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Organization of Appendix489

In this appendix, we first present a table summarizing the major notations used by the main paper.490

Next, we provide detailed information about the training process and hyperaprameters setting. We491

provide the detailed proof of Lemma 1 and Theorem 2 in Section C. After that, we provide additional492

experimental details and results. Finally, we discuss the broader impacts, limitations, and future work493

of our DRE technique. The link to the source code can be found in the end of the Appendix.494

A Summary of Notations495

Table 4 below shows the major notations used in the main paper. We further assign each notation into496

one of four major categories: dataset, DRO formulation, sparse training, and theoretical results.497

Table 4: Symbols with Descriptions.

Symbol Group Notation Description

Dataset

X Set of training images
Y Set of training class labels
C Total classes
ŷ Predicted class label
N Total number of training samples
D Dimensionality of each data sample

DRO
Df f -divergence
η Parameter controlling size of uncertainty set in DRO framework
zn Weight associated with nth data sample

Sparse Training

M Number of sparse sub-networks
K Density of the given network
Θ Parameter associated with given neural network
p̂ Confidence associated with predicted class

l(xn,Θ) Loss associated with nth data sample

Theoretical Results

β Learning rate of the given network
P Total number of patches in each data sample
d Dimensionality of each patch
vc,l Major lth feature associated with class c
L Total number of features in each class class
DS

N Collection of single-view data samples
DM

N Collection of multi-view data samples
∪ Collection of features
H Number of convolution layers

Fc(x) Logistic output for the cth class for the data sample x
Pvc,l

Collection of patches containing feature vc,l in sample xj

SOFTc Softmax output for class c

B Robust Loss Optimization in DRO498

In this section, we first provide a detailed description on how we optimize the robust loss function in499

(1). We then explain how to set the uncertainty set by choosing a proper hyperparameter.500

B.1 Robust Loss Optimization501

The optimization problem specified in (1) involves an inequality constraint so directly solving it may502

incur a higher computational overhead. Therefore, we consider a regularized version of the robust503

loss to train each base learner by using the following loss:504

LRobust = max
z≥0,z⊤1=1

N∑
n=1

znln(Θ)− λDf

(
z|| 1

N

)
(9)

where ln(Θ) = l(xn,Θ). Solving the above maximization problem leads to a closed-form solution505

for z∗ as shown by the following lemma:506
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Lemma 3. Assuming that Df is the KL divergence, then solving (9) leads to the following solution507

LRobust =

N∑
n=1

z∗nln(Θ) (10)

where z∗n is given by508

z∗n =
exp

(
ln(Θ)

λ

)
∑N

j=1 exp
(

lj(Θ)
λ

) (11)

509

It can be verified that there is a one-to-one correspondence between η in (2) and λ in (9). Given their510

roles in the corresponding equations, a large η implies a small λ and a small η implies a large λ.511

B.2 Hyperparameter settings512

The hyperparameter in the regularization term is chosen based on the difficulty of a dataset. Specifi-513

cally, for DRE, we always consider the λ → ∞ for the first sparse sub-network which is equivalent514

to Expected Risk Minimization (ERM). For the second and third sub-networks, we choose this515

hyperparameter based on the difficulty of data samples. It should be noted that we need to set higher516

λ values for more difficult datasets as difficult samples are more common on those datasets. Using517

this notion, for Cifar10, we choose small λ values so that the model can focus on the difficult samples518

that are few. For this, we choose λ = 10 for the second sparse sub-network and λ = 500 for the519

third sparse sub-network. Considering Cifar100 is more difficult, we would have more difficult520

samples and therefore higher λ value is preferred. For this, we choose λ = 50 for the second sparse521

sub-network and λ = 500 for the third one. In the case of TinyImageNet, we have many difficult522

samples and therefore we choose relatively large λ values. Specifically, we choose λ = 100 for the523

second sparse sub-network and λ = 1, 000, 000 for the third sparse sub-network.524

C Theoretical Proof525

In this section, we provide detailed proofs of the theoretical results presented in the main paper.526

C.1 Proof of Lemma 1527

Proof. For yn = c, with respect to data sample {xn, yn}, the gradient can be evaluated as528

−∇Θc,h
l(Θ;xn, yn) = [1− SOFTc(F (xn))]

∑
p∈[P ]

ReLU[⟨Θc,h,x
p
n⟩]xp

n (12)

Assume that the given sample has a major feature vc,l, taking dot product with respect to vc,l on both529

side of (12) leads530

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = [1− SOFTc(F (xn))]

∑
p∈[P ]

⟨ReLU[⟨Θc,h,x
p
n⟩]xp

n,vc,l⟩ (13)

Let’s further assume that the feature set is orthonormal: ∀c, c′,∀l ∈ [L], ||vc,l||2 = 1 and vc,l ⊥ vc′,l′531

when (c, l) ̸= (c′, l′). Using xp = apvc,l +
∑

v′∈∪\vc
αp,v′

v′ + ϵp given in (4), we have532

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = [1−SOFTc(F (xn))]

 ∑
p∈Pv,l(xn)

ReLU[⟨Θc,h,x
p
n⟩ap] +

∑
p∈[P ]

⟨ϵp,vc,l⟩


(14)

It should be noted that the term i.e.,
∑

v′∈∪\vc
αp,v′⟨v′,vc,l⟩ becomes zero due to the orthogonal533

properties of the feature set. Let us represent the second term by κ:
∑

p∈[P ]⟨ϵp,vc,l⟩ = κ. Then, we534

have535

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = (1− SOFTc(F (xn)))

 ∑
p∈Pv,l(xn)

ReLU[⟨Θc,h,x
p
n⟩ap] + κ

 (15)
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Furthermore, let us define Vc,h,l(xj) =
∑

p∈Pvc,l
(xj)

ReLU(⟨Θc,h,x
p
j ⟩ap) then above equation536

further reduces to following537

⟨−∇Θc,h
l(Θ;xn, yn),vc,l⟩ = (1− SOFTc(F (xn)))(Vc,h,l(xn) + κ) (16)

Recall the above equation is the gradient with respect to the nth data sample. Considering the gradient538

with respect to all data samples with yn = c, and let us consider the total loss, where the weight zn of539

each loss is assigned according to a distribution specified by the uncertainty set U . Then, the total540

gradient is541

⟨−∇Θc,h
l(Θ;X,Y),vc,l⟩ = max

z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
(17)

Now using the standard gradient update rule with β being the learning rate, we have542

⟨Θt+1
c,h ,vc,l⟩ = ⟨Θt

c,h,vc,l⟩+ βmax
z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
(18)

Let xk ∈ DS
N be the most difficult sample having vc,l as the main feature. Also, consider xn ∈ DM

N543

to be the easy sample with yn = c, yk = c. Then, we have544

[1− SOFTc(F (xk))] ≥ [(1− SOFTc(F (xn))], ∀n ∈ [1, N ], n ̸= k, yn = c (19)

Using above property, we can write the following using (18)545

⟨Θt
c,h,vc,l⟩+ βmax

z∈U

N∑
n=1

zn
[
1yj=c(Vc,h,l(xn) + κ)(1− SOFTc(F (xn)))

]
≤ ⟨Θt

c,h,vc,l⟩+ βNzk(1− SOFTc(F (xk))) (20)

On the r.h.s., we have zn = 1
N for ERM, which assigns equal weights to all samples. Under the546

assumption of Nvc,l
≪ N∪\vc,l

, the contribution of the Nvc,l
on overall gradient will be negligible.547

In contrast, for the DRO framework, using (11), we have548

zk =
1∑N

j=1,j ̸=k exp
(

lj(Θ)−lk(Θ)
λ

)
+ 1

(21)

Since lk(Θ) > lj(Θ),∀λ > 0, λ ̸= ∞, we have zk > 1
N . Using r.h.s. of (20) and incorporating549

zk = 1
N for ERM and zk > 1

N , we have550

{⟨Θt
c,h,vc,l⟩+β(1−SOFTc(F (xk)))}ERM ≤ {⟨Θt

c,h,vc,l⟩+β(1−SOFTc(F (xk)))}Robust (22)

This subsequently leads to the following:551

{⟨Θt
c,h,vc,l⟩}Robust > {⟨Θt

c,h,vc,l⟩}ERM ;∀t > 0 (23)

which completes the proof of Lemma 1.552

C.2 Proof of Theorem 2553

Let x ∈ DN
S from class c with vc,l as the main feature and v′ as the dominant feature learned through554

the memorization. Also consider v′ to be the main feature characterizing class k. Then for any class555

c′, we can define the following556

SOFTc′(x) =
exp(Fc′(x))∑

j∈[C] exp(Fj(x))
(24)

In the above equation, Fc′(x) can be written as557

Fc′(x) =
∑

h∈[H]

∑
p∈[P ]

ReLU[⟨Θc′,h,x
p⟩] (25)
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Substituting xp from (4), we have558

Fc′(x) =
∑

h∈[H]

∑
p∈[P ]

ReLU

ap⟨Θc′,h,vc,l⟩+
∑

v′∈∪\vc

αp,v′
⟨Θc′,h,v

′⟩+ ⟨Θc′,h, ϵ
p⟩

 (26)

Substituting c′ by k, we have559

Fk(x) =
∑

h∈[H]

∑
p∈[P ]

ReLU

ap⟨Θk,h,vc,l⟩+
∑

v′in∪\vc

αp,v′
⟨Θk,h,v

′⟩+ ⟨Θk,h, ϵ
p⟩

 (27)

In case of ERM, the vc,l signal is fairly weak during the training process due to Nvc,l
≪ N∪\vc,l

.560

Therefore, the term ⟨Θk,h,vc,l⟩ is negligible. Also, the last term ⟨Θk,h, ϵ
p⟩ is also small as this561

corresponds to the Gaussian noise. For the second term ∃v′ for which ⟨Θk,h,v
′⟩ is very high because562

of the spurious correlation. In contrast, for the robust loss, using Lemma 1, the model learns a563

stronger correlation with the true class parameter and therefore ⟨Θc,h,vc,l⟩ is high. As such, both564

terms ⟨Θk,h,vc,l⟩ as well as ⟨Θk,h,v
′⟩,∀v′ becomes low. As a result, we have565

{Fk(x)}ERM > {Fk(x)}Robust (28)

Substituting this inequality to (24), we have566

{SOFTk(x)}Robust < {SOFTk(x)}ERM (29)

This completes the proof of Theorem 2.567

D Experimental Details and Additional Results568

In this section, we first provide a detailed description of datasets used in our experimentation followed569

by hardware description of our experimentation. Consequently, we provide examples of single-570

view and multi-view data samples. Next, we provide additional experimental results on Cifar10571

and Cifar100 datasets with a 15% density. After that, we provide additional baselines results on572

TinyImageNet. We also compare our model performance with different calibration techniques573

commonly used in dense networks. Then, we perform an in-depth ablation study. Parameter size and574

inference speed are discussed in the subsequent subsection. We also further investigate the diversity575

of the sparse subnetworks. Finally, we provide detailed qualitative analysis to support our proposed576

claim.577

D.1 Detailed Dataset Description578

For general classification setting, we consider Cifar10, Cifar100 [12], and TinyImageNet [14] datasets.579

For the out of distribution setting, we consider corrupted version of Cifar10 and Cifar100, which are580

named as Cifar10-C and Cifar100-C [10], respectively. Finally, for open-set detection, we leverage581

SVHN [19] as the open-set dataset. The detailed description of each dataset is given below:582

• Cifar10. This dataset consists of total 10 classes, each consisting of 5,000 training samples583

and 1,000 testing (evaluation) samples. Each image is a colored image with size 32× 32.584

• Cifar100. This dataset consists of 20 super classes where each super-class consists of 5585

classes resulting into total 100 classes. Each class consists of 500 training samples and 100586

testing samples. Each image is a colored image with size 32× 32.587

• TinyImageNet. The original dataset consists of 200 classes with 1,000,000 samples where588

each class has 500 training images, 50 validation images, and 50 test images. Each image is589

a colored image with size 64× 64.590

• Cifar10-C. Fifteen different types of corruptions are applied on the Cifar10 clean testing591

dataset where each corruption has 5 severity levels, ranging from 1 to 5 with 1 being least592

severe and 5 being most severe. The corruptions include Gaussian noise, shot noise, impulse593

noise, defocus blur, forsted glass blur, motion blur, zoom blur, snow, frost, fog, brightness,594

contrast, elastic, pixelate, and JPEG.595
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Single View 
(Present: Headlight, Missing: 
Tire, Door handle)

Multi View
(Present: Tire, Door handle 
Missing: Headlight)

Multi View 
(Present: Headlight, Tire, Door 
handle)

Headlight Tire Door handle

Figure 4: Examples of single-view and multi-view samples.

• Cifar100-C. Similar to Cifar10-C, fifteen different corruptions are applied on the Cifar100596

clean testing dataset.597

• SVHN. The Street View House Numbers (SVHN) dataset consists of 10 classes with digit 1598

as class 1, digit 9 as class 9 and digit 0 as class 10. These are original, variable-resolution,599

colored house-number images with character level bounding boxes. We use this dataset as600

the open-set dataset in our experimentation.601

D.2 Hardware Details for Experimentation602

All experimentations are conducted using NVIDIA RTX A6000 GPU with 48GB memory requiring603

300 Watt power. For GPU, CUDA Version: 11.6, Driver Version: 510.108.03, and NVIDIA-SMI:604

510.108.03 is used. In terms of CPU, our experimentation uses an Intel(R) Xeon(R) Gold 6326 CPU605

@ 2.90GHz with a 64-bit system and an x86_64 architecture.606

D.3 Single-view and Multi-view Examples607

Figure 4 show the three example images, where the first image is a representative single-view data608

sample whereas the last two are multi-view samples. In this example, we consider three major609

features for cars: i.e., Tire, Headlight, and Door handle. As only headlight feature is present610

in the first image, it belongs to the single-view category. For the second and third images, multiple611

features are presented and therefore we regard those images as multi-view data samples.612

D.4 Additional Result on Cifar10 and Cifar100613

Table 5 shows the experimental result on Cifar10 and Cifar100 datasets with a 15% density. As614

shown, the proposed technique has a far superior performance in terms of the ECE score compared to615

the competitive baselines. This is consistent with the results with a 9% density as presented in the616

main paper, which further justifies the effectiveness of our proposed technique.617

D.5 Additional Baseline Results on TinyImageNet618

Table 6: Additional baseline results on Tiny-
ImageNet using ResNet50 with K = 15%.

Training Type Approach ACC ECE
Sparse Training DST Ensemble 72.00 2.94

Sup-ticket 68.68 10.96

Mask Training DRE 71.57 1.51

As mentioned in the main paper, the computational619

issue (i.e., memory overflow) makes it impossible to620

run sparse learning techniques i.e., CigL [15], DST621

Ensemble [17], and Sup-ticket [30] on the ResNet101622

and WideResNet101 architectures to make a fair com-623

parison. Therefore, in this section, we pick a lower624

capacity model (ResNet50) and compare the perfor-625

mance. Even for the ResNet50 architecture, CigL626

still runs into the memory overflow issue with a batch627

size of 128. Furthermore, lowering the batch size (e.g., 16) makes the training process extremely628
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Table 5: Accuracy and ECE performance with 15% density for Cifar10 and Cifar100 Dataset.

Training Type Approach
Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE
Dense† 94.82 5.87 95.12 5.99 76.40 16.89 77.97 16.73

M

Dense Training L1 Pruning 93.88 5.69 94.23 5.88 75.53 15.52 75.83 15.78
LTH 92.97 4.03 93.15 5.69 74.36 15.13 74.77 15.22
DLTH 95.15 6.21 95.65 6.96 77.98 16.24 78.23 16.54
Mixup 93.22 4.02 93.38 5.68 74.48 15.10 74.68 15.16

M
Sparse Training CigL 92.25 4.67 93.34 4.59 77.88 10.16 77.27 10.62

DST Ensemble 89.57 2.10 88.64 1.34 64.57 9.76 64.75 9.27
Sup-ticket 94.65 3.20 94.95 3.09 78.68 10.16 78.95 10.32

M

Mask Training AdaBoost 94.07 5.65 94.76 5.14 75.98 23.55 76.28 24.27
EP 94.41 3.90 94.42 4.07 75.66 14.79 76.05 14.79
SNE 94.85 3.05 94.96 3.18 76.82 11.12 77.23 11.63
DRE 94.87 1.71 94.74 1.34 75.86 4.90 76.46 5.81

slow even using a 48Gb GPU, where each training epoch takes more than half an hour, making model629

training extremely difficult. Therefore, we did not report the performance of CigL. It should be noted630

that CigL can be trained on Cifar10 and Cifar100 because of lower dimension of the input images and631

we have already reported its performance in the main paper. Table 6 shows the performance of DRE632

along with those from DST Ensemble and Sup-ticket on ResNet50. It is clear that DRE achieves633

better performance compared to these baselines.634

D.6 Performance from Ensemble Members635 Table 7: Different subnetworks performance
on Cifar100 Dataset.

Subnetworks ResNet101 ResNet152

ACC ECE ACC ECE
Subetwork 1 (3%) 68.22 14.35 69.65 13.31

Subetwork 2 (3%) 69.03 1.39 70.00 3.39

Subetwork 3 (3%) 72.86 11.96 70.24 14.78
DRE 74.68 1.20 74.37 2.09

We investigate how performance varies in different636

sparse sub-networks. We use Cifar100 as an example637

and Table 7 report the individual sub-network perfor-638

mance on both accuracy and ECE. While each sparse639

sub-network is a relatively weaker learner (which640

is expected), they contribute to the final ensemble641

model in a complementary way, leading to a better642

ECE score as well as accuracy.643

D.7 Comparison with Common Calibration Techniques644

In this section, we investigate whether existing calibration techniques designed for training dense645

networks can be leveraged to further improve the calibration performance of sparse networks. How-646

ever, most of these techniques (e.g., temperature scaling and mix-n-match) are post hoc techniques,647

which require a separate validation set to fine-tune the parameters. This means we need to further648

divide the training data into training and validation sets, which may negatively impact the general-649

ization capability of the trained model (due to less training data). To make a comparison, we pick650

Temperature Scaling (TS) [9], Label Smoothing (LS) [27], and a few other techniques proposed in651

[31], including Ensemble Temperature Scaling (ETS) and Isotonoic Regression One vs All combined652

with Temperature Scaling (IROvA-TS). We apply these calibration techniques on the top of the EP653

algorithm. Specifically, as LS does not require a separate validation set, we train it on the full training654

dataset using the LS loss (with ϵ = 0.1). Other calibration techniques require a separate validation655

set and therefore we divide training data into training and validation with a 80:20 ratio. EP (No656

Validation) uses the full training dataset whereas EP (Validation) is trained using 80% of the training657

data. Once the model is trained with 80% of training data using EP, we further calibrate it using the658

aforementioned calibration techniques. Table 8 shows the results. There are two key observations:659

(i) the classification accuracy decreases for all calibration techniques at the expense of improving660

calibration performance as they require a separate validation set, and (ii) DRE achieves the best ECE661

in all cases, which further justifies its strong calibration performance.662
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Table 8: Different calibration techniques on the top of EP Algorithm with K = 9%.

Approach
Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ACC ECE ACC ECE ACC ECE
TS 93.42 0.96 93.42 1.37 73.06 1.72 73.40 2.45
ETS 93.42 0.97 93.42 1.37 73.06 1.76 73.40 2.40
IROvA-TS 89.90 1.45 88.69 0.89 60.87 1.56 60.77 2.86
LS 94.06 7.56 94.21 7.41 75.96 9.36 76.40 7.71

EP (No Validation) 94.20 3.97 94.35 4.03 75.05 14.62 75.68 14.41
EP (Validation) 93.42 4.46 93.42 4.83 73.06 15.56 73.40 15.88

DRE 94.60 0.7 94.28 0.7 74.68 1.20 74.37 2.09

(a) K = 5% (b) K = 3%

Figure 5: (a-b) Impact of λ on ECE using ResNet101 architecture on Cifar100 dataset.

Table 9: ACC and ECE with different: (a) backbones and (b) number of subnetworks.

Approach WideResNet28-10 ViT

ACC ECE ACC ECE
EP 94.12 4.53 86.16 10.01

DRE 93.98 1.93 85.53 4.18

(a) Different backbones on Cifar10 Dataset.

Approach ResNet101 ResNet152

ACC ECE ACC ECE
DRE (M = 3) 94.87 1.71 94.74 1.34

DRE (M = 5) 94.79 0.84 94.69 0.62

(b) Different M values on Cifar10 with K = 15%.

D.8 Ablation Study663

In this section, we first show the impact of λ values on the prediction and calibration performance.664

We then investigate how the size of the ensemble affects it calibration performance. Finally, we show665

the effectiveness of the proposed technique as we vary the backbones. In addition to the backbones666

used in the main paper, we will further evaluate two other commonly used backbones, including667

WideResNet28 and Vision Transformer (ViT) [5] as backbones.668

Impact of the uncertainty set size. For simplicity, we always keep one sparse sub-network in our669

framework to be with λ1 → ∞. The ECE performance with respect to different sets of λ value for670

the remaining sub-networks is shown using the heatmap given in Figure 5 (a-b). As can be seen, it is671

important to choose λ2 and λ3 with very distinct values to achieve a low calibration error.672
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Performance analysis of different backbones. Table 9 (a) reports the performance of Cifar10 from673

both DRE and EP using different backbone architectures. In case of WideResNet28-10, the calibration674

error is low without sacrificing the accuracy. It also demonstrates that the superior performance of675

DRE is not limited to a specific backbone. In case of ViT, DRE still achieves a much lower calibration676

error than EP. However, using ViT as a backbone, the accuracy from both EP and DRE is lower and677

ECE is higher than other backbones. Existing studies show that without pretraining, the lack of useful678

inductive biases for ViT can cause performance drop [1]. Since no pretraining is conducted in both679

EP and DRE, it causes a lower accuracy (and a higher ECE).680

Impact of number of sparse-sub-networks. In this analysis, we study the impact of number of681

sparse sub-networks. It should be noted that our work is not limited only for M = 3. We can instead682

increase the M value. For example, Table 9 (b) shows the performance for ensemble model with683

M = 5, where each sub-network is trained with K = 3% leading to a total K = 15%. We also show684

the performance with M = 3, where each sub-network is trained with K = 5%. As can be seen, if685

there is a sufficient learning capacity for each sub-network, the ECE score can further improve with686

the increase of M .687

D.9 Parameter Size and Inference Speed688 Table 10: Parameter size and inference speed.

Approach ResNet50 ResNet101

Params Flops (×109) Params Flops (×109)

Dense† 23.6M 4.14 42.5M 7.88

SNE 3.5M 1.31 6.3M 2.53
DRE 3.5M 1.31 6.3M 2.53

We compare parameter size and inference speed689

of different types of sparse networks. Table 10690

shows the FLOPS along with number of param-691

eters associated with each technique. As can692

be seen, the proposed DRE has a comparable693

parameter size as that of the sparse network en-694

semble. In terms of computational times, our approach is comparable to the sparse network ensemble.695

Compared to a dense network, our technique has a much smaller parameter size with less FLOPS.696

D.10 Diversity on Sparse Sub-networks697

To justify our claim that our technique ensures the diverse sparse sub-networks, we adapt the698

disagreement metric (ddist) from [17]. This metric measures the disagreement among sub-networks699

in terms of class label prediction. Table 11 below shows the results for Cifar10 and Cifar100 datasets.700

As shown, compared to Sparse Network Ensemble, DRE achieves higher disagreement which implies701

that the sparse sub-networks are more diverse.702

Table 11: Accuracy, ECE, and prediction disagreement performance with a K = 15% density.

Approach
Cifar10 Cifar100

ResNet50 ResNet101 ResNet101 ResNet152

ACC ECE ddist ACC ECE ddist ACC ECE ddist ACC ECE ddist

SNE 94.85 3.05 0.048 94.96 3.18 0.049 76.82 11.12 0.20 77.23 11.63 0.20

DRE (Ours) 94.87 1.71 0.088 94.74 1.34 0.069 75.86 4.90 0.24 76.46 5.81 0.24

D.11 Qualitative Analysis703

In this section, we provide illustrative examples to further justify the proposed DRE is better calibrated704

compared to existing baselines. Figure 6 (a)-(d) show the confidence values for the wrongly classified705

samples using different baselines. As can be seen, all of the baselines suffer from the overfitting706

issue, resulting into the incorrect predictions with high confidence. In contrast, as shown in Figure 6707

(e)-(f), the sparse sub-networks provide the confidence values in different ranges, where sub-network708

in (a) is learned from representative samples and (c) from the difficult ones. As these sub-networks709

are complementary with each other, the DRE has a much better confidence distribution for both the710

correct as well as incorrect samples. Figure 7 shows the confidence score of correctly classified711

data samples from the CIFAR100 dataset with different techniques. As shown, our DRE technique712

remains confident on the correct data samples while being not confident on the incorrect data samples.713

This result shows our approach is well calibrated and trustworthy compared with the competitive714
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baselines. In summary, our proposed technique remains uncertain for incorrect samples while being715

confident on the correct samples resulting in a much improved calibration.716

(a) Dense network (b) EP Sparse network 1 (c) EP Sparse network 2 (d) Sparse ensemble

(e) DRO sparse Network 1(f) DRO sparse network 2 (g) DRO sparse network 3 (h) DRE

Figure 6: Confidence scores of incorrectly classified samples in CIFAR100 with ResNet101

(a) Dense network (b) EP sparse network 1 (c) EP sparse network 2 (d) Sparse ensemble

(e) DRO sparse network 1 (f) DRO sparse network 2 (g) DRO sparse network 3 (h) DRE

Figure 7: Confidence scores of correctly classified samples in CIFAR100 with ResNet101

E Broader Impact, Limitations, and Future Work717

In this section, we first describe the potential broader impacts of our work. We then discuss the718

limitations and identify some possible future directions.719

E.1 Broader Impact720

Sparse network training provides a highly promising way to significantly reduce the computational721

cost for training large-scale deep neural networks without sacrificing their predictive power. Besides722

energy savings, it also opens the gate for deploying deep neural networks to lightweight computing or723

edge devices that can further broaden the applications of AI in more diverse and resource constrained724

settings. The proposed robust ensemble framework provides a general solution to achieve calibrated725
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training of deep learning models. As a result, the trained model is expected to provide more reliable726

uncertainty predictions, which could be an important step towards using AI in safety-critical domains.727

E.2 Limitations and Future Works728

As an ensemble model, DRE involves multiple base learners (i.e., sparse sub-networks). Consequently,729

it may lead to more computational overhead. This could create issues for real-time application as730

during the inference time, the input needs to be passed through all base learners to get the final731

output, which can slow down the prediction speed. A straightforward way to speed up the inference732

process is to execute all the base learners in parallel, which still incurs additional computational733

overhead. One interesting future direction is to investigate knowledge distillation and train a single734

sparse network from the ensemble model. Theoretical evidence [1] shows that knowledge distillation735

has the potential to largely maintain the ensemble performance while providing a promising way to736

train a single sparse network with an even higher sparsity level and improved inference speed.737

F Source Code738

For the source code of this paper, please click here.739

G References740

[1]. Dosovitskiy et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at741

Scale. ICLR2021.742

743

22

https://drive.google.com/drive/folders/1pwDooAAmP6M8QPaY52s7rQbc-_WzIZbe?usp=share_link

	 Appendix
	Summary of Notations
	Robust Loss Optimization in DRO
	Robust Loss Optimization
	Hyperparameter settings

	Theoretical Proof
	Proof of Lemma 1
	Proof of Theorem 2

	Experimental Details and Additional Results
	Detailed Dataset Description
	Hardware Details for Experimentation
	Single-view and Multi-view Examples
	Additional Result on Cifar10 and Cifar100
	Additional Baseline Results on TinyImageNet
	Performance from Ensemble Members
	Comparison with Common Calibration Techniques
	Ablation Study
	 Parameter Size and Inference Speed
	Diversity on Sparse Sub-networks
	Qualitative Analysis

	Broader Impact, Limitations, and Future Work
	Broader Impact
	Limitations and Future Works

	Source Code
	References


