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Overview

Our goal:

Designing an efficient method for managing risk and safety constraints in zero-order
trajectory planning.

Previous methods (e.g. PETS [1], PILCO [2]) utilize uncertainties only indirectly by com-
puting expectations over costs.

Our contributions:

� A new architecture for separating uncertainties in probabilistic ensembles.

� Efficient use of epistemic and aleatoric uncertainties.

� An explicit use of uncertainties in the cost, allowing for trading off uncertainty-aware and
task-aware planning.

� A Simple but practical approach to probabilistic safety constraints.
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Probabilistic ensemble architecture for trajectory sampling and uncertainty separa-
tion, called PETSUS.

�Trajectory sampling is done as in PETS

�Uncertainty separation is achieved by an additional none-permuted forward path

We compute the aleatoric and epistemic uncertainty as follows:

Aleatoric uncertainty:

Expected entropy of the output distributions of the ensemble members.

Epistemic uncertainty:

Variance of Gaussian parameters among ensemble members.

We use model-predictive control with the learned models using the impoved CEM (iCEM)
trajectory optimizer [3].

Empirical Results

We minimize the following total cost in all of our experiments:

ctotal = ctask + wA · caleatoric − wE · cepistemic + wS · csafety constraints

Active Learning (wA = 0, wE > 0, wS = 0):
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� In the BridgeMaze environment, the epistemic bonus let RAZER seek states for which
no or only little data exits (right).

� PETS overfits to a particular solution (middle).

� Explicitly minimizing the epistemic uncertainty leads to better exploration (left).

Risk-Averse Planning (wA > 0, wE = 0, wS = 0):
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� With an increasing aleatoric penalty, RAZER avoids more and more risky paths in the
BridgeMaze environment (left).

� In the Noisy-FetchPickAndPlace environment, RAZER chooses the safe route along the
table surface to avoid dropping the box.

Probabilistic Safety Constrains (wA = 0, wE = 0, wS > 0):

0.01 0.95 PETS
Delta

0

20

40

60

80

100

120

Sa
fe

ty
 V

io
la

tio
ns

0.01 0.95 PETS
Delta

20

40

60

80

100

120

Tr
ac

ki
ng

 E
rro

r

� In the Solo8-LeanOverObject environment, the robot has to lean forward to match the
targets points (green) with its front and rear ends (purple) without entering the safety
violation region in red.

� RAZER manages to satisfy the safety constrains (left) with the cost of a slightly reduced
tracking accuracy (middle).

Probabilistic Safety Constraints

� When applying data-driven control algorithms on real systems, operating in a safe
regime is of high importance.

� In this work, safety constraints are modeled as box violation sets.

� The probability of ending up in a particular state is model as a Gaussian distribution. The
parameters of the Gaussian distribution are estimated by moment matching over Monte
Carlo estimates of possible trajectories.

� With this, the probability of entering the violation set can be computed in closed form.
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