
Stochastic Forward–Backward Deconvolution:
Training Diffusion Models with Finite Noisy Datasets

Haoye Lu 1 2 Qifan Wu 1 Yaoliang Yu 1 2

Abstract
Recent diffusion-based generative models achieve
remarkable results by training on massive datasets,
yet this practice raises concerns about memoriza-
tion and copyright infringement. A proposed rem-
edy is to train exclusively on noisy data with po-
tential copyright issues, ensuring the model never
observes original content. However, through the
lens of deconvolution theory, we show that al-
though it is theoretically feasible to learn the
data distribution from noisy samples, the prac-
tical challenge of collecting sufficient samples
makes successful learning nearly unattainable. To
overcome this limitation, we propose to pretrain
the model with a small fraction of clean data to
guide the deconvolution process. Combined with
our Stochastic Forward–Backward Deconvolution
(SFBD) method, we attain FID 6.31 on CIFAR-10
with just 4% clean images (and 3.58 with 10%).
We also provide theoretical guarantees that SFBD
learns the true data distribution. These results un-
derscore the value of limited clean pretraining, or
pretraining on similar datasets. Empirical studies
further validate and enrich our findings.

1. Introduction

Diffusion-based generative models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021a;b; 2023) have
gained increasing attention. Nowadays, it is considered
one of the most powerful frameworks for learning high-
dimensional distributions and we have witnessed many im-
pressive breakthroughs (Croitoru et al., 2023) in generating
images (Ho et al., 2020; Song et al., 2021a;b; Rombach
et al., 2022; Song et al., 2023), audios (Kong et al., 2021;
Yang et al., 2023) and videos (Ho et al., 2022).
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Due to some inherent properties, diffusion models are rela-
tively easier to train. This unlocks the possibility of training
very large models on web-scale data, which has been shown
to be critical to train powerful models. This paradigm has
recently led to impressive advances in image generation,
as demonstrated by cutting-edge models like Stable Diffu-
sion (-XL) (Rombach et al., 2022; Podell et al., 2024) and
DALL-E (2, 3) (Betker et al., 2023). However, despite their
success, the reliance on extensive web-scale data introduces
challenges. The complexities of the datasets at such a scale
often result in the inclusion of copyrighted content. Fur-
thermore, diffusion models exhibit a greater tendency than
earlier generative approaches, such as Generative Adversar-
ial Networks (GANs) (Goodfellow et al., 2014; 2020), to
memorize training examples. This can lead to the replica-
tion of parts or even entire images from their training sets
(Carlini et al., 2023; Somepalli et al., 2023).

A recently proposed approach to address memorization and
copyright concerns involves training (or fine-tuning) diffu-
sion models using corrupted samples (Daras et al., 2023b;
Somepalli et al., 2023; Daras & Dimakis, 2023; Daras et al.,
2024). In this framework, the model is never exposed to
the original samples during training. Instead, these samples
undergo a known non-invertible corruption process, such as
adding independent Gaussian noise to each pixel in image
datasets. This ensures that the model cannot memorize or
reproduce the original content, as the corruption process is
irreversible for individual samples.

Interestingly, under mild assumptions, certain non-invertible
corruption processes, such as Gaussian noise injection, cre-
ate a mathematical bijection between the noisy and original
distributions. Thus, in theory, a generative model can learn
the original distribution using only noisy samples (Bora
et al., 2018). Building on this concept, Daras et al. (2024)
demonstrated that when an image is corrupted via a forward
diffusion up to a specific noise level σ, diffusion models can
recover distributions at noise levels below σ by enforcing
consistency constraints (Daras et al., 2023a).

While Daras et al. (2024) empirically showed that their
approach could be used to fine-tune Stable Diffusion
XL (Podell et al., 2024) using noisy images with a heuristic
consistency loss, they did not explore whether a diffusion
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model can be successfully trained solely with noisy images.
Moreover, the effectiveness of the consistency loss in such
scenarios remains an open question.

In this paper, we address these questions by connecting
the task of estimating the original distribution from noisy
samples to the well-studied density deconvolution problem
(Meister, 2009). Through the lens of deconvolution theory,
we establish that the optimal convergence rate for estimating
the data density is O(log n)−2 when n noisy samples are
generated via a forward diffusion process. This pessimistic
rate suggests that while it is theoretically feasible to learn the
data distribution from noisy samples, the practical challenge
of collecting sufficient samples makes successful learning
nearly unattainable. Our empirical studies further validate
this theoretical insight and suggest the inefficiency of the
current consistency loss outside the regime of fine-tuning
latent diffusion models.

To address the poor convergence rate in training diffusion
models with noisy data, we propose pretraining models on
a small subset of copyright-free clean data as an effective
solution. Since the current consistency loss remains inef-
fective even with pretraining, we propose a new deconvolu-
tion method, Stochastic Forward–Backward Deconvolution
(SFBD, pronounced sofabed), that is fully compatible
with the existing diffusion training framework. Experimen-
tally, we achieve an FID of 6.31 with just 4% clean images
on CIFAR-10 and 3.58 with 10% clean images. Our theoret-
ical results ensure that the learnt distribution converges to
the true data distribution and justify the necessity of pretrain-
ing. Furthermore, our results suggest that models can be
pretrained using datasets with similar features when clean,
copyright-free data are unavailable. Ablation studies pro-
vide additional evidence supporting our claims. Code for the
empirical study is available at: github.com/watml/SFBD.

2. Related Work

The rise of large diffusion models trained on massive
datasets has sparked growing concerns about copyright in-
fringement and memorization of training data (Carlini et al.,
2023; Somepalli et al., 2023). While differential privacy
(DP) has been explored as a mitigation strategy (Abadi
et al., 2016; Xie et al., 2018; Dockhorn et al., 2023), it often
presents practical challenges. Notably, DP can require users
to share their original data with a central server for training
unless local devices have sufficient computational power for
backpropagation.

In contrast, training on corrupted data provides a compelling
alternative, allowing users to contribute without exposing
their original data. By sharing only non-invertible, corrupted
versions, sensitive information remains on users’ devices,
eliminating the need to transmit original data.

Learning generative models from corrupted data poses a sig-
nificant challenge, as the model must reconstruct the under-
lying data distribution from incomplete or noisy information.
In their work on AmbientGAN, Bora et al. (2018) showed
that it is empirically feasible to train GANs using corrupted
images. They also provided a theoretical guarantee that,
with a sufficient number of corrupted samples generated
by randomly blacking out pixels, the learned distribution
converges to the true data distribution. Building on this,
Wang et al. (2023) demonstrated a closely related result: un-
der certain weak assumptions, if the model-generated fake
samples and the corrupted true samples share the same dis-
tribution after undergoing identical corruption, then the fake
data distribution aligns perfectly with the true data distribu-
tion. Their analysis applies to scenarios where corruption
is implemented via a forward diffusion process but does
not address cases where the two corrupted distributions are
similar but not identical – a case we explore in Prop 1 below.

Inspired by the success of training GANs using corrupted
data, Daras et al. (2023b); Aali et al. (2023); Daras & Di-
makis (2023); Bai et al. (2024); Daras et al. (2024) demon-
strated the feasibility of training diffusion models with cor-
rupted data. Notably, Daras et al. (2024) showed that when
corruption is performed by a forward diffusion process, the
marginal distribution at one time step determines the distri-
butions at other time steps, all of which must satisfy certain
consistency constraints. Building on this, they showed that if
a model learns distributions above the corruption noise level,
it can infer those below the noise level by adhering to these
constraints. To enforce this, they introduced a consistency
loss to improve compliance with the constraints, though its
effectiveness was demonstrated only in fine-tuning latent
diffusion models.

Outside the field of machine learning, the problem of esti-
mating the original distribution from noisy samples has
traditionally been addressed through density deconvolu-
tion (Meister, 2009). This research area aims to recover
the distribution of error-free data from noise-contaminated
observations. Most existing deconvolution methods are lim-
ited to the univariate setting (Carroll & Hall, 1988; Zhang,
1990; Fan, 1991; Cordy & Thomas, 1997; Delaigle & Hall,
2008; Meister & Neumann, 2010; Lounici & Nickl, 2011;
Guan, 2021), with only a few approaches extending to the
multivariate case. These multivariate techniques typically
rely on normal mixture models (Bovy et al., 2011; Sarkar
et al., 2018) or kernel smoothing methods (Masry, 1993;
Lepski & Willer, 2019). Integrating these theoretical in-
sights into modern generative model frameworks remains a
significant challenge. However, by reinterpreting generative
models trained on noisy data through the lens of deconvo-
lution theory, we can gain a deeper understanding of their
fundamental limitations and capabilities, as they inherently
address the deconvolution problem.
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A very recent study by Daras et al. (2025), using Gaussian
Mixture Models, also highlights the challenge of training
diffusion models with only noisy samples and shows that
adding a few clean samples can significantly improve perfor-
mance. The convergence of conclusions from fundamentally
different approaches reinforces the findings of both works.
Methodologically, Daras et al. (2025) apply Tweedie’s for-
mula (consistency constraint) to recover the clean distribu-
tion. In contrast, ours introduces a novel forward-backward
deconvolution strategy, offering a fresh perspective without
the heavy computational cost of enforcing consistency.

Beyond diffusion model training, Bie et al. (2022) and Ben-
David et al. (2023) demonstrate that even a small amount of
clean public data can substantially reduce the sample com-
plexity in differentially private (DP) estimation when learn-
ing from sensitive data. Although motivated by a different
goal, Nie et al. (2022) propose DiffPure, an algorithm that
leverages a pretrained diffusion model to remove adversar-
ial perturbations via a forward–backward diffusion process.
While DiffPure and SFBD share a similar structure, they
serve distinct purposes: DiffPure assumes a well-trained
model to purify data, whereas SFBD is designed to train the
diffusion model itself.

3. Prelimilaries

In this section we recall diffusion models, the density de-
convolution problem and the consistency constraints.

3.1. Diffusion Models

Diffusion models generate data by progressively adding
Gaussian noise to input data and then reversing this process
through sequential denoising steps to sample from noise.
Given distribution p0 on Rd, the forward perturbation is
specified by a stochastic differential equation (SDE):

dxt = g(t) dwt, t ∈ [0, T ], (1)

x0 ∼ p0, T is a fixed positive constant and g(t) is a scalar
function. {wt}t∈[0,T ] is the standard Brownian motion.

Eq (1) induces a transition kernel pt|s(xt|xs) for 0 ≤ s ≤
t ≤ T , which is Gaussian and its mean and covariance
matrix can be computed in closed form (Särkkä & Solin,
2019, Eqs 4.23 and 5.51). In particular, for s = 0, we write

pt|0(xt|x0) = N (x0, σ
2
t I), (2)

for all t ∈ [0, T ], where we set g(t) = (
dσ2

t

dt )
1/2. When σ2

T

is very large, xT can be approximately regarded as a sample
from N (0, σ2

T I). Let pt(xt) =
∫
pt|0(xt|x0) p0(x0) dx0

denote the marginal distribution of xt, where we have pT ≈
N (0, σ2

T I). Anderson (1982) showed that backward SDE

dxt = −g(t)2∇ log pt(xt) dt+ g(t) dw̄t, xT ∼ pT (3)

has a transition kernel that matches the posterior distribu-
tion of the forward process, ps|t(xs|xt) =

pt|s(xt|xs)ps(xs)

pt(xt)

for s ≤ t in [0, T ]. Thus, the backward SDE preserves the
same marginal distributions as the forward process. Here,
w̄t represents a standard Wiener process with time flowing
backward from T to 0, while∇ log pt(xt) denotes the score
function of the distribution pt(xt). With a well-trained net-
work sϕ(xt, t) ≈ ∇ log pt(xt), we substitute it into Eq (3)
and solve the SDE backward from x̃T ∼ N (0, σ2

T I). The
resulting x̃0 then serves as an approximate sample of p0.

To train sϕ to estimate the score, let T be a predefined
sampler of t ∈ [0, T ] and w(t) be a weight function. The
network sϕ can be effectively trained via the conditional
score-matching loss (Song et al., 2021b):

Ls(ϕ)= E
t∼T

E
p0

E
pt|0

[
w(t)∥sϕ(xt, t)−∇ log pt|0(xt|x0)∥2

]
Instead, we may first train a denoiser Dϕ(x, t) to estimate
E[x0|xt] by minimizing (Karras et al., 2022)

Ld(ϕ)= E
t∼T

E
p0

E
pt|0

[
w(t)∥Dϕ(xt, t)− x0∥2

]
(4)

then estimate

∇ log pt(xt) =
E[x0|xt]− xt

σ2
t

≈ Dϕ(xt, t)− xt

σ2
t

. (5)

3.2. Density Deconvolution Problems

Classical deconvolution problems arise in scenarios where
data are corrupted due to significant measurement errors,
and the goal is to estimate the underlying data distribution.
Specifically, let the corrupted samples Y = {y(i)}ni=1 be
generated by the process:

y(i) = x(i) + ϵ(i), (6)

where x(i) and ϵ(i) are independent random variables. Here,
x(i) is drawn from an unknown distribution with density
pdata, and ϵ(i) is sampled from a known error distribution
with density h. It can be shown that the corrupted samples
y(i) follow a distribution with density pdata ∗ h, where ∗
denotes the convolution operator. We provide more details
in Appx A.

The objective of the (density) deconvolution problem is to
estimate the density of pdata using the observed data Y ,
which is sampled from the convoluted distribution pdata ∗h.
In essence, deconvolution reverses the density convolution
process, hence the name of the problem.

To assess the quality of an estimator p̂(·;Y) of pdata based
on Y , the mean integrated squared error (MISE) is com-
monly used. MISE is defined as:

MISE(p̂, pdata) = EY

∫
Rd

∣∣ p̂(x;Y)− pdata(x)
∣∣2 dx. (7)
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In this paper, we focus on a corruption process implemented
via forward diffusion as described in Eq (1). Consequently,
unless otherwise stated, in the rest of this work, we assume
the error distribution h is Gaussian N (0, σ2

ζI) with a given
and fixed ζ ∈ (0, T ).

To see why we could identify an original distribution p
through p∗h, let Φp(u) = Ep[exp(iu

⊤x)] for u ∈ Rd be
the characteristic function of p. Then,

Proposition 1. Let p and q be two distributions defined on
Rd. For all u ∈ Rd,

|Φp(u)−Φq(u)|≤exp
(σ2

ζ

2
∥u∥2

)√
2DKL(p∗h∥q ∗h).

(All proofs are deferred to the appendix.) This result shows
if two distributions p and q are similar after being convoluted
with h, they must have similar characteristic functions and
thus similar distribution. In particular, when p∗h = q ∗h,
then p = q, the case also discussed in Wang et al. (2023,
Thm 2). As a result, whenever we could find q satisfying
pdata ∗h = q ∗h, we can conclude pdata = q.

3.3. Deconvolution through the Consistency Constraints

While Prop 1 shows it is possible to train a generative model
using noisy samples, it remains a difficult question of how
to use noisy samples to train a diffusion model to generate
clean samples effectively.

The question was partially addressed by Daras et al. (2024)
through the consistency property (Daras et al., 2023a). In
particular, since we have access to the noisy samples xζ

from pdata ∗h, we can use them to train a network sϕ(xt, t)
to approximate ∇ log pt(xt) for t > ζ through a modified
score matching loss, which is referred as ambient score
matching (ASM), denoted by LASM(ϕ). In their implemen-
tation, sϕ(xt, t) is parameterized by Dϕ(xt,t)−xt

σ2
t

, where
Dϕ(xt, t) is trained to approximate E[x0|xt].

In contrast, for t ≤ ζ, score-matching is no longer appli-
cable. Instead, Daras et al. (2024) propose that Dϕ(xt, t)
should obey the consistency property:

E[x0|xs] = Epr|s

[
E[x0|xr]

]
, for 0 ≤ r ≤ s ≤ T (8)

by jointly minimizing the consistency loss:

Lcon(ϕ, r, s)=Eps

∥∥Dϕ(xs, s)−Epr|s [Dϕ(xr, r)]
∥∥2, (9)

where r and s are sampled from predefined distributions.
Sampling from pr|s is implemented by solving Eq (3) back-
ward from xs, replacing the score function with the network-
estimated one Dϕ via Eq (5). For sampling from ps, we
first sample xτ for τ > s and τ > ζ , then sample from ps|τ
in a manner analogous to sampling from pr|s.

It can be shown that if Dϕ minimizes the consistency loss
for all r, s and perfectly learns the score function for t > ζ,
then Dϕ(xt,t)−xt

σ2
t

becomes an exact estimator of the score
function for all t ∈ [0, T ]. Consequently, the distribution
p0 = pdata can be sampled by solving Eq (3).

Daras et al. (2024) demonstrated the effectiveness of this
framework only in fine-tuning latent diffusion models, leav-
ing its efficacy when training from scratch unreported. More-
over, as sampling from pr|s depends on the model’s approx-
imation of the score (which is particularly challenging to
estimate accurately for t < ζ) rather than the ground truth,
there remains a gap between the theoretical framework and
its practical implementation. This gap limits the extent to
which the algorithm’s effectiveness is supported by their
theoretical results.

4. Theoretical Limit of Deconvolution

In this section, we evaluate the complexity of a deconvolu-
tion problem when the data corruption process is modelled
using a forward diffusion process. Through the framework
of deconvolution theory, we demonstrate that while Daras
et al. (2024) showed that diffusion models can be trained us-
ing noisy samples, obtaining a sufficient number of samples
to train high-quality models is practically infeasible.

The following two theorems establish that the optimal con-
vergence rate for estimating the data density is O(log n)−2.
These results, derived using standard deconvolution the-
ory (Meister, 2009) under a Gaussian noise assumption,
highlight the inherent difficulty of the problem. We present
the result for d = 1, which suffices to illustrate the challenge.

Theorem 1. Assume Y is generated according to (6) with
ϵ ∼ N (0, σ2

ζ ) and pdata is a univariate distribution. Under
some weak assumptions on pdata, for a sufficiently large
sample size n, there exists an estimator p̂(·;Y) such that

MISE(p̂, pdata) ≤ C ·
σ4
ζ

(log n)2
, (10)

where C is determined by pdata.

Theorem 2. In the same setting as Thm 1, for an arbitrary
estimator p̂(·;Y) of pdata based on Y ,

MISE(p̂, pdata) ≥ K · (log n)−2, (11)

whereK > 0 is determined by pdata and error distribution h.

The optimal convergence rate O(log n)−2 indicates that
reducing the MISE to one-fourth of its current value re-
quires an additional n2 − n samples. In contrast, under the
error-free scenario, the optimal convergence rate is known
to be O(n−4/5) (Wand, 1998), where reducing the MISE
to one-fourth of its current value would only necessitate
approximately 4.657n additional samples.
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The pessimistic rate indicates that effectively training a gen-
erative model using only corrupted samples with Gaussian
noise is nearly impossible. Consequently, this implies that
training from scratch, using only noisy images, with the
consistency loss discussed in Sec 3.3, is infeasible. Notably,
as indicated by Eq (10), this difficulty becomes significantly
more severe with larger σ2

ζ , while a large σ2
ζ is typically

required to alter the original samples significantly to address
copyright and privacy concerns.

To address the pessimistic statistical rate, we propose pre-
training diffusion models on a small set of copyright-free
samples. While this limited dataset can only capture a subset
of the features and variations of the full true data distribu-
tion, we argue that it provides valuable prior information,
enabling the model to start from a point much closer to the
ground distribution compared to random weight initializa-
tion. For example, for image generation, pretraining allows
the model to learn common features and structures shared
among samples, such as continuity, smoothness, edges, and
general appearance of typical object types.

Unfortunately, our empirical study in Sec 6 will show that
the consistency loss-based method discussed in Sec 3.3 can-
not deliver promising results even after pretraining. We
suspect that this is caused by the gap between their theo-
retical framework and the practical implementation. As a
result, we propose SFBD in Sec 5 to bridge such a gap.

5. Stochastic Forward–Backward
Deconvolution

In this section, we introduce a novel method for solving the
deconvolution problem that integrates seamlessly with the
existing diffusion model framework. As our approach in-
volves iteratively applying the forward diffusion process
described in Eq (1), followed by a backward step with
an optimized drift, we refer to this method as Stochastic
Forward-Backward Deconvolution (SFBD), as described in
Alg 1.

The proposed algorithm begins with a small set of clean data,
Dclean, for pretraining, followed by iterative optimization us-
ing a large set of noisy samples. As demonstrated in Sec 6,
decent quality images can be achieved on datasets such
as CIFAR-10 (Krizhevsky & Hinton, 2009) and CelebA
(Liu et al., 2015) using as few as 50 clean images. Dur-
ing pretraining, the algorithm produces a neural network
denoiser, Dϕ0 , which serves as the initialization for the
subsequent iterative optimization process. Specifically, the
algorithm alternates between the following two steps: for
k = 1, 2, . . .K,

1. (Backward Sampling) This step can be intuitively seen
as a denoising process for samples in Dnoisy using the

Algorithm 1 Stochastic Forward–Backward Deconvolution.
(Given sample set D, pD denotes the corresponding empiri-
cal distribution.)
Input: clean data: Dclean = {x(i)}Mi=1, noisy data: Dnoisy =

{y(i)
τ }Ni=1, number of iterations: K.

// Initialize Denoiser
1 ϕ0 ← Pretrain Dϕ using Eq (4) with p0 = pDclean

2 for k = 1 to K do
// Backward Sampling

3 Ek ← {y(i)
0 : ∀y(i)

τ ∈ Dnoisy, solve backward SDE
Eq (3) from τ to 0, starting from y

(i)
τ , where the score

function is estimated as
Dϕk−1

(xt,t)−xt

σ2
t

}
// Denoiser Update

4 ϕk ← Train Dϕ by minimizing Eq (4) with p0 = pEk

Output: Final denoiser DϕK

backward SDE Eq (3). In each iteration, we use the
best estimation of the score function so far induced by
Dϕk−1

through Eq (5).

2. (Denoiser Update) Fine-tune denoiser Dϕk−1
to obtain

Dϕk
by minimizing Eq (4) with the denoised samples

obtained in the previous step.

The following proposition shows that when Dnoisy contains
sufficiently many samples to characterize the true noisy
distribution pdata ∗h, when K → ∞, the diffusion model
implemented by denoiser DϕK

has the sample distribution
converging to the true pdata.
Proposition 2. Let p∗t be the density of xt obtained by
solving the forward diffusion process Eq (1) with x0 ∼ pdata,
where we have p∗ζ = pdata ∗h. Consider a modified Alg 1,
where the empirical distribution PDnoisy is replaced with the

ground truth p∗ζ . Correspondingly, pEk
becomes p(k)0 , the

distribution of x0 induced by solving:

dxt = −g(t)2 sϕk−1
(xt, t) dt+ g(t) dw̄t, xζ ∼ p∗ζ (12)

from ζ to 0, where sϕk
(xt, t) =

Dϕk
(xt,t)−xt

σ2
t

, g(t) =

(
dσ2

t

dt )
1/2 and Dϕk

is obtained by minimizing (4) accord-
ing to Alg 1. Assume Dϕk

reaches the optimal for all k.
Under mild assumptions, for k ≥ 0, we have

DKL(pdata ∥ p(k)0 ) ≥ DKL(pdata ∥ p(k+1)
0 ). (13)

In addition, for all K ≥ 1 and u ∈ Rd, we have

min
k=1,...K

∣∣∣Φpdata(u)− Φ
p
(k)
0

(u)
∣∣∣ ≤ exp

(σ2
ζ

2
∥u∥2

)√2M0

K
,

where

M0 = 1
2

∫ ζ

0

g(t)2Ep∗
t

∥∥∇ log p∗t (xt)− sϕ0(xt, t)
∥∥2 dt.
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Prop 2 shows that, after sufficiently many iterations of back-
ward sampling and denoiser updates, the distribution of
denoised samples produced by the backward sampling step
converges to the true data distribution at a rate ofO(1/

√
K)

in terms of the characteristic function. This convergence
implies that the corresponding densities and thus the distri-
butions also become close. Consequently, fine-tuning the
denoiser on these denoised samples during the Denoiser Up-
date step enables the diffusion model to generate samples
that approximately follow the true data distribution, thereby
solving the deconvolution problem.

One might argue that the norm in the convergence bound de-
pends not only on the iteration countK but also on the norm
of u, suggesting the existence of nontrivial approximation
gaps when |u| is large, regardless of how large K is. We
clarify that in practice, the contribution of the characteristic
function at large |u| is typically negligible. For distributions
with smooth and bounded densities, characteristic functions
decay rapidly, often at an exponential or super-polynomial
rate. We elaborate further on this point in Appx C, following
the proof of the proposition.

Lastly, we note that this convergence result assumes access
to infinitely many noisy samples and should be distinguished
from the sample efficiency bounds discussed in Sec 4.

The importance of pretraining. Prop 2 also highlights
the critical role of pretraining, as it allows the algorithm to
begin fine-tuning from a point much closer to the true data
distribution. Specifically, effective pretraining ensures that
sϕ0 closely approximates the ground-truth score, leading to
a smaller M0 in Prop 2. This, in turn, reduces the number
of iterations K required for the diffusion model to generate
high-quality samples.

The practical limits of increasing K. While Prop 2 sug-
gests that increasing the number of iterations K can contin-
uously improve sample quality, practical limitations come
into play. Sampling errors introduced during the backward
sampling process, as well as imperfections in the denoiser
updates, accumulate over time. These errors eventually off-
set the benefits of additional iterations, as demonstrated in
Sec 6. This observation further highlights the importance of
pretraining to mitigate the impact of such errors and achieve
high-quality samples with fewer iterations.

Alternative methods for backward sampling. While the
backward sampling in Alg 1 is presented as a naive solution
to the backward SDE in Eq (3), the algorithm is not limited
to this approach. Any backward SDE and solver yielding
the same marginal distribution as Eq (3) can be employed.
Alternatives include PF-ODE, the predictor-corrector sam-
pler (Song et al., 2021b), DEIS (Zhang & Chen, 2023), and
the 2nd order Heun method used in EDM (Karras et al.,
2022). Compared to the Euler–Maruyama method, these

Table 1: Performance comparison of generative models.
When σζ > 0, the models are trained on noisy images
corrupted by Gaussian noiseN (0, σ2

ζI) after rescaling pixel
values to [−1, 1]. For pretrained models, 50 clean images are
randomly sampled from the training datasets for pretraining.
Underscored results are produced by this work. Bolded
values indicate the best performance.

Method CIFAR10 (32 x 32) CelebA (64 x 64)

σζ Pretrain FID σζ Pretrain FID

DDPM (Ho et al., 2020) 0.0 No 4.04 0.0 No 3.26
DDIM (Song et al., 2021a) 0.0 No 4.16 0.0 No 6.53
EDM (Karras et al., 2022) 0.0 No 1.97 - - -

SURE-Score (Aali et al., 2023) 0.2 Yes 132.61 - - -
EMDiff (Bai et al., 2024) 0.2 Yes 86.47 - - -
TweedieDiff (Daras et al., 2024) 0.2 No 167.23 0.2 No 246.95
TweedieDiff (Daras et al., 2024) 0.2 Yes 65.21 0.2 Yes 58.52
TweedieDiff+ (Daras et al., 2025) 0.2 Yes 8.05 0.2 Yes -
SFBD (Ours) 0.2 Yes 13.53 0.2 Yes 6.49
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Figure 1: TweedieDiff+ vs SFBD on CIFAR10

approaches require fewer network evaluations and offer im-
proved error control for imperfect score estimation and step
discretization. As the algorithm generates Ek that contains
samples closer to pdata with increasing k, clean images used
for pretraining can be incorporated into Ek to accelerate
this process. In our empirical study, this technique is ap-
plied whenever clean samples and noisy samples (prior to
corruption) originate from the same distribution.

Relationship to the consistency loss. SFBD can be seen as
an algorithm that enforces the consistency constraint across
all positive time steps and time zero. Specifically, we have

Proposition 3. Assume that the denoising network Dϕ is
implemented to satisfy Dϕ(·, 0) = Id(·). When r = 0, the
consistency loss in Eq (9) is equivalent to the denoising
noise in Eq (4) for t = s.

The requirement that Dϕ(·, 0) = Id(·) is both natural and
intuitive, as Dϕ(x0, 0) approximates E[x0|x0] = x0. This
fact is explicitly enforced in the design of the EDM frame-
work (Karras et al., 2022), which has been widely adopted
in subsequent research.

A key distinction between SFBD and the original consis-
tency loss implementation is that SFBD does not require
sampling from pr|s or access to the ground-truth score func-
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Noisy
Observ.

SURE-
Score Amb-Diff EMDiff Tweedie

Diff w/o PT
Tweedie

Diff w/ PT
SFBD
(Ours)

Ground
Truth

Noisy Observ. Tweedie
Diff w/o PT

Tweedie
Diff w/ PT SFBD (Ours) Ground Truth

Figure 2: Denoised samples of CIFAR-10 (up) and CelebA
(down). (Noise level σζ = 0.2)

tion induced by the unknown data distribution pdata. This is
because, in the original implementation, p0 = pdata, whereas
in SFBD, p0 = p

(k)
0 , as defined in Prop 2, and is obtained

iteratively through the backward sampling step. As k in-
creases, p(k)0 converges to pdata, ensuring that the same con-
sistency constraints are eventually enforced. Consequently,
SFBD bridges the gap between theoretical formulation and
practical implementation that exists in the original consis-
tency loss framework.

6. Empirical Study

In this section, we demonstrate the effectiveness of the
SFBD framework proposed in Sec 5. Compared to
other models trained on noisy datasets, SFBD consistently
achieves superior performance across all benchmark set-
tings. Additionally, we conduct ablation studies to validate
our theoretical findings and offer practical insights for ap-
plying SFBD effectively.

Datasets and evaluation metrics. The experiments are
conducted on the CIFAR-10 (Krizhevsky & Hinton, 2009)
and CelebA (Liu et al., 2022) datasets, with resolutions of
32 × 32 and 64 × 64, respectively. CIFAR-10 consists of
50,000 training images and 10,000 test images across 10
classes. CelebA, a dataset of human face images, includes a
predefined split of 162,770 training images, 19,867 valida-
tion images, and 19,962 test images. For CelebA, images
were obtained using the preprocessing tool provided in the
DDIM official repository (Song et al., 2021a).

We evaluate image quality using the Frechet Inception Dis-

tance (FID), computed between the reference dataset and
50,000 images generated by the models. Generated samples
for FID computation are presented in Appx D.

Models and other configurations. We implemented SFBD
algorithms using the architectures proposed in EDM (Karras
et al., 2022) as well as the optimizers and hyperparameter
configurations therein. All models are implemented in an
unconditional setting, and we also enabled the non-leaky
augmentation technique (Karras et al., 2022) to alleviate
the overfitting problem. For the backward sampling step in
SFBD, we adopt the 2nd-order Heun method (Karras et al.,
2022). More information is provided in Appx E.

6.1. Performance Comparison

In Table 1, we compare SFBD with representative models
for training on noisy images. SURE-Score (Aali et al., 2023)
and EMDiff (Bai et al., 2024) tackle general inverse prob-
lems using Stein’s unbiased risk estimate and expectation-
maximization, respectively. TweedieDiffusion (Daras et al.,
2024) applies the original consistency loss from Eq (9),
while Daras et al. (2025) introduce TweedieDiff+ with a
simplified implementation that improves performance.

Following the experimental setup of Bai et al. (2024), im-
ages are corrupted by adding independent Gaussian noise
with a standard deviation of σζ = 0.2 to each pixel after
rescaling pixel values to [−1, 1]. For reference, we also
include results for models trained on clean images (σζ = 0).
In cases with pretraining, the models are initially trained
on 50 clean images randomly sampled from the training
datasets. For all results presented in this work, the same set
of 50 sampled images is used.

As shown in Table 1, SFBD consistently produces higher-
quality images than all baselines except TweedieDiff+, with
further visual evidence provided in Fig 2, where denoised
samples are generated by evaluating the backward SDE
from noisy training images. Notably, on CelebA, SFBD
achieves performance comparable to DDIM trained entirely
on clean data. While TweedieDiff benefits from pretrain-
ing, its performance remains inferior to SFBD. In fact, we
observe that the original consistency loss (9) yields only
limited improvement post-pretraining, with FID scores dete-
riorating soon after the loss is applied. TweedieDiff+, which
adopts a simplified version of the consistency loss, outper-
forms SFBD when only a very limited amount of clean data
is available, likely due to overfitting during our model’s
pretraining. However, this effect diminishes as more clean
data is introduced, allowing SFBD to surpass TweedieDiff+,
as shown in Fig 1. We attribute this to SFBD’s more sta-
ble fine-tuning via the score-matching loss, which avoids
the additional constraints imposed by consistency-based
methods.
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(a) Clean Image Ratio (b) Noise Level (c) Pretraining on Similar Datasets

Figure 3: SFBD performance on CIFAR-10 under various conditions. Unless specified, the clean image ratio is 0.04 and the
noise level σζ is 0.59. In (a) and (b), FID at iteration 0 corresponds to the pretrained model. In (c), models are pretrained on
clean images from the “truck” class, with FID at iteration 0 measuring the distance between these clean images and those
used for fine-tuning. For the w/o pretraining setting, models are trained on the full CIFAR-10 dataset with σζ = 0.59.

Figure 4: Noisy images with different σζ .

6.2. Ablation Study

In this section, we investigate how SFBD’s performance
varies with clean image ratios, noise levels, and pretraining
on similar datasets. The results align with our discussion
in Sec 4 and Sec 5 and provide practical insights. Ex-
periments are conducted on CIFAR-10, with the default
σζ = 0.59. This noise level significantly alters the original
images, aligning with our original motivation to address
potential copyright concerns (see Fig 4).

Clean image ratio. Fig 3(a) shows the FID trajectories
across fine-tuning iterations k for different clean image ra-
tios. With just 4% clean images, SFBD achieves strong
performance (FID: 6.31) and outperforms DDIM with 10%
clean images. While higher clean image ratios further im-
prove performance, the gains diminish as a small amount
of clean data already provides sufficient high-frequency
features (e.g., edges and local details) to capture feature
variations. Since these features are shared across images,
additional clean data offers limited improvement.

These findings suggest that practitioners with limited clean
datasets should focus on collecting more copyright-free data
to enhance performance. Notably, when clean images are
scarce, the marginal gains from additional fine-tuning itera-
tions k are greater than when more clean data is available.
Therefore, in scenarios where acquiring clean data is chal-
lenging, increasing fine-tuning iterations can be an effective
alternative to improve results.

Noise level. Fig 3(b) shows SFBD’s sampling performance
across fine-tuning iterations for different noise levels, using

Table 2: Comparison of SFBD and Restormer (Zamir et al.,
2022) on denoising tasks.

CIFAR-10 (4% clean images) CelebA
σ Model Iter 1 Iter 2 Iter 3 Iter 4 Setting Model Iter 1 Iter 2 Iter 3 Iter 4

0.30 SFBD 6.16 3.42 2.68 2.35 50 clean imgs SFBD 47.69 10.05 5.63 3.93
Restormer 53.87 σ = 0.2 Restormer 18.90

0.59 SFBD 10.23 7.47 6.31 6.54 1.5k clean imgs SFBD 9.05 5.76 4.56 3.98
Restormer 99.99 σ = 1.38 Restormer 227.91

1.09 SFBD 12.68 9.39 9.08 10.14
—

Restormer 132.69

the values from 2nd order Heun sampling in EDM (Karras
et al., 2022). The impact of noise on the original images is
visualized in Fig 4. As shown in Fig 3(b), increasing σζ sig-
nificantly degrades SFBD’s performance. This is expected,
as higher noise levels obscure more features in the original
images. Furthermore, as suggested by Thm 1, higher σζ
demands substantially more noisy images, which cannot be
compensated by pretraining on a small clean image set. Im-
portantly, this performance drop is a mathematical limitation
discussed in Sec 4, rather than an issue solvable by better
deconvolution algorithms. In Sec 6.3, we show that slightly
increasing pretraining clean image set can yield strong re-
sults, even at reasonably high noise levels on CelebA.

Pretraining with clean images from similar datasets.
Fig 3(c) evaluates SFBD’s performance when fine-tuning
on image sets from different classes, with the model ini-
tially pretrained on clean truck images. The results show
that the closer the noisy dataset is to the truck dataset (as
indicated by the FID at iter 0), the better the model performs
after fine-tuning. This is expected, as similar datasets share
common features that facilitate learning the target data dis-
tribution. Interestingly, even when the pretraining dataset
differs significantly from the noisy dataset, the model still
outperforms the version without pretraining. This is because
unrelated datasets often share fundamental features, such as
edges and local structures. Therefore, practitioners should
always consider pretraining before fine-tuning on target
noisy datasets, while more similar pretraining datasets yield
better final sampling performance.
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Figure 5: (Left) SFBD performance on CelebA under three configurations, with FID at iteration 0 for the pretrained model.
(Right) Denoised samples generated by the backward SDE, starting from a noisy image in the training dataset. For cfg A,
results are shown after each fine-tuning iteration, while cfg B and cfg C are shown at their minimum FID iterations.

6.3. Further Discussions

Additional results on CelebA. Fig 5 presents SFBD per-
formance trajectories on CelebA under three configurations.
While Table 1 reports results using configuration (cfg) C to
align with benchmarks, this setup is impractical due to its
low noise level, which fails to address copyright and privacy
concerns. As illustrated in Fig 5 (right), the low noise level
allows human observers to identify individuals and recover
image details, with model-denoised images nearly identical
to the originals. To address this, we report results for cfgs
A and B with σζ = 1.38, concealing most original image
information. While pretraining on 50 clean images performs
poorly, increasing the size to 1.5k (still < 1% of the train-
ing dataset) achieves impressive results. At iteration 3, the
model reaches FID 5.91, outperforming DDIM trained on
clean images. This supports our discussion in Sec 6.2: col-
lecting more clean data significantly boosts performance
when the clean dataset is small.

Features learned from noisy images. As shown in Fig 5,
when σζ = 1.38, almost all information from the original
images is obscured, prompting the question: can the model
learn from such noisy inputs, and how does this happen? In
Fig 5, we plot the model’s denoised outputs in cfg A after
each fine-tuning iteration. These outputs serve as samples
for the next iteration, revealing what the model learns and
adapts to in the process. For the first row, the pretrained
model (iter 0) produces a face very different from the origi-
nal, failing to recover features like a headband. This occurs
because the clean dataset for pretraining lacks similar faces
with headbands. Instead of random guesses, the model com-
bines local features (e.g., face shapes, eyes) learned from
the clean data with the global structure from the noisy im-
ages. This process combines previously learned features in
new ways, helps the model better generalize, and gradually
improves its ability to approximate the true distribution, as
supported by Prop 2. Similarly, in the second row, the model
learns to attach a goatee to the face despite the correspond-
ing region in the original image being a microphone.

How SFBD differs from standard denoising algorithms.
While SFBD is intuitively described as alternating between

denoising and fine-tuning, it does not function like a tradi-
tional denoiser that reconstructs exact clean samples. In-
stead, it learns to match the full data distribution, allowing
greater flexibility and producing more realistic outputs. In
Table 2, we compare the FID of SFBD-denoised samples
at each iteration (Ek in Alg 1) against those denoised by
Restormer (Zamir et al., 2022), a strong off-the-shelf de-
noiser. SFBD consistently yields significantly lower FIDs
even after the first iteration, and the sample quality improves
steadily with more updates.

These results also caution against replacing SFBD’s denois-
ing process with a classical denoiser. Since models trained
on denoised samples cannot surpass their targets in FID, the
values in Table 2 represent upper bounds. Notably, final
SFBD models achieve lower generative FIDs (Fig 3(b)) than
those from Restormer-denoised data, making it unlikely that
a competitive model could be trained on such samples.

Data leakage and sample memorization. We note that
SFBD is not intended to prevent leakage of the clean sam-
ples used for pretraining. As these samples are assumed to
be public and copyright-free, leakage from this subset is not
a concern. Instead, SFBD is specifically designed to protect
sensitive data. By construction, the model accesses only
a single corrupted version of each sensitive sample during
the entire training process. This design inherently limits the
model’s ability to reconstruct copyrighted or private content,
making SFBD privacy-preserving by nature. In Appx F,
we adopt the methodology of Daras et al. (2024) to evalu-
ate privacy risks: we plot similarity score distributions and
identify the sensitive sample most similar to any generated
output. The results confirm that SFBD does not reconstruct
sensitive data, supporting our privacy claims.

7. Conclusion
In this paper, we presented SFBD, a new deconvolution
method based on diffusion models. Under mild assump-
tions, we theoretically showed that our method could guide
diffusion models to learn the true data distribution through
training on noisy samples. The empirical study corroborates
our claims and shows that our model consistently achieves
state-of-the-art performance in some benchmark tasks.
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This paper introduces SFBD, a framework for effectively
training diffusion models primarily using noisy samples.
Our approach enables data sharing for generative model
training while safeguarding sensitive information.

For organizations utilizing personal or copyrighted data
to train their models, SFBD offers a practical solution to
mitigate copyright concerns, as the model never directly
accesses the original samples. This mathematically guaran-
teed framework can promote data-sharing by providing a
secure and privacy-preserving training method.

However, improper implementation poses a risk of sensi-
tive information leakage. A false sense of security could
further exacerbate this issue, underscoring the importance
of rigorous validation and responsible deployment.
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A. A Brief Introduction to the Density Convolutions

In this section, we give a brief discussion on the density convolution and how it is related to our problem.

For simplicity, we stick to the case when d = 1. Consider the data generation process in Eq (6). Let py denote the density of
the distribution of the noisy samples y(i). Then we have

Fact 1. For ω ∈ R,

py(ω) =

∫
pdata(x) h(ω − x) dx = (pdata ∗h)(ω). (14)

Proof. This is because, for all measurable function ψ, we have∫
ψ(ω)py(ω) dω =

∫ ∫
ψ(x+ ϵ) pdata(x)h(ϵ) dxdϵ =

∫ ∫
ψ(ω)pdata(x)h(ω − x) dxdw

=

∫
ψ(w)

[∫
pdata(x) h(ω − x) dx

]
dω.

As the equality holds for all ψ, we have py(ω) =
∫
pdata(x) h(ω − x) dx = (pdata ∗h)(ω).

As a result, according to Fact 1, the density convolution is naturally involved in our setting.

Then, we provide an alternative way to show why we can recover pdata given py and h. (Namely, we need to deconvolute py
to obtain pdata.) Our discussion can be seen a complement of the discussion following Prop 1. Let ϕp denote the characteristic
function of the random variable with distribution p such that

ϕp(t) =

∫
exp(itω) p(ω) dω. (15)

We note that the characteristic function of a density p is its Fourier transform. As a result, through the dual relationship of
multiplication and convolution under Fourier transformation (Meister, 2009, Lemma A.5), we have

ϕpy
(t) = ϕpdata(t) ϕh(t). (16)

As a result, given noisy data distribution py and noise distribution h, we have

ϕpdata(t) =
ϕpy

(t)

ϕh(t)
. (17)

Finally, we can recover pdata through an inverse Fourier transform:

pdata(x) = (2π)−1

∫
exp(−itx) ϕpdata(t) dt = (2π)−1

∫
exp(−itx)

ϕpy (t)

ϕh(t)
dt. (18)

We conclude this section by summarizing the relationship between data and noisy sample distributions in Fig 6.

pdata py = pdata ∗ h

∼

x(i) y(i) = x(i) + ε(i)
add ε(i) ∼ h

irreversible

∼

convolution

deconvolution

Figure 6: While the corruption process is irreversible at the sample level, a bijective relationship exists between the clean
and noisy data distributions.
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B. Proofs Related to Deconvolution Theory

We first show the result suggesting it is possible to identify a distribution through its noisy version obtained by corrupting its
samples by injecting independent Gaussian noises.

Proposition 1. Let p and q be two distributions defined on Rd. For all u ∈ Rd,

|Φp(u)−Φq(u)|≤exp
(σ2

ζ

2
∥u∥2

)√
2DKL(p∗h∥q ∗h).

Lemma 1. Given two distributions p and q on Rd. Let Φp(u) and Φq(u) be their characteristic functions. Then for all
u ∈ Rd, we have ∣∣Φp(u)− Φq(u)

∣∣ ≤ √
2DKL(p ∥ q). (19)

Proof. We note that
Φp(u) = Ep[exp(iu

⊤x)], Φq(u) = Eq[exp(iu
⊤x)].

Then for any u ∈ Rd, we have

∣∣Φp(u)− Φq(u)
∣∣ ≤ ∣∣∣∣∫

Rd

exp(iu⊤x)p(x) dx−
∫
Rd

exp(iu⊤x)q(x) dx

∣∣∣∣
=

∣∣∣∣∫
Rd

exp(iu⊤x)
(
p(x)− q(x)

)
dx

∣∣∣∣ ≤ ∫
Rd

∣∣exp(iu⊤x)
∣∣︸ ︷︷ ︸

=1

|p(x)− q(x)| dx

=

∫
Rd

|p(x)− q(x)| dx

= 2 ∥p− q∥TV,

where the last equality is due to Scheffe’s theorem (Tsybakov, 2009, Lemma 2.1, p. 84)).

Then, by Pinsker’s inequality (Tsybakov, 2009, Lemma 2.5, p. 88), we have∣∣Φp(u)− Φq(u)
∣∣ ≤ 2 ∥p− q∥TV ≤

√
2DKL(P ∥ Q).

which completes the proof.

Proof of Prop 1. Note that, by the convolution theorem (Meister, 2009, A.4), for all u ∈ Rd, we have

Φp∗h(u) = Φp(u) Φh(u) = Φp(u) exp
(
−
σ2
ζ

2
∥u∥2

)
,

as h ∼ N (0, σ2
ζI) having Φh(u) = exp

(
− σ2

ζ

2 ∥u∥
2
)
. Applying Lem 1, we have

exp
(
−
σ2
ζ

2
∥u∥2

) ∣∣∣Φp(u)− Φq(u)
∣∣∣ = ∣∣Φp∗h(u)− Φq∗h(u)

∣∣ ≤√
2DKL(p∗h∥q ∗h). (20)

Rearranging the inequality completes the proof.

We then derive the proofs regarding the sample complexity of the deconvolution problem.

Theorem 1. Assume Y is generated according to (6) with ϵ ∼ N (0, σ2
ζ ) and pdata is a univariate distribution. Under some

weak assumptions on pdata, for a sufficiently large sample size n, there exists an estimator p̂(·;Y) such that

MISE(p̂, pdata) ≤ C ·
σ4
ζ

(log n)2
, (10)

where C is determined by pdata.
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Proof. The result is constructed based on the work by Stefanski & Carroll (1990). In particular, assuming that pdata is
continuous, bounded and has two bounded integrable derivatives such that∫

p′′data(x) dx <∞, (21)

we can construct a kernel based estimator of pdata of rate

λ4

4
µ2
K,2

∫
p′′data(x) dx, (22)

where µ2
κ,2 is a constant determined by the selected kernel κ and λ is a function of number of samples n gradually decreasing

to zero as n→∞. It is required that λ satisfies

1

2πnλ
exp(

B2σ2
ζ

λ2
)→ 0 (23)

as n→∞, where B > 0 is a constant depending on the picked kernel κ. Here, we assume we picked a kernel with B < 1.

To satisfy the constraint, we choose λ(n) = σζ√
logn

. Plugging it into Eq (23), we have

lim
n→∞

1

nλ
exp(

B2σ2
ζ

λ2
) = lim

n→∞

√
log n

nσζ
exp (B2 log n) = lim

n→∞

√
log n

n1−B2σζ
. (24)

To show limn→∞
√
logn

n1−B2σζ
= 0, it suffices to show limn→∞

logn

n2−2B2σ2
ζ

= 0. By L’Hopital’s rule, we have

lim
n→∞

log n

n2−2B2σ2
ζ

= lim
n→∞

1

(2− 2B2)n2−2B2σ2
ζ

= 0 (25)

As a result, λ(n) = σζ√
logn

is a valid choice, which gives the convergence rate
σ4
ζ

(logn)2 .

Theorem 2. In the same setting as Thm 1, for an arbitrary estimator p̂(·;Y) of pdata based on Y ,

MISE(p̂, pdata) ≥ K · (log n)−2, (11)

where K > 0 is determined by pdata and error distribution h.

Proof. This result is a special case of Theorem 2.14 (b) in (Meister, 2009). When the error density is Gaussian, we have
γ = 2. In addition, in the proof of Thm 1, we assumed that pdata has two bounded integrable derivatives, which equivalently
assumes pdata satisfies the Soblev condition with smoothness degree β = 2 (see Eq. A.8, Meister 2009). Then the theorem
shows MISE(p̂, pdata) ≥ const · (log n)−2β/γ = const · (log n)−2.

C. Proofs Related to the Results of SFBD

We first prove Prop 2, which we restate below:

Proposition 2. Let p∗t be the density of xt obtained by solving the forward diffusion process Eq (1) with x0 ∼ pdata, where
we have p∗ζ = pdata∗h. Consider a modified Alg 1, where the empirical distribution PDnoisy is replaced with the ground truth

p∗ζ . Correspondingly, pEk
becomes p(k)0 , the distribution of x0 induced by solving:

dxt = −g(t)2 sϕk−1
(xt, t) dt+ g(t) dw̄t, xζ ∼ p∗ζ (12)

from ζ to 0, where sϕk
(xt, t) =

Dϕk
(xt,t)−xt

σ2
t

, g(t) = (
dσ2

t

dt )
1/2 and Dϕk

is obtained by minimizing (4) according to Alg 1.
Assume Dϕk

reaches the optimal for all k. Under mild assumptions, for k ≥ 0, we have

DKL(pdata ∥ p(k)0 ) ≥ DKL(pdata ∥ p(k+1)
0 ). (13)
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In addition, for all K ≥ 1 and u ∈ Rd, we have

min
k=1,...K

∣∣∣Φpdata(u)− Φ
p
(k)
0

(u)
∣∣∣ ≤ exp

(σ2
ζ

2
∥u∥2

)√2M0

K
,

where

M0 = 1
2

∫ ζ

0

g(t)2Ep∗
t

∥∥∇ log p∗t (xt)− sϕ0
(xt, t)

∥∥2 dt.
To facilitate our discussions, let

•
←−
Q

ϕk−1

0:ζ : the path measure induced by the backward process Eq (12). In general, we use
←−
Qϕ

0:ζ to denote the path
measure when the drift term is parameterized ϕ.

•
−→
P

(k)
0:ζ : the path measure induced by the forward process Eq (1) with p0 = p

(k)
0 , defined in Prop 2. The density of its

marginal distribution at time t is denoted by p(k)t

•
−→
P ∗

0:ζ : the path measure induced by the forward process Eq (1) with p0 = pdata.

We note that, according to Alg 1, the marginal distribution of
←−
Q

ϕk−1

0:ζ at t = 0 has density p(k)0 .

The following lemma allows us to show that the training of the diffusion model can be seen as a process of minimizing the
KL divergence of two path measures.
Lemma 2 (Pavon & Wakolbinger 1991, Vargas et al. 2021). Given two SDEs:

dxt = fi(xt, t) dt+ g(t) dwt, x0 ∼ p(i)0 (x) t ∈ [0, T ] (26)

for i = 1, 2. Let P (i)
0:T , for i = 1, 2, be the path measure induced by them, respectively. Then we have,

DKL(P
(1)
0:T ∥ P

(2)
0:T ) = DKL(p

(1)
0 ∥ p(2)0 ) + E

P
(1)
0:T

[∫ T

0

1

2 g(t)2
∥f1(xt, t)− f2(xt, t)∥2 dt

]
. (27)

In addition, the same result applies to a pair of backward SDEs as well, where p(i)0 is replaced with p(i)T .

Proof. By the disintegration theorem (e.g., see Vargas et al. 2021, Appx B), we have

DKL(P1 ∥ P2) = DKL(p
(1)
0 ∥ p(2)0 ) + E

P
(1)
0:T

[
log

dP
(1)
0:T (·|x0))

dP
(2)
0:T (·|x0)

]
, (28)

where P (i)
0:T (·|x0) is the conditioned path measure of P (i)

0:T given the initial point x0. Then, applying the Girsanov theorem
(Kailath, 1971; Oksendal, 2003) on the second term yields the desired result.

By Lem 2, we can show that the Denoiser Update step in Alg 1 finds ϕk minimizing DKL(
−→
P

(k)
0:ζ ∥

←−
Qϕ

0:ζ). To see this, note
that

ϕk = argmin
ϕ

DKL(
−→
P

(k)
0:ζ ∥

←−
Qϕ

0:ζ)

= argmin
ϕ

DKL(p
(k)
ζ ∥ p∗ζ) + E−→

P
(k)
0:ζ

[∫ ζ

0

g(t)2

2
∥∇ log p

(k)
t (xt)− sϕ(xt, t)∥2 dt

]
, (29)

where p(k)t is the marginal distribution induced by the forward process (1) with the boundary condition p(k)0 at t = 0. Note
that, we have applied Lem 2 to the backward processes inducing

−→
P

(k)
0:ζ and

←−
Qϕ

0:ζ . Thus, the drift term of
−→
P

(k)
0:ζ is not zero

but −g(t)2∇ log p
(k)
t (xt) according to Eq (3). Since the first term of Eq (29) is a constant, the minimization results in

∇ log p
(k)
t (xt) = sϕk

(xt, t) (30)
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for all xt ∈ Rd and t ∈ (0, ζ]. In addition, we note that, the denoising loss in Eq (4) is minimized when ∇ log p
(k)
t (xt) =

sϕ(xt, t) for all t > 0; as a result, ϕk minimizes DKL(
−→
P

(k)
0:ζ ∥

←−
Qϕ

0:ζ) as claimed.

Now, we are ready to prove Prop 2.

Proof of Prop 2. Applying Lem 2 to the backward process

DKL(
−→
P ∗

0:ζ ∥
←−
Q

ϕk−1

0:ζ ) = DKL(p
∗
ζ ∥ p∗ζ)︸ ︷︷ ︸

=0

+E−→
P ∗

0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log p∗t (xt)− sϕk−1
(xt, t)∥2 dt

]

= E−→
P ∗

0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log p∗t (xt)− sϕk−1
(xt, t)∥2 dt

]
(31)

Likewise,

DKL(
−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ ) = DKL(p

∗
ζ ∥ p

(k)
ζ ) + E−→

P ∗
0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log p∗t (xt)−∇ log p
(k)
t (xt)∥2 dt

]

= DKL(p
∗
ζ ∥ p

(k)
ζ ) + E−→

P ∗
0:ζ

[∫ ζ

0

g(t)2

2 ∥∇ log p∗t (xt)− sϕk
(xt, t)∥2 dt

]
(31)
= DKL(p

∗
ζ ∥ p

(k)
ζ ) +DKL(

−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ) (32)

where the second equality is due to the discussion on deriving Eq (30).

Lem 2 also implies that

DKL(
−→
P ∗

0:ζ ∥
←−
Q

ϕk−1

0:ζ ) = DKL(pdata ∥ p(k)0 ) + E−→
P ∗

0:ζ

[∫ ζ

0

1
2∥b

(k−1)(xt, t)∥2 dt

]
︸ ︷︷ ︸

:=Bk−1

, (33)

where b(k−1)(xt, t) is the drift of the forward process inducing
←−
Q

ϕk−1

0:ζ . In addition,

DKL(
−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ ) = DKL(pdata ∥ p(k)0 ) + E−→

P ∗
0:ζ

[∫ ζ

0

1
2∥0− 0∥2 dt

]
= DKL(pdata ∥ p(k)0 ). (34)

As a result,

DKL(pdata ∥ p(k)0 )
(34)
=DKL(

−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ )

(32)
= DKL(p

∗
ζ ∥ p

(k)
ζ ) +DKL(

−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ)

≥ DKL(
−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ)
(33)
= DKL(pdata ∥ p(k+1)

0 ) + Bk

≥DKL(pdata ∥ p(k+1)
0 )

which is (13). In addition, we have

DKL(
−→
P ∗

0:ζ ∥
←−
Q

ϕk−1

0:ζ )
(33)
= DKL(pdata ∥ p(k)0 ) + Bk−1

(34)
= DKL(

−→
P ∗

0:ζ ∥
−→
P

(k)
0:ζ ) + Bk−1

(32)
= DKL(p

∗
ζ ∥ p

(k)
ζ ) +DKL(

−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ) + Bk−1

= DKL(
−→
P ∗

0:ζ ∥
←−
Qϕk

0:ζ) +
[
DKL(p

∗
ζ ∥ p

(k)
ζ ) + Bk−1

]
.

As a result, applying this relationship recursively, we have

DKL(
−→
P ∗

0:ζ ∥
←−
Qϕ0

0:ζ) =

K∑
k=1

DKL(p
∗
ζ ∥ p

(k)
ζ ) +

K∑
k=1

Bk−1 +DKL(
−→
P ∗

0:ζ ∥
←−
QϕK

0:ζ ). (35)
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Since DKL(
−→
P ∗

0:ζ ∥
←−
Qϕ0

0:ζ) =M0, we have

K∑
k=1

DKL(pdata ∗ h ∥ p(k) ∗ h) =
K∑

k=1

DKL(p
∗
ζ ∥ p

(k)
ζ ) ≤M0, (36)

for all K ≥ 1. This further implies,

min
k∈{1,2,...,K}

DKL(pdata ∗ h ∥ p(k) ∗ h) ≤
M0

K
. (37)

Applying Prop 1, we obtain,

min
k∈{1,2,...,K}

∣∣∣Φpdata(u)− Φ
p
(k)
0

(u)
∣∣∣ ≤ exp

(σ2
ζ

2
∥u∥2

)√2M0

K
. (38)

Additional Comments on the Convergence Guarantee of Prop 2. In the main text, we noted that although the bound appears
to grow with ∥u∥, the behaviour of characteristic functions at large ∥u∥ is typically negligible in practice. Characteristic
functions of distributions with smooth, bounded densities tend to decay rapidly – often exponentially or at a super-polynomial
rate.

To make this precise, consider the 1D case: the characteristic function ϕ(u) is the Fourier transform of the density. If the
density is k-times differentiable, then it is well known (e.g., Lemma 4, p. 514, Feller 1971) that |ϕ(u)| = o(|u|−k). This
implies that for sufficiently large |u|, the characteristic function becomes negligible in magnitude.

Thus, assuming both pdata and p(k)0 are smooth with bounded support, it suffices to match their characteristic functions
over a compact domain |u| < U for some U > 0. Such local agreement in the Fourier domain implies closeness of the
corresponding densities, and hence the distributions.

We complete this section by showing the connection between our framework and the original consistency loss.

Proposition 3. Assume that the denoising network Dϕ is implemented to satisfy Dϕ(·, 0) = Id(·). When r = 0, the
consistency loss in Eq (9) is equivalent to the denoising noise in Eq (4) for t = s.

Proof. When t = s, denoising noise in Eq (4) becomes

E
p0

E
ps|0

[
∥Dϕ(xs, s)− x0∥2

]
= Eps

Ep0|s

[
∥Dϕ(xs, s)− x0∥2

]
=Eps

Ep0|s

[
∥Dϕ(xs, s)− Ep0|s [x0] + Ep0|s [x0]− x0∥2

]
=Eps

Ep0|s

[
∥Dϕ(xs, s)− Ep0|s [x0]∥2

]
+ Eps

Ep0|s

[
∥Ep0|s [x0]− x0∥2

]︸ ︷︷ ︸
Const.

+ 2Eps
Ep0|s

[ 〈
Dϕ(xs, s)− Ep0|s [x0],Ep0|s [x0]− x0

〉 ]︸ ︷︷ ︸
=0

=Eps

[
∥Dϕ(xs, s)− Ep0|s [x0]∥2

]
+ Const.

=Eps

[
∥Dϕ(xs, s)− Ep0|s [Dϕ(x0, 0)]∥2

]
+ Const.,

which is the consistency loss in Eq (9) when r = 0.
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D. Additional Sampling Results

In this section, we present model-generated samples used for FID computation in Sec 6. The samples are taken from the
models at their fine-tuning iteration with the lowest FID.

D.1. CIFAR-10

Samples for computing FIDs in Fig 3(a) - Clean Image Ratio

Figure 7: Clean image ratio = 0.04 – FID: 6.31

Figure 8: Clean image ratio = 0.1 – FID: 3.58

Figure 9: Clean image ratio = 0.2 – FID: 2.98
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Samples for computing FIDs in Fig 3(b) - Noise Level

Figure 10: Noise level σζ = 0.30 – FID: 3.97

Figure 11: Noise level σζ = 0.59 – FID: 6.31

Figure 12: Noise level σζ = 1.09 – FID: 9.43
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Figure 13: Noise level σζ = 1.92 – FID: 10.91

Samples for computing FIDs in Fig 3(c) - Pretraining on Similar Datasets

Figure 14: Class for fine-tuning: automobile – FID: 10.39

Figure 15: Class for fine-tuning: ship – FID: 19.19
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Figure 16: Class for fine-tuning: horse – FID: 48.11

Figure 17: Class for fine-tuning: no pretrain – FID: 155.04

D.2. CelebA

Figure 18: cfg A: σζ = 1.38; 1,500 clean images for pretraining – FID: 5.91
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Figure 19: cfg B: σζ = 1.38; 50 clean images for pretraining – FID: 23.63

Figure 20: cfg C: σζ = 0.20; 50 clean images for pretraining – FID: 6.48
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E. Experiment Configurations

E.1. Model Architectures

We implemented the proposed SFBD algorithm based on the following configurations throughout our empirical studies:

Table 3: Experimental Configuration for CIFAR-10 and CelebA

Parameter CIFAR-10 CelebA

General
Batch Size 512 256
Loss Function EDMLoss (Karras et al., 2022) EDMLoss (Karras et al., 2022)
Sampling Method 2nd order Heun method (EDM)

(Karras et al., 2022)
2nd order Heun method (EDM)
(Karras et al., 2022)

Sampling steps 18 40

Network Configuration
Dropout 0.13 0.05
Channel Multipliers {2, 2, 2} {1, 2, 2, 2}
Model Channels 128 128
Resample Filter {1, 1} {1, 3, 3, 1}
Channel Mult Noise 1 2

Optimizer Configuration
Optimizer Class Adam (Kingma & Ba, 2015) Adam (Kingma & Ba, 2015)
Learning Rate 0.001 0.0002
Epsilon 1× 10−8 1× 10−8

Betas (0.9, 0.999) (0.9, 0.999)

E.2. Datasets

All experiments on CIFAR-10 (Krizhevsky & Hinton, 2009) use only the training set, except for the one presented in Fig 3(c).
For this specific test, we merge the training and test sets so that each class contains a total of 6,000 images. At iteration 0,
the FID computation measures the distance between clean images of trucks and those from the classes on which the model is
fine-tuned. For subsequent iterations, FID is calculated in the same manner as in other experiments. Specifically, the model
first generates 50,000 images, and the FID is computed between the sampled images and the images from the fine-tuning
classes. All experiments on CelebA (Liu et al., 2015) are performed on its training set.
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F. Data Leakage and Sample Memorization

As discussed in the main text, SFBD does not aim to protect the clean pretraining data from leakage. However, since these
clean samples are assumed to be publicly available and free of copyright restrictions, their potential exposure poses no
privacy concerns. SFBD is instead explicitly designed to safeguard sensitive data. The key privacy-preserving mechanism is
that each sensitive sample is only presented to the model in a single, corrupted form throughout training. This restriction
prevents the model from memorizing or reconstructing the original content, thus reducing the risk of reproducing private or
copyrighted material.

To empirically validate this claim, we adopt the evaluation protocol of Daras et al. (2024), which involves analyzing
similarity score distributions and identifying the most similar sensitive sample for each generated image. We report and
discuss the results for both CIFAR-10 and CelebA. Overall, the findings indicate that SFBD does not regenerate sensitive
examples, supporting its privacy-preserving properties.

F.1. CIFAR-10

In Fig 21, we show the distribution of maximum similarity scores for models trained with SFBD under various noise levels.
The model with noise level = 0 is trained on the full, uncorrupted dataset. To compute similarity, we embed both the
generated images (50k samples) and the sensitive dataset images into the DINOv2 (Oquab et al., 2024) latent space. For
each generated image, we record the maximum inner product (i.e., similarity score) with its closest sensitive neighbour. As
illustrated in Fig 22, images with similarity scores below 0.93 are visually distinct. Since almost all samples fall below
this threshold, Fig 21 indicates that SFBD effectively avoids memorization of sensitive data while promoting sample
diversity. Additionally, the figure shows that similarity scores steadily decrease as the noise level increases, supporting the
privacy-preserving nature of SFBD and indicating a tradeoff between image quality and data leakage risk.

Figure 21: Distribution of maximum similarity scores for models trained with SFBD under varying noise levels. All models
are pretrained using 4% clean samples, while the remaining (sensitive) data are corrupted with noise. (The model with noise
level = 0 is trained on the full, uncorrupted dataset.)

F.2. CelebA

Since human faces share highly similar structures, their similarity scores are generally much higher than those observed
in CIFAR-10. Consequently, instead of showing full similarity distributions, we directly present the top matching pairs
between the generated images (50,000 samples) and their most similar counterparts in the sensitive dataset (used to create
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0.980 0.969 0.975 0.973 0.957 0.949 0.948

0.940 0.930 0.912 0.918 0.902 0.901 0.900

Figure 22: Generated images from the pretrained EDM on CIFAR-10 (top row) and their most similar images from the
CIFAR-10 training set (bottom row). Images appear visually distinct when the similarity score falls below 0.93.

the noisy training set).

The results for cfg A and cfg C are shown in Fig 23 and Fig 24, respectively. Visual inspection confirms that the model
trained with SFBD does not memorize the noisy training data.

0.980 0.978 0.978 0.978 0.978 0.977 0.977 0.977

0.977 0.977 0.977 0.976 0.976 0.976 0.976 0.976

Figure 23: Top matching image pairs from the CelebA dataset. The model is trained in cfg A specified in the submission
(1,500 clean images, σ = 1.38). Each column shows a pair: the generated sample (top) and the most similar sensitive image
(bottom) to generate noisy samples. Scores represent similarity computed via DINOv2 (Oquab et al., 2024) and we list the
top 18 pairs that give the largest similarity score.
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0.981 0.980 0.979 0.979 0.979 0.979 0.978 0.978

0.978 0.978 0.978 0.978 0.978 0.978 0.977 0.977

Figure 24: Top matching image pairs from the CelebA dataset. The model is trained in cfg C specified in the submission (50
clean images σ = 0.2). Each column shows a pair: the generated sample (top) and the most similar sensitive image (bottom)
to generate noisy samples. Scores represent similarity computed via DINOv2 (Oquab et al., 2024) and we list the top 18
pairs that give the largest similarity score.
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