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ABSTRACT

Advancements in Al image generation, particularly diffusion models, have pro-
gressed rapidly. However, the absence of an established framework for quanti-
fying the reliability of Al-generated images hinders their use in critical decision-
making tasks, such as medical image diagnosis. In this study, we address the task
of detecting anomalous regions in medical images using diffusion models and pro-
pose a statistical method to quantify the reliability of the detected anomalies. The
core concept of our method involves a selective inference framework, wherein sta-
tistical tests are conducted under the condition that the images are produced by a
diffusion model. With our approach, the statistical significance of anomaly detec-
tion results can be quantified in the form of a p-value, enabling decision-making
with controlled error rates, as is standard in medical practice. We demonstrate
the theoretical soundness and practical effectiveness of our statistical test through
numerical experiments on both synthetic and brain image datasets.

1 INTRODUCTION

Advances in image generation Al, such as diffusion models, have been remarkable (Song & Ermon,
2019). They can generate highly realistic and detailed images, which leads to innovations in various
tasks across various fields. For example, image generation Al significantly enhances medical image
diagnosis by improving accuracy and efficiency. It can generate highly detailed and enhanced images
from standard medical scan images, potentially offering doctors to detect anomalies and diseases
with greater precision. Furthermore, image generation Al can be used to create alternative versions
of medical images to consider what-if scenarios. For example, it can generate virtual images of a
patient when they are healthy, which allows for comparing the current actual images with the virtual
healthy images, making it possible to provide a diagnosis tailored to the individual patient.

On the other hand, when using virtual images generated by Al for critical decision-making, such
as medical diagnosis, it is crucial to ensure the reliability of the decisions. Given that images are
generated by an Al algorithm, such as a deep learning model trained on historical data, they may
inherently contain biases and errors. Therefore, treating virtual synthetic images as equivalent to real
images in decision-making tasks carries the risk of biased and erroneous outcomes. When making
critical decisions based on generated images, it is necessary to be able to assess their reliability
by properly taking into account the fact that the images were generated by Al. However, to our
knowledge, there are no studies that can quantify the reliability of decision-making based on image
generation Al

In this study, we address this challenge using the statistical hypothesis testing framework. We intro-
duce a statistical inference framework called selective inference (SI), which has gained attention over
the past decade in the statistics community as a novel approach for data-driven hypotheses (Taylor &
Tibshiranil 2015} [Fithian et al.l 2015} |Lee & Taylor, [2014). In SI, statistical inference is performed
based on the sampling distribution of the test statistic under the condition that the hypothesis being
tested was selected based on the data. Our core idea is to formulate decision-making tasks involv-
ing generated images as statistical hypothesis testing problems, and to incorporate SI framework to
accurately quantify the reliability of decisions influenced by these generated images.

As an example of decision-making tasks based on image generation Al, we focus on the problem of
detecting anomalous regions in medical images (Wolleb et al.,[2022; Baur et al.,[2021)) (see Figurem).
Initially, a diffusion model is trained exclusively on normal images during the training phase. In the
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Figure 1: Schematic illustration of the anomaly detection on a brain image dataset using a diffusion
model and the proposed DMAD-test. When a test image, which may contain an anomalous region,
is fed into a trained diffusion model, a normal image is generated through the forward process
and reverse process. By initiating the image generation from the middle of the forward process, a
normal image that retains the characteristics of the input image can be generated. By comparing
the input image with the normal image, the anomalous region can be identified. In this study, we
propose a method called the DM AD-test, which quantifies the statistical significance of the identified
anomalous regions in the form of p-value. The DM AD-test calculates the p-values by incorporating
the fact that the anomalous region has been identified by the diffusion model, thus enabling unbiased
decision-making (see §3|and §E]f0r details).

testing phase, a patient’s test image is processed through this model to create a virtual normal image,
against which the original is compared to identify anomalous regions. Our proposed statistical test,
the Diffusion Model-based Anomalous Region Detection Test (DMAD-test), quantifies the statistical
reliability of detected anomalies as p-values. Decisions based on these p-values can theoretically
control the false detection rate at desired significance levels (such as 0.01 or 0.05).

Related work. Diffusion models have been effectively utilized in anomalous region detection
problems (Wolleb et al., 2022; Pinaya et al., | 2022} [Fontanella et al., 2023; Wyatt et al., [2022}
Mousakhan et al.l 2023). In this context, the denoising diffusion probabilistic model (DDPM) is
commonly used (Ho et all 2020} Song et al.l 2022). During the training phase, a DDPM model
learns the distribution of normal medical images by iteratively adding and then removing noise. In
the test phase, the model attempts to reconstruct a new test image. If the image contains anoma-
lous regions, such as tumors, the model may struggle to accurately reconstruct these regions, as it
has been trained primarily on normal regions. The discrepancies between the original and the re-
constructed image are then analyzed to identify and highlight anomalous regions. Other types of
generative Al has also been used for anomalous region detection task (Baur et al 2021} (Chen &
Konukoglul 2018; (Chow et al.| 2020; Jana et al., [2022).

SI was first introduced within the context of reliability evaluation for linear model features when they
were selected using a feature selection algorithm (Lee & Taylor, 2014; |Lee et al., 2016; [ Tibshirani
et al.,|2016), and then extended to more complex feature selection methods (Yang et al., 2016; |Suzu-
mura et al., 2017; |[Hyun et al., 2018} Riigamer & Grevenl 2020; Das et al., 2021). Then, SI proves
valuable not only for feature selection problems but also for statistical inference across various data-
driven hypotheses, including unsupervised learning tasks (Chen & Bien, 2020; [I'sukurimichi et al.,
2021} |Tanizaki et al.| 20205 Duy et al., 2022 |Le Duy et al.| [2024; Lee et al., |2015} |Gao et al., 2022}
Duy et al., 2020; Jewell et al.| [2022)). The fundamental idea of SI is to perform an inference con-
ditional on the hypothesis selection event, which mitigates the selection bias issue even when the
hypothesis is selected and tested using the same data. To conduct SI, it is necessary to derive the
sampling distribution of test statistic conditional on the hypothesis selection event. To the best of
our knowledge, SI was applied to statistical inferences on several deep learning models (Duy et al.,
2022; Miwa et al.l [2023; |Shiraishi et al.l [2024b; Miwa et al.l [2024), but none of them works on
image generation by diffusion models.

Contributions. Our main contributions in this study are summarized as follows. Our first contri-
bution is the introduction of a statistical testing framework for quantifying reliability in decision-
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making based on images generated by diffusion models. The second contribution is the implemen-
tation of SI for diffusion models, which requires the calculation of the sampling distribution condi-
tional on the diffusion model, necessitating the development of non-trivial computational methodol-
ogy. The third contribution is to theoretically guarantee the performance of the proposed DM AD-test
and demonstrate its performance through numerical experiments and applications in brain imaging
diagnostics. The code is available as supplementary material.

2 DIFFUSION MODELS

In this section, we briefly explain the diffusion model employed in this study. Given a test image
which possibly contain anomalous regions, a denoising diffusion model (Ho et al.l[2020;|Song et al.,
2022)) is used to generate the corresponding normal image. The reconstruction process consists of
two processes called forward process (or diffusion process) and reverse process.

In the forward process, noise is sequentially added to the test image so that it converges to a stan-
dard Gaussian distribution A/(0, ). Let x be an image represented as a vector with each element
corresponding to a pixel value. Given an original test image X, noisy images xj,Xa, ..., X are
sequentially generated, where 7' is the number of noise addition steps. We consider the distribution
of the original and noisy test images, which is denoted by ¢(x), and approximate the distribution
by a parametric model py(x) with € being the parameters. Using a sequence of noise scheduling
parameters 0 < 3y < P2, < --- < B < 1, the forward process is written as

T
g(x1.rlx0) = [ [ a(xelxi—1), where q(xifx; 1) := N(V/1 = Bixi—1, BiI).
t=1
By the reproducibility of the Gaussian distribution, x; can be rewritten by a linear combination of

Xg and €, i.e.,

x; = /ouXo + V1 — age, with e~ N(0,1), (1)
where oy = [T'_, (1 — Bs).
In the reverse process, a parametric model in the form of pg(x¢—1|x;) = N (X¢—1; pro(x¢, t), Be) is
employed, where 119(x;,t) is obtained by using the predicted noise component e((f) (x¢). Typically,
a U-Net is used as the model architecture for eét) (x¢). In DDPM (Ho et al.; 2020), the loss function

for training the noise component is simply written as ||e(9t) (x¢) — €||3. Based on (T)), given a noisy
image x; after ¢ steps, the reconstruction of the image in the previous step x;_1 is obtained as

xi1 = a1 [0 x) + 41— g — o2 () + over, 2)
where @ ®
0 (x0) = (e = VI—aq - € (x0) v/, (3)
and

Jt:77\/(1_atfl)/(l_at)\/l_at/atfb “)
Here, 1 is a hyperparameter that controls the randomness in the reverse process. By setting n = 1,
we can create new images by stochastic sampling. On the other hand, if we set = 0, determin-
istic sampling is used for image generation. By recursively sampling as in (2)), we can obtain a
reconstructed image of the original input xg.

In practice, the reverse process starts from x7+ with 77 < T. Namely, we reconstruct the original
input image not from the completely noisy one, but from a one which still contains individual infor-
mation of the original input image. The smaller 7" ensures that the reconstructed image preserves
fine details of the input image. Conversely, the larger 7" results in the retention of only large scale
features, thereby converting more of the anomalous regions into normal regions (Ho et al., 2020;
Mousakhan et al., [2023). Therefore, 7" should be set to balance the feature retention of the input
image and the conversion of the anomalous region to the normal region. Note that setting 7" smaller
than 7" has advantages in terms of computational cost. For the purpose of reducing computational
cost, various methods have been proposed. For example, one way is to sample while skipping por-
tions of the sampling trajectory (see Appendix [A). The image reconstruction scheme by DDPM is
summarized in Algorithm [I]
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Algorithm 1 Reconstruction Process

Require: Input image x
X7 — Jar X+ /1 —are
cfort=1T',...,1do
3 () = (e = VI =0y ) (x0) /i
Xi_1 & Jog_1 - fét) (x¢) +/1 -1 —02- e((,t)(xt) + o€t
end for
Ensure: Reconstructed image xq

AN

3 STATISTICAL TEST ON GENERATED IMAGES BY DIFFUSION MODELS

In this section, we formulate the statistical test for detecting anomalous regions using images gen-
erated by a trained DDPM model. As shown in Figure|l} anomalous region detection by diffusion
models is conducted as follows. First, in the training phase, the diffusion model is trained only on
normal images. Then, in the test phase, we feed a test image which might contain anomalous regions
into the trained diffusion model, and reconstruct it back from a noisy image x+ at step 77 < T. By
appropriately selecting 7”, we can generate a normal image that retain individual characteristics of
the test input image. If the image does not contain anomalous regions, the reconstructed image is
expected to be similar to the original test image. On the other hand, if the image contains anoma-
lous regions, such as tumors, the model may struggle to accurately reconstruct these regions, as it
has been trained primarily on normal regions. Therefore, the anomalous regions can be detected by
comparing the original test image and its reconstructed one.

Problem formulation. We develop a statistical test to quantify the reliability of decision-making
based on images generated by diffusion models. To develop a statistical test, we interpret an image
as a sum of a true signal component ¢t € R™ and a noise component € € R™. We emphasize that the
noise component € should not be confused with the noise € used in the forward process. Regarding
the true signal component, each pixel can have an arbitrary value without any particular assumption
or constraint. On the other hand, regarding the noise component, it is assumed to follow a Gaussian
distribution, and their covariance matrix is estimated using normal data different from that used for
the training of the diffusion model, which is the standard setting of SI. Namely, an image with n
pixels can be represented as an n-dimensional random vector

X:(X17X27~~'7Xn)T:/'I'+€7 ENN(OaE)v

where p € R™ is the unknown true signal vector and X is the covariance matrix. In the following,
we use capital X to emphasize that an image is considered as a random vector, while the observed
image is denoted as X ps.

Let us denote the reconstruction process of the trained diffusion model in Algorithm [I]as the map-
ping from an input image to the reconstructed image D : R” 5 X — D(X) € R". The difference
between the input image X and the reconstructed image D(X ) indicates the reconstruction error.
When identifying anomalous regions based on reconstruction error, it is useful to apply some fil-
ter to remove the influence of pixel-wise noise. In this study, we simply used an averaging filter.
Let us denote the averaging filter as F : R™ — R™. Then, the process of obtaining the (filtered)
reconstruction error is written as

E:R"> X — |F(X - D(X))| € R,

where absolute value is taken pixel-wise. Anomalous regions are then obtained by applying a thresh-
old to the filtered reconstruction error F;(X) for each pixel i € [n]. Specifically, we define the
anomalous region as the set of pixels whose filtered reconstruction error is greater than a given
threshold A € (0, 0), i.e.,

Mx = {i € [n] | Ei(X) > A} 5)

Statistical inference. In order to quantify the statistical significance of the anomalous regions
detected by using a diffusion model, we consider the concrete example of two-sample test. Note
that our method can be extended to other statistical tests using various statistics. In the two-sample
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test, we compare the test image and the randomly chosen reference image in the anomalous region.
Let us define an n-dimensional reference input vector,

Xref (Xref Xref o 7X71;8f) _ uref + 6 6ref ~ ./\/'(07 2)7

where ¢! € R™ is the unknown true signal vector of the reference image and the ™' € R™ is the
noise component. Then, we consider the following null and alternative hypotheses:

1 1 1 1
HOZ T T Z Wi = —— Z u;_"ef V.S. H1: — Z i 7£ _— Z ref (6)
Mx| Mx|, 57 Mx[, 57 Mx| Sz

where H is the null hypothesis that the mean pixel values are the same between the test image and
the reference images in the anomalous regions, while H; is the alternative hypothesis that they are
different. A reasonable test statistic for the statistical test in (6) is the difference in mean pixel values
between the test image and the reference image in the anomalous region M x, i.e.,

1 X
X Xref P — Xref I/ ( o ) ,
XX = g 3 X g 32 v (e

where v, € R?" is the vector that depends on the anomalous region M x, defined as

1 1%
UMx = 75— /\:X S RQn,
‘MX| T Mx

where 17 € R" is an n-dimensional vector whose elements are 1 if they belong to the set C and
0 otherwise. If we do not account for the fact that the anomalous region is detected by a diffusion
model, the distribution of the test statistic would be simply given as

T(X,X™) ~ N(0,v, SUay), Where ¥ = (OE %”) :

In this case, the p-values defined as
Pnaive = IP)Ho (|T(X7 Xref)' > |T(X0b57 X(l;ebfs>|) 3

would be easily computed by the normality of the test statistic distribution. However, in reality,
since the anomalous region is detected by the trained diffusion model, v, depends on the data X,
meaning that the sampling distribution of the test statistic is much more complicated. Therefore, if
Dnaive 18 used for decision-making, the false detection error cannot be properly controlled.

4 COMPUTING SELECTIVE p-VALUES

In this section, we introduce selective inference (SI) framework for testing images generated by
diffusion models and propose a method to perform valid hypothesis test.

4.1 CONDITIONAL DISTRIBUTION OF TEST STATISTICS

Due to the complexity described in the previous section, it is difficult to directly obtain the sampling
distribution of T( X, X™°f). Then, we consider the sampling distribution of 7'( X, X *°f) conditional
on the event that the anomalous region M x is the same as the observed anomalous region M x
ie.,

obs?

T(X,X™) | {Mx = Mx,,.}.

In the context of SI, to make the characterization of the conditional sampling distribution man-
ageable, we also incorporate conditioning on the nuisance parameter that is independent of the test
statistic. As aresult, the calculation of the conditional sampling distribution in SI can be reduced to a
one-dimensional search problem in an n-dimensional data space. The nuisance parameter Q x xrer

is written as _
EVMXVLX X
QX,XrCf = | lon — - .. xref | -
Vprix SUmy
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The p-value calculated from this conditional sampling distribution is called a selective p-value.
Specifically, the selective p-value is defined as
DPselective = ]PHO (|T(X7 Xref)| > |T(Xobstref)| | X € X) 5 (7)

obs

where & is the conditional data space defined as

X
X = {(Xref> GRZn

Due to the conditioning on the nuisance parameter Q x, the conditional data space X can be rewrit-
( X(z)

ten as
X = {(XX(;Z)) € R Xref(z)) —a+bzze z} ,

where X (z) = a1., + b1.n2, and c;.,, represents a vector composed of the first n elements of the
vector c. The vectors a, b € R?" are defined as

MX - MXobs7 QX,chf == QXObS7XrCf } .

obs

EVMX b
a = QXObS7 b= IjT il/ )
Mx s MX g
and the region Z is defined as
Z:{Z€R|MX(Z)=MX01,S}~ 3

Let us consider a random variable Z € R and its observation z,,s € R so that they satisfy X =
a1., + b1.,7Z and Xops = ai., + b1.n20bs. Then, the selective p-value in is re-written as

DPselective = IEDHo (|Z| > |Z0bs| | YAS Z) . ©)]

Under the null hypothesis Hy, the distribution of the unconditional variable Z is A/(0, VLX Svnmy )
Consequently, given Z € Z, the conditional random variable Z adheres to a truncated Gaussian dis-
tribution. Once the truncated region Z is identified, computing the selective p-value in (@) becomes
straightforward. Therefore, the remaining task is the identification of Z.

4.2 OVER-CONDITIONING

To compute the truncated region Z, we employ a divide and conquer approach. It is difficult to
directly identify the truncated region Z due to the complexity of the computational algorithm of
the diffusion model. The basic idea of this approach is to decompose the data space X into a set of
polyhedra by considering additional conditioning, which we refer to as over-conditioning (OC) (Duy
& Takeuchil [2022)). It is easy to understand that a polyhedron in the n-dimensional data space X’
corresponds to an interval in the one-dimensional space Z. Therefore, we can sequentially examine
intervals in the one-dimensional space and check whether the same hypothesis (anomalous region)
as the observed one is selected. In this study, we show that the filtered reconstruction error E(X) can
be expressed as a piecewise-linear function of X . By exploiting this, we identify a over-conditioned
interval Z°¢ C Z.

Identification of Z°°. Let us write a polyhedron P composed of piecewise-linear functions as
Pr = {ArX <8} ,k € [K],

where Ay and §j, for k € [K] are the coefficient matrix and the constant vector with appropriate
dimensions of the k-th piecewise-linear function, respectively. Then, a piecewise-linear function
A(X) is written in the following form:

U X+ if X € Py,

U, X +1y  if X € P,
A(X) = .

VX +px if X € Py,
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where W, and vy, for k € [K] are the coefficient matrix and the constant vector with appropriate
dimensions for the k-th polyhedron, respectively. Using the notation in (4.1)), since the input image
X (z) is restricted on a one-dimensional line, each component of the output of .4 is written as

Kﬁizﬂﬁi ifz € [Lﬁ",Ulj"],
Ky 2+ py if z € [Ly",Us™],
Ai(X (2)) = :

RR(a0? TPy 17 € (L) Ukianh

where K (.A;) is the number of linear pieces of the piecewise-linear function, and mﬁ" € Rand pj:li €
R for k € [K(A;)] are the coefficient and the constant of the k-th polyhedron, respectively. For each
i € [n], there exists k € [K(A;)] such that z € [LkAi, U,fi], then the inequality A;(X (z)) > A, can
be solved as

max (L;;‘a ((A — ) /i )) ,U,;“’} if KA > 0,

LU= g min (U2, (0 o) )] it <.

‘We denote the over-conditioned interval as

Z%(a+bz) = () [LL,U]. (10)

i€[n]

Piecewise linearity of diffusion models. We now show that the diffusion model mapping D and
then filtered reconstruction error £ can be expressed as a piecewise-linear function of X. To
show this, we see that both the forward process and reverse process of the diffusion model are
piecewise-linear functions as long as we employ a class of U-Net described below. It is easy to
see the piecewise-linearity of the forward process as long as we fix the random seed for ¢;. To
make the reverse process a piecewise-linear function, we employ a U-Net architecture composed of

piecewise-linear components such as ReLU activation function and average pooling. Then, eét) (x¢)

is represented as a piecewise-linear function of x;. Moreover, since (t) x¢) in (3)) is a compos-
t 0 t

ite function of e(et)(xt), it is also a piecewise-linear function. By combining them together, we

see that x;_; is written as a piecewise-linear function of x;. Therefore, the entire reconstruction
process is a piecewise-linear function since it just repeats the above operation multiple times (see
Algorithm . As a result, the entire mapping D(X) of the diffusion model is a piecewise-linear
function of the input image X . Moreover, since the averaging filter  and the absolute operation
are also piecewise-linear functions, | F(X — D(X))|(= E(X)) is piecewise-linear. By exploiting
this piecewise-linearity, the interval Z°° can be computed.

4.3 IDENTIFICATION OF Z BY PARAMETRIC PROGRAMMING

Over-conditioning causes a reduction in power due to excessive conditioning. A technique called
Parametric Programming is utilized to explore all intervals along the one-dimensional line, resulting
in (8). The truncated region Z can be represented using Z°° as

Z= U Z°°(a + bz).
ZER[Mx () =Mx_, .
The number of Z°¢ is obviously finite due to the finiteness of the number of polyhedra, but for
practical purposes it grows exponentially, making it difficult to identify all of them. In many other
SIstudies, it is known that a search from zy,in, = (—100—|zobs|) 10 Zmax (= 100+ |2z0bs|) is sufficient
for practical use, where o is the standard deviation of the test statistic 7'(X, X™°f). An algorithm
for calculating the selective p-value via Parametric Programming is summarized in Algorithm 2}
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Algorithm 2 Selective p-value Computation by Parametric Programming

Require: X, Xé?fg) Zmins Zmax and Zohs 1= T(Xobsv Xé%fs)
D Z+10
Obtain M x, by (3)
Compute a, b by
Z £ Zmin
while z < 2z, do
Compute Z2°°(a + bz) and M x . by for z
if Mx () = Mx,,, then
Z <+ ZUZ°(a+bz)
end if
10:  z < max Z°°(a + bz) + -, where + is small positive number.
11: end while
12! Pselective = ]PHO (|Z| > |Zobs| | Z € Z)
Ensure: Dselective

AN I

bl

5 EXPERIMENTS

We compared our proposed methods (DMAD-test, DMAD-test-oc) with the other meth-
ods: naive method (naive), bonferroni correction (bonferroni), and permutation test
(permutation) on type I error rate and power. The details of the methods for comparison are
described in Appendix [B] The architecture of the diffusion model used across all experiment settings
is detailed in Appendix |[C] The computation time analysis is presented in Appendix [E] We executed
the experiment on AMD EPYC 9474F processor, 48-core 3.6GHz CPU and 768GB memory.

5.1 NUMERICAL EXPERIMENTS

Experimental setup. Experiments on the type I error rate and power were conducted with two
types of covariance matrices: independent ¥ = [,, € R™*" and correlation ¥ = (O.5|i_j‘)ij €
R™*™, In the type I error rate experiments, we used only normal images. The synthetic dataset for
normal images is generated to follow X = (X1, Xo,...,X,,) " ~ AN(0, ). We made 1000 normal
images for n € {64,256,1024,4096}. In the power experiments, we used only abnormal images.
We generated 1000 abnormal images X = (X1, Xo,...,X,) " ~ N(u, ). The mean vector p
is defined as pu; = A foralli € S, and p; = 0 for all ¢ € [n]\S, where S C [n] is the anomalous
region with its position randomly chosen. The image size of the abnormal images was set to 4096,
with signals A € {1,2,3,4}. In all experiments, we made the synthetic dataset for 1000 reference
images to follow Xof = (X7ef x1ef " Xref)T  A(0,%). The threshold was set to A = 0.8,
and the kernel size of the averaging filter was set to 3. All experiments were conducted under the
significance level o« = 0.05. The diffusion models were trained on the normal images from the
synthetic dataset. The diffusion models were trained with 7' = 1000 and the initial time step of the
reverse process was set to 77 = 460, and the reconstruction was conducted 5 step samplings. The
noise schedule (31, B, ..., B was set to linear. In all experiment, we aim to generate new images
through probabilistic sampling, 77 was set to 1. In addition, we conducted robustness experiments
against non-Gaussian noise. The details of the robustness experiments are described in Appendix [D]

Results. Figures[2a)and [2b| show the comparison results of type I error rates. The proposed meth-
ods DMAD-test and DMAD-test-oc can control the type I error rate at the significance level
«, and bonferroni can control the type I error rate below the significance level «. In contrast,
naive and permutation cannot control the type I error rate. Figures [2c|and 2d|show the com-
parison results of powers. Since naive and permutation cannot control the type I error rate,
their powers are not considered. Among the methods that can control the type I error rate, the pro-
posed method has the highest power. DMAD-test—-oc is over-conditioned and bonferroni is
conservative because there are many hypotheses, so they have low power. Figure [3|shows the results
of the robustness experiments. DMAD—test maintains good performance on the type I error rate
for all the considered distribution families.
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Figure 2: Comparison of Type I Error Rate and Power. Figures (a) and (b) show type I error rates,
while (c) and (d) show power under independence (iid) and correlation (Corr) noise settings. Only
the proposed method and the bonferroni correction successfully control type I error rates. The
DMAD-test has the highest power among the methods that can control the type I error rate.

0.5 0.5 0.5 0.5
—— a =0.05 —— a = 0.05 —— a = 0.05 —— a =0.05
0.4 a=01 0.4 a=01 0.4 a=01 04 a=01
2 2 2 2
z z z z
= 0.3 = 0.3 « 0.3 « 0.3
IS IS e e
i i i i
202 202 202 202
Q Q Q Q
& B E E
0.1 0.1 0.1 5= 0.1 fre—==mm oo SE e mm e
0.0 0.0 0.0 0.0
0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04 0.01 0.02 0.03 0.04
Wasserstein Distance Wasserstein Distance Wasserstein Distance Wasserstein Distance
(a) SND (b) EMG (c) GND (d) t-distribution

Figure 3: Type I Error Rate of the DMAD-test for Non-Gaussian Distribution Families. The
DMAD-test exhibits robust performance.

5.2 REAL DATA EXPERIMENTS

We conducted experiments using T2-FLAIR MRI brain scans from the Brain Tumor Segmentation
(BraTS) 2023 dataset (Karargyris et al.,2023;|LaBella et al., |2023)), which comprises 934 non-skull-
stripped 3D scans with dimensions of 240 x240x 155. From these scans, we extracted 2D 240 x 240
axial slices at axis 95, resized them to 64 x 64 pixels, and categorized them based on the ground
truth annotations into 532 normal images (without tumors) and 402 abnormal images (with tumor
regions). For each scan, we estimated the mean and variance from pixel values excluding both the
non-brain regions and tumor regions identified in the ground truth, followed by standardization. We
randomly selected 312 normal images for model training. The model was trained with 7" = 1000
and the initial time step of the reverse process was set at 77 = 300, with reconstruction performed
through 5 step samplings. We set the threshold A\ = 0.85 and the kernel size of the averaging filter to
3. Note that, when testing images, the non-brain regions are not treated as anomalous regions M x .
The results of the DMAD-test and naive are shown in the Figure[d] The naive p-values are low
for both normal and abnormal images, while the selective p-values are high for normal images and
low for abnormal images. This result indicates that the DMAD-test detected anomalous regions as
statistically significant while avoiding misidentification of normal image as anomaly.

6 CONCLUSIONS

In this study, we proposed a novel statistical test for anomalous regions in medical images detected
by using a diffusion model. With the proposed DM AD-test, the false detection rate can be controlled
with the significance level because statistical inference is conducted conditional on the fact that the
anomalous regions are identified by using a diffusion model. We believe this study marks a step
toward bridging the gap between generative Al and rigorous statistical inference in medical imaging
analysis.
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Figure 4: An example of the results for applying the proposed DMAD-test and the naive test (an
invalid test ignoring that the anomalous region was identified by the diffusion model) to brain im-
ages. The left column represents the results for normal brain images without tumors, while the right
column represents the results for abnormal brain images with tumors. The pselective Calculated by
the proposed DMAD-test is high for normal images (True Negative) and low for abnormal images
(True Positive), indicating that the results are desirable. On the other hand, the p,,;v. Obtained by the
naive test is low not only for abnormal images but also for normal images (False Positive), indicating
the invalidness of the naive test.
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A  ACCELERATED REVERSE PROCESSES

Methods for accelerating the reverse process have been proposed in DDPM, DDIM (Song et al.,
2022). When taking a strictly increasing subsequence 7 from {1,--- , T}, it is possible to skip the
sampling trajectory from x,, to x,_, . In this case, equations (2)) and (@) can be rewritten as

Xy — 170[7’1‘ 'E(Ti)(xn) (74)
Xri1 = A/ Ory ( +y/l—ar, - 0'72',3 "€ (Xﬂ) tOr€r,

Var,

Or = 77\/(1 —a., )/ - an)\/l -, [,

Therefore, piecewise-linearity is preserved, making the proposed method DMAD-test applicable.
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B COMPARISON METHODS FOR NUMERICAL EXPERIMENTS

We compared our proposed method with the following methods:

DMAD-test: The proposed method uses the parametric programming.
DMAD-test—-oc: The proposed method uses over-conditioning.

naive: The naive method. This method uses a conventional z-test without any condition-
ing. The naive p-value is calculated as

Pnaive = HD]HIU (|Z‘ > ‘Zobs|)-

bonferroni: To control the type I error rate, this method applies the bonferroni correc-
tion. Given that the total number of anomaly regions is 2", the p-value is calculated as

s

Pbonferroni = min(la 2" . pnaive)-

permutation: This method uses a permutation test with the steps outlined below:
— Calculate the observed test statistic 2,5 by applying the observated image X, to the
diffusion model.

— Foreachi = 1,..., B, compute the test statistic z() by applying the permuted image
X @ to the diffusion model, where B represents the total number of permutations, set
to 1,000 in our experiments.

— The permutation p-value is then determined as
1

Ppermutation = E Z 1{|Z(b)| > |Zobs|}a
be[B]

where 1{-} denotes the indicator function.

This rephrasing aims to maintain the original meaning while enhancing readability and comprehen-

sion.

C ARCHITECTURE OF THE U-NET

Figure [5] shows the architecture of the U-Net used in our experiments. The U-Net has three skip
connections, and the Encoder and Decoder blocks. For image sizes n € {64, 256,1024,4096}, the
corresponding spatial dimensions of images are (1, d, d) where d € {8, 16, 32,64}.
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Figure 5: The architecture of the U-Net
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D ROBUSTNESS OF THE PROPOSED METHOD

To evaluate the robustness of our proposed method’s performance, we used various non-Gaussian
distribution families with different levels of deviation from the standard normal distribution
N(0,1). We considered the following non-Gaussian distributions with a 1-Wasserstein distance
d € {0.01,0.02,0.03,0.04} from A/(0, 1):

» Skew normal distribution family (SND).
» Exponentially modified gaussian distribution family (EMG).

* Generalized normal distribution family (GND) with a shape parameter /3. This distribution
family can be steeper than the normal distribution (i.e., 8 < 2).

 Student’s t-distribution family (¢-distribution).

Note that these distributions are standardized in the experiments. Figure [6] shows the probability
density functions for distributions from each family, such that the d is set to 0.04. We run 1000 trials
for each distribution family and each 1-Wasserstein distance to calculate the type I error rate. The
significance levels o were set to 0.05 and 0.10, and the image size was set to 256.

17— sno
EMG N\
— GNp A
0.49 —— t-distribution Y a \
—— Normal distribution / \

0.34

0.24

probability density

0.19

00{ —

Figure 6: Non-Gaussian distributions with d = 0.04

E COMPUTATION TIME ANALYSIS

We conducted a comprehensive evaluation of the computation times for the proposed method
DMAD-test using an AMD EPYC 9474F processor (48-core, 3.6GHz). Figure[7|shows the compu-
tation time when changing the image size for the synthetic data. These experiments were conducted
under the same settings as the type I error rate experiments described in To optimize per-
formance, we applied an acceleration technique that enables early termination once p-values reach
sufficient precision. The detail of this technique is described in |Shiraishi et al.| (2024a)). Theoreti-
cally, while the number of intervals on a one-dimensional line should scale exponentially with image
size, our empirical results demonstrate substantially better practical performance. Table[T|shows the
computation times for the brain image dataset described in §5.2] where the times were averaged
over 100 images each of brains with and without tumor. We performed interval calculations for
the p-value in parallel using 48 cores in this experiment. The computation time was 1100 seconds
per image without tumors and 4220 seconds per image with tumors, demonstrating the method’s
feasibility for clinical applications.
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Figure 7: Computation time when changing the image size for the synthetic data. Results are shown
for both synthetic data with independent (iid) and correlation (corr) noise.

Table 1: Computation time for brain images using parallel processing across 48 cores.

Image Time (s)
Brain image without tumors 1100
Brain image with tumors 4220
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