
Appendix1

The following manuscript provides the supplementary materials of the main paper: Regularizing2

Neural Networks with Meta-Learning Generative Models.3

A Algorithm of Meta Generative Regularization4

Algorithm 1 Meta Generative Regularization
Require: Training dataset D, validation dataset Dval main model fθ , generator G, finder Fϕ, training batchsize

B, pseudo batchsize Bp, validation batchsize Bval, step size η and ξ, hyperparameter λ and λKL
Ensure: Trained main model fθ

1: while not converged do
2: {(xi, yi)}Bi=1 ∼ D
3: {zi}Bp

i=1 ∼ N (0, I)
4: // Updating ϕ for MPS
5: {(xival, y

i
val)}

Bval
i=1 ∼ D

6: {xip}
Bp

i=1 = {GΦ(Fϕ(z
i), yip)}

Bp

i=1

7: θ′ ← θ − η∇θ(
1
B
ℓ(fθ(x

i), yi) + λ
Bp
ℓPCR(x

i
p;ψ))

8: ϕ← ϕ− ξ∇ϕ(
1

Bval
ℓ(fθ′(xval), yval) + λKL(DKL(pϕ(z)∥p(z))))

9: // Updating θ with PCR
10: {xip}

Bp

i=1 = {GΦ(Fϕ(z
i), yip)}

Bp

i=1

11: θ ← θ − η∇θ(
1
B
ℓ(fθ(x

i), yi) + λ
Bp
ℓPCR(x

i
p;ψ))

12: end while

B Additional Experiments5

B.1 Evaluation of Gradient Approximation6

Here, we evaluate the gradient approximation by Eq. (9). As shown in Table 1, the 1st-order7

approximation by Eq. (9) well approximated the second-order gradients in speeding up over 10%8

with 0.08 of the accuracy drop.

Table 1: Performance comparison between MPS with 2nd-order gradients and 1st-order approximated
gradients (ResNet-18, Cars).

Method Top-1 Acc. (%) Wall Clock Time (hours)

2nd-Order 87.30±.39 6.55
1st-Order Approx. 87.22±.15 5.79
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B.2 Ablation study of Fϕ10

In Section 3.2, we introduce Fϕ for meta-optimized parameters and the residual architectures with11

MLP defined by Eq. (10). We performed an ablation study of MPS with respect to the meta-optimized12

parameters and the architectures of Fϕ. We compared MPS with a variant of MPS optimizing GΦ13

instead of Fϕ. We also attempted other architectures for Fϕ including Linear: Wϕ(z) + b, MLP:14

MLPϕ(z), and Residual+Shallow: z + tanh(Wϕ(z) + b). The results of these variations are shown15

in Table 2. We observed that MPS with GΦ caused failures of training fθ and degrades the accuracy.16

On the other hand, all variants of MPS with Fϕ succeeded in boosting the models without MPS.17

Thus, restricting the number of optimized parameters is important, and determining an optimal z with18

the finder Fϕ is effective on the optimization problems of MPS. For the variants of MPS with Fϕ,19

we observed that the residual architectures and regularization by DKL(pϕ(z)∥p(z)) contributed to20

the successes. Interestingly, MPS with Linear Fϕ outperformed MPS with MLP Fϕ, i.e., significantly21

transforming the input z ∼ p(z) by complex functions results in low accuracy. These results suggest22
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that better latent vectors in Z to train fθ can exist near the uniformly sampled input z. Thus, limiting23

the search range by tanh in the residual architectures can help in finding better latent vectors.24

Table 2: Ablation study of MPS (ResNet-18, Cars).1
Method Top-1 Acc. (%)

Without MPS (PCR) 86.32±.07

MPS 87.22±.15

MPS with GΦ 84.47±.05

MPS with Linear Fϕ 86.51±.09

MPS with MLP Fϕ 86.35±.13

MPS with Residual+Shallow Fϕ 86.88±.16

MPS w/o DKL(pϕ(z)∥p(z)) 86.92±.22

B.3 MGR with Diffusion Models25

We tested our method on EDM [1], a recent diffusion model. Due to the computation cost, we used a26

10% reduced CIFAR-10 as the dataset. We optimized Fϕ to search the first step noise of the diffusion27

process. Table 3 shows that our method with EDM improves Base Model. However, the overhead28

of incorporating diffusion models was significant; it takes more than ten times longer training than29

GANs. In future work, we will investigate lighter-weight methods using the diffusion model.30

Table 3: Performance studies on Diffusion Model (ResNet-18 on Cars)
Method Top-1 Acc. (%)

Base Model 86.49±.48

GDA (EDM) 85.80±.30

MGR 88.49±.12

B.4 Updating Fϕ without Meta-optimization31

MPS consists of meta-learning on validation losses requiring bi-level optimization, which is a32

relatively heavy computation. One can consider if Fϕ could be trained without meta-optimization.33

Here, we try alternative methods other than meta-learning to update Fϕ. Instead of meta-learning, we34

used a strategy of choosing hard examples via optimizing Fϕ. That is, we optimize Fϕ by maximizing35

the training cross-entropy (CE) loss and the PCR loss on synthetic samples. Note that, in both cases,36

we used the PCR loss for synthetic samples when training classifiers. Table 4 shows the results.37

Optimizing Fϕ with CE and PCR slightly improved the baselines but significantly underperformed38

our method (MGR). This result can justify using meta-optimizing Fϕ to generate useful samples for39

classifiers. Nevertheless, this idea could inspire a sampling method that does not require bi-level40

optimization in future work.41

Table 4: Performance comparison of updating strategies for Fϕ (ResNet-18 on Cars)
Method Top-1 Acc. (%)

Base Model 85.50±.10

PCR 86.36±.08

Optimizing Fϕ w/ CE 86.52±.21

Optimizing Fϕ w/ PCR 86.44±.68

MGR 87.22±.15
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