
Appendix

A MAXIMUM LIKELIHOOD ESTIMATION OF U-ACE PARAMETERS: λ, β

The posterior on weights shown in Equation 1 has two parameters: λ, β as shown below with CX

and Y are array of concept activations and logit scores (see Algorithm 1).

w⃗ ∼ N (µ,Σ) where µ = Σ−1CXY, Σ−1 = βCXCT
X + (λdiag(ϵϵT ))−1

We obtain the best values of λ and β that maximize the log-likelihood objective shown below.

λ∗, β∗ = argmax
λ,β

EZ [−
β2∥Y − (CX + Z)T w⃗(λ, β)∥2

2
+ log(β)]

where Z is uniformly distributed in the range given by error intervals
Z ∼ Unif([−s⃗(x1),−s⃗(x2), . . . , ], [s⃗(x1), s⃗(x2), . . . , ])

We implement the objective using Pyro software library (Bingham et al., 2019) and Adam optimizer.

B PROOF OF PROPOSITION 1

We restate the result for clarity.
For a concept k and cos(αk) defined as cos-sim(e(vk, f,D), e(wk, g,D)), we have the following
result when concept activations in f for an instance x are computed as cos-sim(f(x), vk) instead of
vTk f(x).

m⃗(x)k = cos(θk)cos(αk), s⃗(x)k = sin(θk)sin(αk)

where cos(θk)=cos-sim(gtext(Tk), g(x)) and m⃗(x)k, s⃗(x)k denote the kth element of the vector.

Proof. Corresponding to vk in f , there must be an equivalent vector w in the embedding space of g.

cos(αk) = cos-sim(e(vk, f,D), e(wk, g,D)) = cos-sim(e(w, g,D), e(wk, g,D))

Denote the matrix of vectors embedded using g by G = [g(x1), g(x2), . . . , G(xN )]T a N × D
matrix (D is the dimension of g embeddings). Let U be a matrix with S basis vectors of size S ×D.
We can express each vector as a combination of basis vectors and therefore G = AU for a N × S
matrix A.

Substituting the terms in the cos-sim expression, we have:

cos(αk) = cos-sim(Gw,Gwk) = cos-sim(AUw,AUwk)

=
wTUTATAUwk√

(wTUTATAUw)(wT
k U

TATAUwk)
.

If the examples in D are diversely distributed without any systematic bias, ATA is proportional
to the identity matrix, meaning the basis of G and W are effectively the same. We therefore have
cos(αk) = cos-sim(Gw,Gwk) = cos-sim(Uw,Uwk), i.e. the projection of w,wk on the subspace
spanned by the embeddings have cos(αk) cosine similarity. Since w,wk are two vectors that are αk

apart, an arbitrary new example x that is at an angle of θ from wk is at an angle of θ ± αk from w.
The cosine similarity follows as below.

cos(θ) = cos-sim(wk, g(x)) =⇒ cos-sim(w, g(x)) = cos(θ ± αk)

= cos(θ)cos(αk)± sin(θ)sin(αk)

Because w is a vector in g corresponding to vk in f , cos-sim(w, g(x)) = cos-sim(vk, f(x)).
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C PROOF OF PROPOSITION 2

The concept importance estimated by U-ACE when the input dimension is sufficiently large and
for some λ > 0 is approximately given by vk =

uT
k w

uT
i uk+λσ2

k

. On the other hand, the importance
scores estimated using vanilla linear estimator under the same conditions is distributed as vk ∼
N (

uT
k w

uT
k uk

, σ2
k

∥w∥2

∥uk∥2 ).

Proof. We use the known result that inner product of two random vectors is close to 0 when the
number of dimensions is large, i.e. uT

i uj ≈ 0, i ̸= j.

Result with vanilla estimator. We first show the solution using vanilla estimator is distributed as
given by the result above. We wish to estimate v1, v2, . . . such that we approximate the prediction
of model-to-be-explained: y = wTx. We denote by wk sampled from the normal distributin of
concept vectors. We require wTx ≈

∑
k vkw

T
k x. In effect, we are optimising for vs such that ∥w−∑

k vkwk∥2 is minimized. We multiply the objective by uk and use the result that random vectors are
almost orthogonal in high-dimensions to arrive at objective argminvk ∥w

T
k w− vk(w

T
k wk)∥. Which

is minimized trivially when vk =
wT

k w
∥wk∥2 . Since wk is normally distributed with N (uk, σ

2
kI), w

T
k w =

(uk + ϵ)Tw, ϵ ∼ N (0, I) is also normally distributed with N (uT
kw, σ

2
k∥w∥2). We approximate

the denominator with its average and ignoring its variance, i.e. ∥wk∥2 = N (∥uk∥2, σ2
k) ≈ ∥uk∥2

which is when ∥uk∥2 >> σ2. We therefore have the result on distribution of vk.

Using U-ACE. Similar to vanilla estimator, U-ACE optimizes vk using the following objective.

ℓ = argmin
v

{∥w −
∑
k

vkuk∥2 + λ
∑
k

σ2
kv

2
k}

setting
∂ℓ

∂vk
= 0 and using almost zero inner product result above, we have

− uT
k (w −

∑
j

vjuj) + λσ2
kvk = 0

=⇒ vk =
uT
kw

∥uk∥2 + λσ2
k

D PROOF OF PROPOSITION 3

The importance score, denoted v1, v2, estimated by U-ACE are bounded from above by 1
Nλ , i.e.

v1, v2 = O(1/Nλ) where λ > 0 is a regularizing hyperparameter and N the number of examples.

Proof. We first show that the values of v1, v2 in closed form are as below before we derive the final
result.

v1 =
S1

S2
(1− β2)

2

S1

S2
(β2

2(1− β1)2 + β2
1(1− β2)2) + λ(1− β1)(1− β2)

v2 =
S1

S2
(1− β1)

2

S1

S2
(β2

1(1− β2)2 + β2
2(1− β1)2) + λ(1− β1)(1− β2)

where S1 =
∑

i y1, S2 =
∑

i y
2
i and λ > 0 is a regularizing hyperparameter.

We then observe that if x is normally distributed then y = wTx is also normally distributed with
the value of S1

S2
is of the order O(1/N). Since β1, β2 are very close to 0, we can approximate the

expression for v1 as below.

v1 ≈ S1

S2
(1− β2)

2 1

λ(1− β1)(1− β2)
= O(1/Nλ)
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Importance scores from a standard estimator.

When c
(1)
1 = (β1u+ (1− β1)v)

T z(i), c
(i)
2 = (β2u+ (1− β2)v)

T z(i)

we can estimate
(1− β2)c1 − (1− β1)c2
(1− β2)β1 − (1− β1)β2

=
(1− β2)c1 − (1− β1)c2

β1 − β2
= uT zi = yi

1−β2

β1−β2
, 1−β1

β1−β2

E ADDITIONAL EXPERIMENT DETAILS

List of fruit concepts from Section 4.1.

List of animal concepts from Section 4.2.

Scene labels considered in Section 4.3.

/a/arena/hockey, /a/auto_showroom, /b/bedroom, /c/conference_room, /c/corn_field
/h/hardware_store, /l/legislative_chamber, /t/tree_farm, /c/coast,
/p/parking_lot, /p/pasture, /p/patio, /f/farm, /p/playground, /f/field/wild
/p/playroom, /f/forest_path, /g/garage/indoor
/g/garage/outdoor, /r/runway, /h/harbor, /h/highway
/b/beach, /h/home_office, /h/home_theater, /s/slum,
/b/berth, /s/stable, /b/boat_deck, /b/bow_window/indoor,

/s/street, /s/subway_station/platform, /b/bus_station/indoor, /t/television_room,
/k/kennel/outdoor, /c/campsite, /l/lawn, /t/tundra, /l/living_room,
/l/loading_dock, /m/marsh, /w/waiting_room, /c/computer_room,

/w/watering_hole, /y/yard, /n/nursery, /o/office, /d/dining_room, /d/dorm_room,
/d/driveway

E.1 ADDITION RESULTS FOR SECTION 4.3

We report also the tau (Wikipedia, 2023) distance from concept explanations computed by Simple as
a measure of explanation quality. Kendall Tau is a standard measure for measuring distance between
two ranked lists. It does so my computing number of pairs with reversed order between any two lists.
Since Simple can only estimate the importance of concepts that are correctly annotated in the dataset,
we restrict the comparison to only over concepts that are attributed non-zero importance by Simple.

Dataset↓ TCAV O-CBM Y-CBM U-ACE
ADE20K 0.36 0.48 0.48 0.34
PASCAL 0.46 0.52 0.52 0.32

Table 3: Quality of explanation comparison. Kendall Tau Distance between concept importance
rankings computed using different explanation methods shown in the first row with ground-truth.
The ranking distance is averaged over twenty labels. U-ACE is better than both Y-CBM and O-
CBM as well as TCAV despite not having access to ground-truth concept annotations.

F EXTENSION OF SIMULATION STUDY

Under-complete concept set. We now generate concept explanations with concepts set to {“red or
blue”, “blue or red”, “green or blue”, “blue or green”}. The concept “red or blue” is expected
to be active for both red or blue colors, similarly for “blue or red” concept. Since all the concepts
contain a color from each label, i.e. are active for both the labels, none of them must be useful for
prediction. Yet, the importance scores estimated by Y-CBM and O-CBM shown in the Figure 4
table attribute significant importance. U-ACE avoids this problem as explained in Section 3.2 and
attributes almost zero importance.
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Concept Y-CBM O-CBM U-ACE
red or blue -75.4 -1.8 0.1
blue or red 21.9 -1.9 0

green or blue -1.4 1.6 0
blue or green -23.1 1.6 0

Table 4: When the concept set is under-complete and contains only nuisance concepts, their esti-
mated importance score must be 0.
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