm


(236)

where759

δim = 1 if i = m, 0 else (237)

ti = δim cos2(ψi−1) + (1− δim) sin2(ψi) ≤ 1. (238)

To compute the Frobenius norm, we will need the sum of the squares of all entries. We will consider760

the sum of each row individually using the following auxiliary variable Ri,k≤i where
∑
j J

2
ij = Ri,1761

and apply a recursive inequality.762

(239)

Ri,k≤i =

i−1∑
k′=k

cos2(ψk′)
[ i−1∏
l=k,l ̸=k′

sin2(ψl)
]
cos2(ψi) + ti

i−1∏
l=k

sin2(ψl) (240)

= cos2(ψk)
[ i−1∏
l=k+1

sin2(ψl)
]
cos2(ψi)︸ ︷︷ ︸

≤1

(241)

+ sin2(ψk)

i−1∑
k′=k+1

cos2(ψk′)
[ i−1∏
l=k+1,l ̸=k′

sin2(ψl)
]
cos2(ψi) (242)

+ sin2(ψk)ti

i−1∏
l=k+1

sin2(ψl) (243)

≤ cos2(ψk) (244)

+ sin2(ψk)
( i−1∑
k′=k+1

cos2(ψk′)
[ i−1∏
l=k+1,l ̸=k′

sin2(ψl)
]
cos2(ψi) + ti

i−1∏
l=k+1

sin2(ψl)
)

(245)

= cos2(ψk) + sin2(ψk)Ri,k+1. (246)
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Note then that Ri,k+1 ≤ 1 =⇒ Ri,k ≤ 1. We know Ri,i = ti ≤ 1, therefore, Ri,1 ≤ 1 by applying763

the inequality recursively. Finally,
∑
j J

2
ij = Ri,1 ≤ 1 implies the claim ||J ||2F =

∑
iRi,1 ≤ m.764

Lemma 27. Let J be the Jacobian of n(z) = z/Z where Z =
∑
k zk. Then 1⊤J = 0⊤.765

Proof. The ijth entry of the Jacobian of n(z) is766

J(n)ij =
1

Z2
(−zi + δijZ). (247)

Therefore [1⊤J ]j =
∑
i J(n)ij =

1
Z2 (−Z + Z) = 0 where z is a point on the unit-sphere in the767

positive orthant.768

I A2: Bounded Diameters and Well-shaped Cells769

We assume the feasible set is a unit-hypercube of dimensionality d where cells are evenly split along770

the longest edge to give b new partitions and xh,i represents the center of each cell.771

There exists a decreasing sequence w(h) > 0, such that for any depth h ≥ 0 and for any cell Xh,i of772

depth h, we have supx∈Xh,i
ℓ(xh,i, x) ≤ w(h). Moreover, there exists ν > 0 such that for any depth773

h ≥ 0, any cell Xh,i contains an ℓ-ball of radius νw(h) centered at xh,i.774

ℓ(x, y) c γ ν

ℓ(x, y) = ||x− y||α2 dα/2
(
b
2

)α
b−α/d d−α/2b−2α

ℓ(x, y) = ||x− y||α∞
(
b
2

)α
b−α/d b−2α

Table 3: Bounding Constants: supx∈Xh,i
ℓ(xh,i, x) ≤ w(h) = cγh.

I.1 L2-Norm775

Lemma 28 (L2-Norm Bounding Ball). Let ℓ(x, y) = ||x − y||α2 . Then supx∈Xh,i
ℓ(xh,i, x) ≤776

w2(h) = cγh where c =
(
db2

4

)α/2
and γ = b−α/d.777
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Proof.

w(0) =
[ d∑
i=1

(1/2)2
]α/2

=
(d
4

)α/2
(248)

w(1) =
[
(1/b · 1/2)2 +

d∑
i=2

(1/2)2
]α/2

= [(1/b2)(1/4) + (d− 1)(1/4)]α/2 (249)

=
(d− 1 + 1/b2

4

)α/2
(250)

w(d) =
[ d∑
i=1

(1/b · 1/2)2
]α/2

=
( d

4 · b2
)α/2

(251)

w(h) =
[
r(1/b)2(q+1)(1/2)2 +

d∑
i=r

(1/b)2q(1/2)2
]α/2

(252)

=
[
(1/b)2q(1/2)2

(
r(1/b)2 + (d− r)

]α/2
(253)

=
[
(1/b2)q(1/4)

(
d− r(1− 1

b2
)
)]α/2

(254)

≤
[
(1/b2)q(1/4)d

]α/2
(255)

≤
[
(1/b2)h/d−1(1/4)d

]α/2
(256)

=
[
(1/b2)h/d(b2/4)d

]α/2
(257)

=
(db2

4

)α/2
(1/b)

α
d h (258)

= cγh (259)

where q, r = divmod(h, d) =⇒ q ≥ h/d− 1, c =
(
db2

4

)α/2
, and γ = (1/b)α/d = b−α/d.778

Lemma 29 (L2-Norm Inner Ball). Let ℓ(x, y) = ||x − y||α2 . Any cell Xh,i contains an ℓ-ball of779

radius νw2(h) where ν = (db4)−α/2.780

Proof. Any cell Xh,i contains an ℓ-ball of radius equal to its shortest axis:781

rmin =
[
(1/4)(1/b2)⌈h/d⌉

]α/2
(260)

≥
[
(1/4)(1/b2)h/d+1

]α/2
(261)

=
( 1

b2 · 4
)α/2

(1/b)
α
d h (262)

= w(h) ·
( 1

db4
)α/2

. (263)

782

I.2 L∞-Norm783

Lemma 30 (L∞-Norm Bounding Ball). Let ℓ(x, y) = ||x − y||α∞. Then supx∈Xh,i
ℓ(xh,i, x) ≤784

w∞(h) = cγh where c =
(
b
2

)α
and γ = b−α/d.785

Proof. Any cell Xh,i is contained by an ℓ-ball of radius equal to its longest axis:786

rmax =
[
(1/4)(1/b2)⌊h/d⌋

]α/2
(264)

≤
[
(1/4)(1/b2)h/d−1

]α/2
(265)

=
(b2
4

)α/2
(1/b)

α
d h (266)

= cγh (267)
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where c =
(
b2

4

)α/2
, and γ = (1/b)α/d = b−α/d.787

Lemma 31 (L∞-Norm Inner Ball). Let ℓ(x, y) = ||x − y||α∞. Any cell Xh,i contains an ℓ-ball of788

radius νw∞(h) where ν = b−2α.789

Proof. Any cell Xh,i contains an ℓ-ball of radius equal to its shortest axis:790

rmin =
[
(1/4)(1/b2)⌈h/d⌉

]α/2
(268)

≥
[
(1/4)(1/b2)h/d+1

]α/2
(269)

=
( 1

b2 · 4
)α/2

(1/b)
α
d h (270)

= w(h) ·
( 1

b4
)α/2

. (271)

791

I.3 Near Optimality Dimension792

This is written in terms of a maximizing f .793

Assumption 1. Locally around each interior x∗, −f(x) is lower bounded by −f(x∗) + σ−||x −794

x∗||αhi and upper bounded by −f(x∗) + ℓ(x, x∗) where ℓ(x, x∗) = σ+||x− x∗||αlo with αlo ≤ αhi795

and σ− ≤ σ+ if αlo = αhi. In other words, for all f(x) ≥ f(x∗)− η:796

f(x∗)− f(x) ≤ σ+||x− x∗||αlo (272)
f(x∗)− f(x) ≥ σ−||x− x∗||αhi (273)

where we have left the precise norm unspecified for generality.797

Definition 2. Xϵ
def
= {x ∈ X |f(x) ≥ f(x∗)− ϵ}798

Definition 3. X lowerϵ
def
= {x ∈ X |f(x∗)− σ−||x− x∗||αhi ≥ f(x∗)− ϵ}799

Corollary 4. Xϵ ⊆ X lowerϵ .800

Proof. By Assumption 1, f(x∗)− σ−||x− x∗||αhi ≥ f(x). Therefore, any x ∈ X that satisfies the801

requirement for an element of Xϵ, f(x) ≥ f(x∗)− ϵ, will also satisfy the requirement for an element802

of X lowerϵ .803

Definition 4. The ψ-near optimality dimension is the smallest d′ > 0 such that there exists C > 0804

such that for any ϵ > 0, the maximum number of disjoint ℓ-balls of radius ψϵ and center in Xϵ is less805

than Cϵ−d
′
.806

Theorem 2. The ψ-near optimality dimension of f : x ∈ [0, 1]d → [−1, 1] under ℓ is d′ =807

d(αhi−αlo

αloαhi
) with constant808

C = max
{
1, S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}( σ+

ψσ
αlo/αhi

−

)d/αlo

. (274)

Proof. First, let us define rη =
(
η
σ−

)1/αhi

as in equation (285) which implies η = σ−r
αhi
η . Then809

apply Lemmas 32 (Nϵ≤η ≤ Cϵ≤ηϵ−d
′
) and 34 (Nϵ≥η ≤ Cϵ≥η) which bound the number of ℓ-balls810

required to pack Xϵ when ϵ is less than and greater than η respectively:811

Cϵ≤η =
( σ+

ψσ
αlo/αhi

−

)d/αlo

(275)

d′ = d(
αhi − αlo
αloαhi

) (276)
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and812

Cϵ≥η = S−1
d

(σ+
ψη

)d/αlo

(277)

= S−1
d η−d/αloσ

d/αhi

−

( σ+

ψσ
αlo/αhi

−

)d/αlo

(278)

= S−1
d η−d/αloσ

d/αhi

− Cϵ≤η (279)

= S−1
d r−dαhi/αlo

η σ
−d/αlo

− σ
d/αhi

− Cϵ≤η (280)

= S−1
d r

−dαhi
αlo

η σ
−d

(
αhi−αlo
αloαhi

)
− Cϵ≤η (281)

= S−1
d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d
Cϵ≤η (282)

where Sd is the volume constant for a d-sphere under the given norm. S−1
d has been upper bounded813

for the 2-norm in Lemma 33. For the∞-norm, S−1
d = 2−d. We have written Cϵ≥η in terms of Cϵ≤η814

to clarify which is larger.815

Therefore,816

C = max
{
1, S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}
Cϵ≤η (283)

= max
{
1, S−1

d

(
r

αhi
αlo
η σ

(
αhi−αlo
αloαhi

)
−

)−d}( σ+

ψσ
αlo/αhi

−

)d/αlo

. (284)

Intuitively, if the radius for which the polynomial bounds hold (rη) is large and the minimum817

curvature constant σ− is also large, then the bound Cϵ≤η holds for large deviations from optimality η.818

The number of η-radius ℓ-balls required to cover the remaining space, Cϵ≥η, will be comparatively819

small.820

Corollary 5 (Zooming Dimension). The zooming dimension of f : x ∈ [0, 1]d → [−1, 1] under821

ℓ(x, y) = ||x− y||∞ is dz = d(αhi−αlo

αloαhi
).822

Proof. Mapping the definition of zooming dimension onto ψ-near optimality, we find ψϵ = r/2 and823

ϵ = 16r. Then we can infer ψ = 1/32. This result only effects the constant Cz , not the zooming824

dimension.825

If ϵ = 8(1 +
√
c1/c2)rm, then ψ = 1

16(1+
√
c1/c2)

.826

Lemma 32 (Nϵ≤η ≤ Cϵ≤ηϵ−d
′
). The number of disjoint ℓ-balls that can pack into a set Xϵ≤η , Nϵ≤η ,827

is upper bounded by Cϵ≤ηϵ−d
′

where Cϵ≤η =
(

σ+

ψσ
αlo/αhi
−

)d/αlo

and d′ = d(αhi−αlo

αloαhi
) and Sd is the828

volume constant for a d-sphere under the given norm || · ||.829

Proof. The number of disjoint ℓ-balls of radius ψϵ and center in Xϵ≤η can be upper bounded as830

follows.831

Rewrite X lowerϵ by rearranging terms as832

X lowerϵ = {x ∈ X | ||x− x∗|| ≤
( ϵ

σ−

)1/αhi def
= rϵ} (285)

and recall that from Corollary 4 that Xϵ ⊆ X lowerϵ . Furthermore, an ℓ-ball of radius ψϵ implies833

σ+||x− y||αlo ≤ ψϵ =⇒ ||x− y|| ≤
(ψϵ
σ+

)1/αlo def
= rℓ. (286)
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The number of disjoint ℓ-balls that can pack into a set Xϵ, Nϵ≤η , is upper bounded by the ratio of the834

volumes of the two sets:835

Nϵ≤η ≤
V ol(Xϵ)
V ol(Bℓ)

(287)

≤ V ol(X lowerϵ )

V ol(Bℓ)
(288)

=
Sdr

d
ϵ

Sdrdℓ
(289)

≤

(
ϵ
σ−

)d/αhi

(
ψϵ
σ+

)d/αlo
(290)

=
(σ1/αlo

+ ψ−1/αlo

σ
1/αhi

−

)d
ϵd(1/αhi−1/αlo) (291)

=
( σ+

ψσ
αlo/αhi

−

)d/αlo

ϵ
−d(αhi−αlo

αloαhi
) (292)

= Cϵ≤ηϵ
−d′ (293)

where Cϵ≤η =
(

σ+

ψσ
αlo/αhi
−

)d/αlo

and d′ = d(αhi−αlo

αloαhi
) and Sd is the volume constant for a d-sphere836

under the given norm || · ||, e.g., Sd = 2d for || · ||∞.837

Corollary 6. If αlo = αhi = α,838

Nϵ≤η ≤
( κ
ψ

)d/α
. (294)

In other words, Nϵ≤η ≤ Cϵ≤ηϵ−d
′

where Cϵ≤η =
(
σ+

ψσ−

)d/α
and d′ = 0.839

Corollary 7. If Assumption 1 is given in terms of the 2-norm, these can be translated to bounds in840

terms of the∞-norm resulting in the same ψ-near optimality dimension but incurring an additional841

exponential factor in the constant C(∞)
ϵ≤η ← C

(2)
ϵ≤ηd

d/2.842

Proof. Recall that || · ||∞ ≤ || · ||2 ≤
√
d|| · ||∞, therefore843

f(x∗)− f(x) ≤ σ+2||x− x∗||αlo
2 ≤ σ+∞||x− x∗||αlo

∞ (295)
f(x∗)− f(x) ≥ σ−2||x− x∗||αhi

2 ≥ σ−∞||x− x∗||αhi
∞ (296)

where σ+∞ = σ+2d
αlo/2 and σ−∞ = σ−2. Then844

C
(∞)
ϵ≤η =

(σ+2d
αlo/2

ψσ
αlo/αhi

−2

)d/αlo

=
( σ+2

ψσ
αlo/αhi

−2

)d/αlo

dd/2 = C
(2)
ϵ≤ηd

d/2. (297)

845

Recall, these results apply when f(x) ≥ f(x∗)−η, i.e., when ϵ ≤ η. Otherwise, we can upper bound846

the number of ℓ-balls by considering the entire set X which has volume 1. First, we will bound the847

constant associated with the volume of a d-sphere.848

Lemma 33. The volume of a d-sphere with radius r and d even is given by Sdrd where S−1
d ≤849

√
2πd

(
d

2πe

)d/2
.850

Proof. First, we recall Stirling’s bounds on the factorial:
√
2πn(ne )

ne
1

12n+1 < n! <
√
2πn(ne )

ne
1

12n .851

This will be useful for bounding the Gamma function: Γ(d) = (d− 1)! for even d.852
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Given d is even, we start with the exact formula for Sd:853

S−1
d =

Γ(d/2 + 1)

πd/2
(298)

=
(d/2)!

πd/2
(299)

<

√
2π(d/2)(d/2e )d/2e

1
12(d/2)

πd/2
(300)

=
π1/2d1/2( d2e )

d/2e
1
6d

πd/2
(301)

=
π1/2d(d+1)/2e

1
6d

(2πe)d/2
(302)

≤
√
2πd

( d

2πe

)d/2
. (303)

854

Lemma 34 (Nϵ≥η ≤ Cϵ≥η). The number of disjoint ℓ-balls that can pack into a set Xϵ≥η , Nϵ≥η , is855

upper bounded by Cϵ≥η where Cϵ≥η = S−1
d

(
σ+

ψη

)d/αlo

and Sd is the volume constant for a d-sphere856

under a given norm.857

Proof. We can upper bound the number of ℓ-balls needed to pack the entire space as follows:858

Nϵ≥η ≤
V ol(X )
V ol(Bℓ)

(304)

=
1

Sdrdℓ
(305)

≤ 1

Sd

(
ψη
σ+

)d/αlo
(306)

= S−1
d

(σ+
ψη

)d/αlo

(307)

= Cϵ≥η (308)

where rl was defined in equation (286). S−1
d has been upper bounded for the 2-norm in Lemma 33.859

For the∞-norm, S−1
d = 2−d.860

Corollary 8. If Assumption 1 is given in terms of the 2-norm, these can be translated to bounds in861

terms of the∞-norm resulting in the same ψ-near optimality dimension but incurring an additional862

exponential factor in the constant C(∞)
ϵ≥η =

(
σ
1/αhi
+2

2η1/αlo

)d
C

(∞)
ϵ≤η =

(
σ
1/αhi
+2

2η1/αlo

)d
C

(2)
ϵ≤ηd

d/2.863

Proof.

C
(∞)
ϵ≥η = 2−d

(σ+2

ψη

)d/αlo

dd/2 (309)

= 2−dη−d/αloσ
d/αhi

−2

( σ+2

ψσ
αlo/αhi

−2

)d/αlo

dd/2 (310)

= 2−dη−d/αloσ
d/αhi

−2 C
(∞)
ϵ≤η (311)

=
( σ1/αhi

+2

2η1/αlo

)d
C

(∞)
ϵ≤η . (312)

864
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If we further assume α = αlo = αhi = 2, then we can bound the number of ℓ-balls required with a865

constant, independent of ϵ, as866

C = max{Nϵ≤η, Nϵ≥η} (313)

= max
{( κ

ψ

)d/2
,
√
2πd

(dσmax
2πeψη

)d/2}
(314)

= βd/2ψ−d/2dξ/2(d+1) (315)

where β = κ, ξ = 0 for Nϵ≤η and β = σmax(2π)
1/d

2πeη < 2σmax

πeη = 2κ
πer2η

< κ
(2rη)2

for d ≥ 2, ξ = 1 for867

Nϵ≥η . Nϵ≥η dominates for large d. The cross over occurs at868 ( κ
ψ

)d/2
=
√
2πd

(dσmax
2πeψη

)d/2
(316)

=⇒ κ

ψ
= (2πd)1/d

(dσmax
2πeψη

)
(317)

=⇒ r2η =
η

σ−
= (2πd)1/d

( d

2πe

)
= z(d). (318)

where rη was defined in equation (285). As d grows and z(d) exceeds r2η , Nϵ≥η begins to dominate,869

therefore we will upper bound C as870

C ≤
( κ

ψ(2rη)2

)d/2
d

1
2 (d+1). (319)

Locality C

(∗) r2η ≤ z(d) Nϵ≥η ≤
(

κ
ψ(2rη)2

)d/2
d

1
2 (d+1) =

(
3κb2

(2rη)2

)d/2
dd+

1
2

r2η > z(d) Nϵ≤η ≤
(
κ
ψ

)d/2
=

(
3κb2

)d/2
dd/2

Table 4: Bounding Constants for ℓ(x, y) = ||x − y||22, ψ = ν/3 = (3b2d)−1 and z(d) =

(2πd)1/d
(

d
2πe

)
with smoothness radius rη and ψ = ν/3. (∗) indicates the case that is more likely

for difficult problems.

For convenience, we repeat the other relevant constants in Table 5.

ℓ(x, y) c γ ν

ℓ(x, y) = ||x− y||22 d
(
b
2

)2
b−2/d d−1b−2

Table 5: Bounding Constants

871

J D-BLiN872

The regret bound for Doubling BLiN [14] was originally proved assuming a standard normal distribu-873

tion, however, the authors state their proof can be easily adapted to any sub-Gaussian distribution,874

which includes bounded random variables. This matches our setting with bounded payoffs, so we875

repeat their analysis here for that setting.876

Definition 5 (Global Arm Accuracy). E def
=

{
|µ(x) − µ̂m(C)| ≤ rm +

√
c1

lnT
nm

, ∀ 1 ≤ m ≤877

Bstop − 1, ∀C ∈ Am, ∀x ∈ C
}

.878

Define: nm = c2
lnT
r2m

=⇒ rm =
√
c2

lnT
nm

.879
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Definition 6 (Elimination Rule). Eliminate C ∈ Am if µ̂max
m − µ̂m(C) ≥ 2(1 +

√
c1/c2)rm =880

2(
√
c2 +

√
c1)

√
lnT
nm

where µ̂max
m

def
= maxC∈Am µ̂m(C).881

Lemma 35. Pr[E ] ≥ 1− 2T−2(c1/c
2−1).882

Proof. Assume yC,i ∈ [a, b] with c = b − a and µ̂(C) = 1
nm

∑nm

i=1 yC,i. Applying a Hoeffding883

inequality gives884

Pr
[
|µ̂(C)− E[µ̂(C)]| ≥

√
c1

lnT

nm

]
≤ 2e−2c1 lnT/c2 (320)

= 2(elnT )−2c1/c
2

(321)

= 2T−2c1/c
2

∀C. (322)

By Lipschitzness of µ we also have885

|E[µ̂(C)]− µ(x)| ≤ rm, ∀x ∈ C. (323)

Then consider886

sup
x∈C
|µ(x)− µ̂(C)| = sup

x∈C
|µ(x)− E[µ̂(C)] + E[µ̂(C)]− µ̂(C)| (324)

≤ sup
x∈C

(
|µ(x)− E[µ̂(C)]|+ |E[µ̂(C)]− µ̂(C)|

)
(325)

= sup
x∈C
|µ(x)− E[µ̂(C)]|+ |E[µ̂(C)]− µ̂(C)| (326)

≤
√
c1

lnT

nm
+ rm (327)

with probability 1− 2T−2c1/c
2

. The first inequality follows by triangle inequality and the second887

follows from equation (323) and considering the complement of equation (322).888

The complement of this result occurs with probability889

Pr
[
sup
x∈C
|µ(x)− µ̂(C)| ≥ rm +

√
c1

lnT

nm

]
≤ 2T−2c1/c

2

. (328)

At least 1 arm is played in each cube C ∈ Am for 1 ≤ m ≤ Bstop− 1, therefore, |Am| ≤ T must be890

true given the exit condition of the algorithm. In addition, assume Bstop ≤ T (Bstop will be defined891

such that this is true). Then a union bound over all T 2 events gives892

Pr
[
∃m ∈ [1, Bstop − 1], C ∈ Am s.t. sup

x∈C
|µ(x)− µ̂(C)| ≥ rm +

√
c1

lnT

nm

]
(329)

≤
Bstop−1∑
m=1

∑
C∈Am

Pr
[
sup
x∈C
|µ(x)− µ̂(C)| ≥ rm +

√
c1

lnT

nm

]
(330)

≤
Bstop−1∑
m=1

∑
C∈Am

2T−2c1/c
2

(331)

≤ 2T−2c1/c
2

T 2. (332)

Taking the complement of this event and noting that supx∈C |µ(x)− µ̂(C)| ≤ rm +
√
c1

lnT
nm

=⇒893

|µ(x)− µ̂(C)| ≤ rm +
√
c1

lnT
nm
∀x ∈ C gives the desired result.894

Lemma 36 (Optimal Arm Survives). Under event E , the optimal arm x∗ = argmaxµ(x) is not895

eliminated after the first Bstop − 1 batches.896
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Proof. Let C∗
m denote the cube containing x∗ in Am. Under event E , for any cube C ∈ Am and897

x ∈ C, the following relation shows that C∗
m avoids the elimination rule in round m:898

µ̂(C)− µ̂(C∗
m) ≤

(
µ(x) + rm +

√
c1

lnT

nm

)
+

(
− µ(x∗) + rm +

√
c1

lnT

nm

)
(333)

= (µ(x)− µ(x∗))︸ ︷︷ ︸
≤0

+2rm + 2

√
c1

lnT

nm
(334)

≤ 2

√
c2

lnT

nm
+ 2

√
c1

lnT

nm
(335)

= 2(
√
c1 +

√
c2)

√
lnT

nm
(336)

where the first inequality follows from applying Lemma 35 to upper bound µ̂(C) and µ̂(C∗
m) indi-899

vidually. The remaining steps use the optimality of x∗, the definition of rm, and the elimination900

rule.901

Lemma 37. Under event E , for any 1 ≤ m ≤ Bstop, any C ∈ Am and any x ∈ C, ∆x satisfies902

∆x ≤ 4(1 +
√
c1/c2)rm−1 (337)

Proof. For m = 1, recall that rm is the side length of a cube C ∈ Am, therefore, ∆x ≤ rm−1 ≤903

4(1 +
√
c1/c2)rm−1 holds directly from the Lipschitzness of µ.904

For m > 1, let C∗
m−1 ∈ Am−1 be the cube containing x∗. From Lemma 36, this cube has not been905

eliminated under event E . For any cube C ∈ Am and x ∈ C, it is clear that x is also in the parent of906

C, denoted Cpar (x ∈ C ⊂ Cpar). Then for any x ∈ C, it holds that907

∆x = µ(x∗)− µ(x) ≤
(
µ̂m−1(C

∗
m−1) + rm−1 +

√
c1

lnT

nm−1

)
+

(
− µ̂m−1(Cpar) + rm−1 +

√
c1

lnT

nm−1

)
(338)

= (µ̂m−1(C
∗
m−1)− µ̂m−1(Cpar)) + 2(

√
c1 +

√
c2)

√
lnT

nm−1
(339)

≤ (µ̂max
m−1 − µ̂m−1(Cpar)) + 2(

√
c1 +

√
c2)

√
lnT

nm−1
(340)

≤ 2(
√
c1 +

√
c2)

√
lnT

nm−1
+ 2(
√
c1 +

√
c2)

√
lnT

nm−1
(341)

= 4(
√
c1 +

√
c2)

√
lnT

nm−1
(342)

= 4(1 +
√
c1/c2)rm−1 (343)

where we have applied Lemma 35 similarly as in Lemma 36 and also used the definition of rm−1.908

The last two inequalities use the fact that µ̂m−1(C
∗
m−1) ≤ µ̂max

m−1 and Cpar was not eliminated.909

Theorem 3. With probability exceeding 1− 2T−2(c1/c
2−1) , the T -step total regret R(T ) of BLiN910

with Doubling Edge-length Sequence (D-BLiN) [14] satisfies911

R(T ) ≤ 8(1 +
√
c1/c2)(2c2 + 1) ln(T )

1
dz+2T

dz+1
dz+2 (344)

where dz is the zooming dimension of the problem instance. In addition, D-BLiN only needs no more912

than B∗ = log 2(T )−log 2(ln(T ))
dz+2 + 2 rounds of communications to achieve this regret rate.913
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Proof. Since rm = rm−1

2 =⇒ rm−1 = 2rm for the Doubling Edge-length Sequence, Lemma 37914

implies that every cube C ∈ Am is a subset of S(8(1 +
√
c1/c2)rm). Thus from the definition of915

zooming number (Corollary 5 with appropriate condition), we have916

|Am| ≤ Nrm ≤ Czr−dzm . (345)

Fix any positive number B. Also by Lemma 37, we know that any arm played after batch B incurs917

a regret bounded by 8(1 +
√
c1/c2)rB , since the cubes played after batch B have edge length no918

larger than rB . Then the total regret that occurs after batch B is bounded by 8(1 +
√
c1/c2)rBT919

(where T is an upper bound on the number of arms).920

Thus the regret can be bounded as921

R(T ) ≤
B∑

m=1

∑
C∈Am

nm∑
i=1

∆xC,i
+ 8(1 +

√
c1/c2)rBT (346)

where the first term bounds the regret in the first B batches of D-BLiN, and the second term bounds922

the regret after the first B batches. If the algorithm stops at batch B̃ < B , we define Am = for any923

B̃ < m ≤ B and inequality equation (346) still holds.924

By Lemma 37, we have ∆xC,i
≤ 8(1 +

√
c1/c2)rm for all C ∈ Am. We can thus bound equa-925

tion (346) by926

R(T ) ≤
B∑

m=1

|Am| · nm · 8(1 +
√
c1/c2)rm + 8(1 +

√
c1/c2)rBT (347)

≤
B∑

m=1

Nrm · nm · 8(1 +
√
c1/c2)rm + 8(1 +

√
c1/c2)rBT (348)

=

B∑
m=1

Nrm · c2
lnT

r2m
· 8(1 +

√
c1/c2)rm + 8(1 +

√
c1/c2)rBT (349)

=

B∑
m=1

Nrm ·
lnT

rm
· 8c2(1 +

√
c1/c2) + 8(1 +

√
c1/c2)rBT (350)

where equation (348) uses equation (345), and equation (349) uses equality nm = c2
lnT
r2m

. Since927

rm = 2−m+1 and Nrm ≤ r−dzm ≤ 2(m−1)dz , we have928

R(T ) ≤
B∑

m=1

2(m−1)dz · lnT

2−m+1
· 8c2(1 +

√
c1/c2) + 8(1 +

√
c1/c2)2

−B+1T (351)

= 8(1 +
√
c1/c2)

[
c2 lnT

B∑
m=1

2(m−1)(dz+1) + 2−B+1T
]
. (352)
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Continuing we find929

R(T ) ≤ 8(1 +
√
c1/c2)

[
c2 lnT

B∑
m=1

2(m−1)(dz+1) + 2−B+1T
]

(353)

= 8(1 +
√
c1/c2)

[
c2 lnT

B∑
m=1

(
2dz+1

)m−1
+ 2−B+1T

]
(354)

= 8(1 +
√
c1/c2)

[
c2 lnT

B−1∑
m=0

(
2dz+1

)m
+ 2−B+1T

]
(355)

= 8(1 +
√
c1/c2)

[
c2 lnT

(2B(dz+1) − 1

2dz+1 − 1

)
+ 2−B+1T

]
via geometric series (356)

≤ 8(1 +
√
c1/c2)

[
c2 lnT

( 2B(dz+1)

2dz+1 − 1

)
+ 2−B+1T

]
(357)

≤ 8(1 +
√
c1/c2)

[
c2 lnT

(
2 · 2

B(dz+1)

2dz+1

)
+ 2−B+1T

]
(358)

= 8(1 +
√
c1/c2)

[
2c22

(B−1)(dz+1) lnT + 2−(B−1)T
]
. (359)

This inequality holds for any positive B. By choosing B∗ = 1 +
log2(

T
lnT )

dz+2 , we have930

R(T ) ≤ 8(1 +
√
c1/c2)

[
2c2

( T

lnT

) (dz+1)
(dz+2)

lnT +
( lnT
T

) 1
(dz+2)

T
]

(360)

= 8(1 +
√
c1/c2)

[
2c2T

(dz+1)
(dz+2) lnT 1− (dz+1)

(dz+2) + T 1− 1
(dz+2) lnT

1
(dz+2)

]
(361)

= 8(1 +
√
c1/c2)

[
2c2T

(dz+1)
(dz+2) lnT

1
(dz+2) + T

(dz+1)
(dz+2) lnT

1
(dz+2)

]
(362)

= 8(1 +
√
c1/c2)(2c2 + 1)T

(dz+1)
(dz+2) lnT

1
(dz+2) . (363)

931

Corollary 9. Setting c1 = 2c2 and c2 =
(
c2

2

)1/3

simplifies Theorem 3 such that932

R(T ) ≤ 8(1 + (4c2)1/3)2T
(dz+1)
(dz+2) lnT

1
(dz+2) . (364)

with probability 1− 2T−2.933

Proof.934

K Experimental Setup and Details935

Here we provide further details on the experiments.936

K.1 Loss Visualization and Rank Test937

Figure 1 and claims made in Section 5 analyze several classical matrix games. We report the payoff938

matrices in standard row-player / column-player payoff form below. All games are then shifted and939

scaled so payoffs lie in [0, 1] (i.e., first by subtracting the minimum and then scaling by the max).940

RPS:941 
0/0 −1/1 1/− 1

1/− 1 0/0 −1/1
−1/1 1/− 1 0/0

 . (365)

43



Chicken:942 [
0/0 −1/1

1/− 1 −3/− 3

]
. (366)

Matching Pennies:943 [
1/− 1 −1/1
−1/1 1/− 1

]
. (367)

Modified-Shapleys:944 
1/− 0.5 0/1 0.5/0

0.5/0 1/− 0.5 0/1

0/1 0.5/0 1/− 0.5

 . (368)

Prisoner’s Dilemma:945 [
−1/− 1 −3/0
0/− 3 −2/− 2

]
. (369)

K.1.1 NashConv is Biased946

We use Chicken to demonstrate the effect of sampled play on the bias of the popular NashConv loss.947

NashConv is unable to capture the interior Nash equilibrium because of its high bias. In contrast, our948

proposed loss Lτ is guaranteed to capture all equilibria at low temperature τ .

Figure 5: Effect of Sampled Play on a Biased Loss. The first row displays the expected upper bound
guaranteed by our proposed loss Lτ (also displayed in Figure 1). The second row displays the
expectation of NashConv under sampled play, i.e.,

∑
k ϵk where ϵk = Ea−k∼x−k

[maxak u
τ
k(a)]−

Ea∼x[u
τ
k(a)]. To be consistent, we add the offset nτW (1/e) +

∑
k ϵk to NashConv per Lemma 14,

which relates the exploitability at positive temperature to that at zero temperature. The resulting loss
surface clearly shows NashConv fails to recognize the interior Nash equilibrium due to its inherent
bias. NashConv succeeds in finding pure equilibria because sampling from a pure joint equilibrium is
a deterministic process (no noise means no bias).

949

K.2 Saddle Point Analysis950

To generate Figure 2, we follow a procedure similar to the study of MNIST in [12] (Section 3 of951

Supp.). Their recommended procedure searches for critical points in two ways. The first repeats a952

randomized, iterative optimization process 20 times. They then sample one these 20 trials at random,953

select a random point along the descent trajectory, and search for a critical point (using Newton’s954

method) nearby. They repeat this sampling process 100 times. The second approach randomly selects955
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a feasible point in the decision set and searches for a critical point nearby (again using Newton’s956

method). They also perform this 100 times.957

Our protocol differs from theirs slightly in a few respects. One, we use SGD, rather than the saddle-958

free Newton algorithm to trace out an initial descent trajectory. Two, we do not add noise to strategies959

along the descent trajectory prior to looking for critical points. Lastly, we use different experimental960

hyperparameters. We run SGD for 1000 iterations rather than 20 epochs and rerun SGD 100 times961

rather than 20. We sample 1000 points for each of the two approaches for finding critical points.962

K.3 SGD on Classical Games963

The games examined in Figure 3 were all taken from [15]. Each is available via open source964

implementations in OpenSpiel [22] or GAMUT [33].965

We compare against several other baselines, replicating the experiments in [15]. RM indicates966

regret-matching and FTRL indicates follow-the-regularized-leader. These are, arguably, the two most967

popular scalable stochastic algorithms for approximating Nash equilibria. yQREauto is a stochastic968

algorithm developed in [15].969

For each of the experiments, we sweep over learning rates in log-space from 10−3 to 102 in increments970

of 1. We also consider whether to run SGD with the projected-gradient and whether to constrain971

iterates to the simplex via Euclidean projection or entropic mirror descent [6]. We then presented the972

results of the best performing hyperparameters. This was the same approach taken in [15].973

Saddle Points in Blotto To confirm the existence of saddle points, we computed the Hessian of974

L(x10k) for SGD (s = ∞), deflated the matrix by removing from its eigenvectors all directions975

orthogonal to the simplex, and then computed its top-(nm̄ − n) eigenvalues. We do this because976

there always exists a n-dimensional nullspace of the Hessian at zero temperature that lies outside the977

tangent space of the simplex, and we only care about curvature within the tangent space. Specificaly,978

at an equilibrium x, if we compute z⊤Hess(L)z where z is formed as a linear combination of the979

vectors {[x1, 0, . . . , 0]⊤, . . . , [0, . . . , xn]⊤, then each block B̃kl is identically zero at an equilibrium:980

B̃klxl =
√
ηk[I − 1

mk
11⊤]Hk

klxl =
√
ηkΠT∆(∇kxk

) = 0. By Lemma 17, this implies there is zero981

curvature of the loss in the direction z: z⊤Hess(L)z = 0.982

K.4 BLiN on Artificial Game983

To construct the 7-player, 2-action, symmetric, artifical game in Figure 4, we used the following984

coefficients (discovered by trial-and-error):985 [
0.09906873 0 0.23116037 0 0.62743528 0 0.19813746

0 0.33022909 0 0.03302291 0 0.62743528 0

]
.

(370)

The first row indicates the payoffs received when player i plays action 0 and the background986

population plays any of the possible joint actions (number of combinations with replacement). For987

example, the first column indicates the payoff when all background players play action 0. The second988

column indicates all background players play action 0 except for one which plays action 1, and so on.989

The last column indicates all background players play action 1. These 2n scalars uniquely define the990

payoffs of a symmetric game.991

Given that this game only has two actions, we represent a mixed strategy by a single scalar p ∈ [0, 1],992

i.e., the probability of the first action. Furthermore, this game is symmetric and we seek a symmetric993

equilibrium, so we can represent a full Nash equilibrium by this single scalar p. This reduces our994

search space from 7× 2 = 14 variables to 1 variable (and obviates any need for a map s from the995

unit hypercube to the simplex—see Lemma 24).996
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