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A Preliminaries: group theory1

In this appendix, we summarize some concepts from group theory that are important to understand the2

main text of the paper. Group theory provides a useful language to formalize the notion of symmetry3

transformations and their effects. For a more elaborate discussion we refer the reader to the book4

from Hall (2015) on group theory.5

Group A group is a non-empty set G together with a binary operation ◦ : G×G→ G that satisfies6

three properties:7

1. Associativity: For all f, g, h ∈ G, it holds that f ◦ (g ◦ h) = (f ◦ g) ◦ h.8

2. Identity: There exists a unique element e ∈ G such that for all g ∈ G it holds that9

e ◦ g = g ◦ e = g.10

3. Inverse: For all g ∈ G there exists an element g−1 ∈ G such that g−1 ◦ g = g ◦ g−1 = e.11

Direct product Let G and G′ be two groups. The direct product, denoted by G×G′, is the group12

with elements (g, g′) ∈ G×G′ with g ∈ G and g′ ∈ G′, and the binary operation ◦ : G×G′ → G×G′13

such that (g, g′) ◦ (h, h′) = (g ◦ h, g′ ◦ h′).14

Lie group A Lie group is a group where G is a smooth manifold, this means it can be described in15

a local scale with a set of continuous parameters and that one can interpolate continuously between16

elements of G.17

Group action Let A be a set and G a group. The group action of G on A is a function18

GA : G×A→ A that has the properties 119

1. GA(e, x) = x for all a ∈ A20

2. GA(g, (GA(g′, a)) = GA(g ◦ g′, a) for all g, g′ ∈ G and a ∈ A21

Regular action The action of G on A is regular if for every pair of elements a, a′ ∈ A there exists22

a unique g ∈ G such that g · a = a′.23

Group representation A group representation of G in the vector space V is a function ρ : G→24

GL(V ) (where GL(V ) is the general linear group on V ) such that for all g, g′ ∈ G ρ(g ◦ g′) =25

ρ(g) ◦ ρ(g′) and ρ(e) = IV , where IV is the identity matrix.26

1To avoid notational clutter, we write GA(g, a) = g · a where the set A on which g ∈ G acts can be inferred
from the context.
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Direct sum of representations The direct sum of two representations ρ1 : G→ GL(V ) in V and27

ρ2 : G→ GL(V ′) in V ′ is a group representation ρ1 ⊕ ρ2 : G→ GL(V ⊕ V ′) over the direct sum28

V ⊕ V ′, defined for v ∈ V and v′ ∈ V ′ as:29

(ρ1 ⊕ ρ2)(g) · (v, v′) = (ρ1(g) · v, ρ2(g) · v′) (1)

B Linear Symmetry-Based Disentanglement: Detailed Description30

Higgins et al. (2018) provide a formal definition of linear disentanglement that connects symmetry31

transformations affecting the real world (from which data is generated) to the internal representations32

of a model. In the main text, we provide a definition from the perspective of a group action on the33

data directly, but the original definition considers an extra conceptual world state as well. Here, we34

describe the original setting in more detail, and explain why we choose a more direct and practical35

version of the definition.36

The definition assumes the following setting. W is the set of possible world states, with underlying37

symmetry transformations that are described by a group G and its action · : G×W →W on W . In38

particular, G can be decomposed as the direct product of K groups G = G1 × . . .×GK . Data is39

obtained via an observation function b : W → X that maps world states to observations in a data40

spaceX . A model’s internal representation of data is modeled with the encoding function h : X → Z41

that maps data to the embedding space Z. Together, the observation and the encoding constitute the42

model’s internal representation of the real world f : W → Z with f(w) = h ◦ b(w). The definition43

for Linearly Symmetry-Based Disentangled (LSBD) representations then formalizes the requirement44

that a model’s internal representation f should reflect and disentangle the transformation properties45

of the real world, and that the transformation properties of the model’s internal representations should46

be linear.47

The original definition considers G acting on W and involves the model’s internal representation48

f : W → Z, but since we do not directly observe W it is more practical to evaluate LSBD with49

respect to the encoding map h : X → Z instead. If the action of G on W is regular2 and the50

observation map b : W → X is injective3 though, we can instead define LSBD with respect to the51

action of G on X and the encoding map h, as shown in the main text.52

C Inner Product53

To describe the norm ‖ · ‖ρ,h,µ used in the definition of DLSBD we start with an arbitrary inner54

product (·, ·) on the linear latent space Z. Assume that ρ is linearly disentangled and accordingly55

splits in irreducible representations ρk : G→ Zk where Z = Z1 ⊕ · · · ⊕ ZK for some K ∈ N. We56

will define a new inner product 〈·, ·〉ρ,h,µ on Z as follows. First of all we declare Zk and Zm to be57

orthogonal with respect to 〈·, ·〉ρ,h,µ if k 6= m. We denote by πk the orthogonal projection on Zk.58

For z, z′ ∈ Zi, we set59

〈z, z′〉ρ,h,µ := λ−1k,h,µ

∫
g∈G

(ρ(g) · z, ρ(g) · z′)dm(g) (2)

where m is the (bi-invariant) Haar measure normalized such that m(G) = 1 and set60

λk,h,µ :=

∫
X

∫
G

‖πk(h(x))‖2dm(g)dµ(x) (3)

if the integral on the right-hand side is strictly positive and otherwise we set λk := 1. This construction61

completely specifies the new inner product, and it has the following properties:62

• the subspaces Zk are mutually orthogonal,63

• ρk(g) is orthogonal on Zk for every g ∈ G, in other words ρk maps to the orthogonal group64

on Zk. Moreover, ρ maps to the orthogonal group on Z. This follows directly from the65

bi-invariance of the Haar measure and the definition of 〈·, ·〉ρ,h,µ.66

2This assumption holds in most practical cases with a suitable description of G.
3This is typically the case, but if not it can be solved through active sensing, see Soatto (2011).
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• If πk is the orthogonal projection to Zk, then67 ∫
X

‖πk(h(x))‖2ρ,h,µdµ(x) = 1 (4)

if the integral on the left is strictly positive.68

For an arbitrary pair z, z′ ∈ Z the inner product 〈·, ·〉ρ,h,µ is given by69

〈z, z′〉ρ,h,µ =

K∑
k=1

λ−1k,h,µ

∫
g∈G

(ρ(g) · πk(z), ρ(g) · πk(z′))dm(g) (5)

D Evaluation of Equivariance by DLSBD70

We will now give an alternative expression for the disentanglement metric DLSBD, since it will more71

visibly relate to the definition of equivariance. To avoid notational cluttering, in this section we will72

denote the norm ‖ · ‖ρ,h,µ as ‖ · ‖∗. Let ρ ∈ P(G,Z) be a linear disentangled representation of G73

in Z. By expanding the inner product (or by using usual computation rules for expectations and74

variances), we first find that75 ∫
G

∥∥∥∥ρ(g)−1 · h(g · x0)−
∫
G

ρ(g′)−1 · h(g′ · x0)dν(g′)

∥∥∥∥2
∗
dν(g)

=

∫
G

∥∥ρ(g)−1 · h(g · x0)
∥∥2
∗ dν(g)−

∥∥∥∥∫
G

ρ(g)−1 · h(g · x0)dν(g)

∥∥∥∥2
∗

=
1

2

∫
G

∫
G

‖ρ(g)−1 · h(g · x0)− ρ(g′)−1 · h(g′ · x0)‖2∗dν(g)dν(g′).

(6)

We now use that ρ maps to the orthogonal group for (·, ·)∗, so that we can write the same expression76

as77
1

2

∫
G

∫
G

‖ρ(g ◦ g′−1)−1 · h(((g ◦ g′−1) · g′) · x0)− h(g′ · x0)‖2∗dν(g)dν(g′). (7)

This brings us to the alternative characterization of DLSBD as78

DLSBD = inf
ρ∈P(G,Z)

1

2

∫
G

∫
G

‖ρ(g ◦g′−1)−1h(((g ◦g′−1) ·g′) ·x0)−h(g′ ·x0)‖2∗dν(g)dν(g′). (8)

In particular, if for every data point x there is a unique group element gx such that x = gx · x0, the79

disentanglement metric DLSBD can also be written as80

inf
ρ∈P(G,Z)

1

2

∫
G

∫
X

‖ρ(g ◦ g−1x )−1h((g ◦ g−1x ) · x)− h(x)‖2∗dν(g)dµ(x), (9)

in which the equivariance condition appears prominently. The condition becomes even more apparent81

if ν is in fact the Haar measure itself, in which case the metric equals82

inf
ρ∈P(G,Z)

1

2

∫
G

∫
X

‖ρ(g)−1 ◦ h(g · x)− h(x)‖2∗dm(g)dµ(x). (10)

E Datasets83

All datasets contain 64× 64 pixel images. The Square, Arrow and Airplane datasets have a known84

group decomposition G = SO(2) × SO(2) describing the underlying transformations. In these85

three datasets, for each subgroup a fixed number of |Gk| = 64 with k ∈ {1, 2} transformations is86

selected. Each image is generated from a single initial data point upon which all possible group87

actions are applied, resulting in datasets with |G1| · |G2| = 4096 images. The datasets exemplify88

different group actions of SO(2): periodic translations, in-plane rotations, out-of-plane rotations, and89

periodic hue-shifts, see Figure 1.90

The ModelNet40 and the COIL-100 datasets consist of different objects rotating with respect to a91

vertical axis (out-of-plane rotation). For these datasets the groupG = SO(2) describes the underlying92

transformations that each object undergoes, see Figure 1. The different objects can be seen as non-93

symmetric variability in the data. In this particular case, each object has its own base-point x0 from94

which data is generated. The metric DLSBD is then evaluated per object instance for the group95

G = SO(2), the value of DLSBD is calculated and averaged across all available objects.96
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(a) Square (b) Arrow (c) Airplane

(d) ModelNet40 (e) COIL-100

Figure 1: Example images from each of the datasets used. Each image corresponds to an example
data point for a combination of two factors, e.g. color and orientation. The factors change horizontally
and vertically. The boundaries for the Square, Arrow and Airplane dataset are periodic. For the
ModelNet40 and COIL-100 dataset, the vertical direction represents different object instances and
the horizontal direction represents the rotation of the corresponding object.

Square This dataset consists of a set of images of a black background with a square of 4× 4 white97

pixels. The dataset is generated applying vertical and horizontal translations of the white square98

considering periodic boundaries.99

Arrow This dataset consists of a set of images depicting a colored arrow at a given orientation. The100

dataset is generated by applying cyclic shifts of its color and in-plane rotations. The cyclic color101

shifts were obtained by preselecting a fixed set of 64 colors from a circular hue axis. The in-plane102

rotations were obtained by rotating the arrow along an axis perpendicular to the picture plane over 64103

predefined positions.104

Airplane This dataset consists of renders obtained using Blender v2.7 (Community, 2020) from a105

3D model of an airplane within the ModelNet40 dataset (Wu et al., 2014) (this dataset is provided for106

the convenience of academic research only). We created each image by varying two properties: the107

airplane’s color and its orientation with respect to the render camera. The orientation was changed via108

rotation with respect to a vertical axis (out-of-plane rotation). The colors of the model were selected109

from a predefined cyclic set of colors similar to the arrow rotation dataset.110

ModelNet40 This dataset also consists of a dataset of renders obtained using Blender v2.7 (Com-111

munity, 2020) from all the 3D models within the airplane category of the ModelNet40 dataset (Wu112

et al., 2014). We created each image by varying each airplane’s orientation with respect to the render113

camera, via rotation with respect to a vertical axis (out-of-plane rotation). In this case we used 64114

orientations for each object, i.e. |G| = 64.115

COIL-100 This dataset (Nene et al., 1996) consists of images from 100 objects placed on a turntable116

against a black background. For each object, 72 views of the rotated object are provided. The original117

images have a resolution of 128× 128 and were re-scaled to 64× 64 to match our other datasets. In118
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this case for each object |G| = 72. This dataset is intended for non-commercial research purposes119

only. This dataset was obtained by using TensorFlowDatasets (2021).120

F Experimental Settings and Hyperparameters121

F.1 Architectures122

Table 1 shows the encoder and decoder architectures used for almost all methods and datasets. The123

encoder’s last layer depends on the method. For VAE, cc-VAE, FactorVAE, DIP-I, DIP-II, two dense124

layers with 4 units each were used. For LSBD-VAE and ∆VAE two dense layers with 4 and 2 units125

each were used. For Quessard a single dense layer with 4 units was used. The only model that was126

not trained with this architectures was LSBD-VAE/0 method for the ModelNet40 dataset the reason127

for this choice was that during training the loss was getting NaN values, in this case the architecture128

used was that of Table 2.129

Table 1: Encoder and decoder architectures used in most methods.

ENCODER

INPUT SIZE (64,64, NUMBER CHANNELS)
CONV FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONV FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONV FILTERS 64, KERNEL 4, STRIDE 2, RELU
CONV FILTERS 64, KERNEL 4, STRIDE 2, RELU
DENSE UNITS 256, RELU
DENSE(X2) UNITS DEPEND ON METHOD

DECODER

INPUT SIZE (NUMBER OF LATENT DIMENSIONS)
DENSE UNITS 256, RELU
DENSE UNITS 4*4*64, RELU
RESHAPE (4,4,64)
CONVT FILTERS 64, KERNEL 4, STRIDE 2, RELU
CONVT FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONVT FILTERS 32, KERNEL 4, STRIDE 2, RELU
CONVT FILTERS (NUMBER CHANNELS), KERNEL 4, STRIDE 2, SIGMOID

Table 2: Encoder and decoder architecture used to train LSBD-VAE/0 for ModelNet40 dataset.

ENCODER

INPUT SIZE (64, 64, NUMBER CHANNELS)
DENSE UNITS 512, RELU, BATCH NORMALIZATION
DENSE UNITS 256, RELU, BATCH NORMALIZATION
DENSE(X2) UNITS DEPEND ON METHOD

DECODER

INPUT SIZE (NUMBER OF LATENT DIMENSIONS)
DENSE UNITS 256, RELU, BATCH NORMALIZATION
DENSE UNITS 512, RELU, BATCH NORMALIZATION
DENSE UNITS 64*64*NUMBER OF CHANNELS, SIGMOID
RESHAPE (64, 64, NUMBER OF CHANNELS)

F.2 Hyperparameters130

Table 3 shows the hyperparameters used to train each model for all datasets. Table 4 shows the131

hyperparameters used to train the LSBD-VAE models for each dataset. In the latter case, the number132

of epochs for the LSBD-VAE model were increased. The range of values used for the scale parameter133

t were increased for ModelNet40 and COIL-100 datasets since it was noticed that this provided134
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better results in terms of data reconstruction and disentanglement. For the Arrow dataset, a value135

of γ = 1 was producing unstable results. However, the values 10, 100, 1000 or even 10000 were136

producing good results without significant changes among them. Therefore the value 100 was used137

for the datasets with the same structure (Square, Arrow and Airplane). For the ModelNet40 and138

COIL-100 the experiments showed that this hyperparameter for values as high as 10000 could affect139

the reconstructions, thus a lower value γ = 1 was chosen.140

Table 3: Model hyperparameters for all datasets

MODEL PARAMETERS

VAE TRAINING STEPS 30000
β-VAE β = 5, TRAINING STEPS 30000
CC-VAE β = 5,γ = 1000, cmax = 15, ITERATION THRESHOLD 3500, TRAINING STEPS 30000
FACTOR γ = 1, EPOCHS 30000
DIP-I λod = 1, λd = 10, TRAINING STEPS 30000
DIP-II λod = 1, λd = 1, TRAINING STEPS 30000
QUESSARD λ = 0.01, TRAJECTORIES 3000

Table 4: LSBD-VAE hyperparameters for all datasets

DATASETS PARAMETERS

SQUARE, ARROW, AIRPLANE t ∈ [10−10, 10−9], γ = 100.0, EPOCHS 1500
MODELNET40 t ∈ [10−10, 10−5], γ = 1.0, EPOCHS 1500
COIL-100 t ∈ [10−10, 10−5], γ = 1.0, EPOCHS 6000

F.3 Hardware & Running Time141

The hardware used across all experiments was a DGX station with 4 NVIDIA GPUs V100 and142

32GB . Only one GPU was used per experiment. The running time for the LSBD-VAE across all 9143

degrees of supervision L ∈ {0, 256, 768, 1024, 1280, 1536, 1792, 2048} and all 10 runs (total 9 · 10144

repetitions) for the datasets were: Arrow 33± 4 minutes Airplane 29± 4 minutes and Square 28± 4145

minutes. The running time for the LSBD-VAE across 2 degrees of supervision and 10 runs (total146

2 · 10 repetitions) for ModelNet40 was 136 ± 10 minutes and for COIL-100 90 ± 6 minutes. For147

the method from (Quessard et al., 2020) the training times were approximately 30 minutes across all148

datasets. The training times for the methods from disentanglement_lib (Locatello et al., 2019)149

were not measured.150

F.4 Code Licenses151

The disentanglement_lib (Locatello et al., 2019) code is registered with an Apache 2.0 License152

while the code used to reproduce the method by Quessard et al. (2020) is registered with an MIT153

license.154

G Full results155

The full results for all experiments on all datasets are given in Tables 5, 6, 7, 8, and 9. We report the156

mean and standard deviation over 10 runs for each experiment.157

G.1 Limited Supervision Suffices to Learn LSBD Representations158

The results obtained from Tables 5, 6, 7 show that we do not need transformation-labels for all data159

points, only a subset of labeled pairs is sufficient to learn LSBD representations. To further highlight160

this, Figure 2 shows DLSBD scores for LSBD-VAE trained on the Square, Arrow, and Airplane161

datasets respectively, for various values for the number of labeled pairs L. For each L and each162

dataset, we trained 10 models so we can report box plots of the DLSBD scores.163
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Figure 2: Box plots for DLSBD scores over 10 training repetitions for different numbers of labeled
pairs L, for all datasets. The red line indicates the best-performing traditional disentanglement
method.

For low values of L we see worse scores and high variability. But for slightly higher L, scores164

are consistently good, starting already at L = 512 for the Square, L = 768 for the Arrow, and165

L = 256 for the Airplane. This corresponds to respectively 25%, 37.5%, and 12.5% of the data being166

involved in a labeled pair. Moreover, we see that with just a little supervision we outperform the best167

traditional method on DLSBD. Overall, these results suggest that with some expert knowledge (about168

the underlying group and a suitable representation) and limited annotation of transformations, LSBD169

can be achieved.170

G.2 Quessard Arrow171

In the main text we mentioned that we did not reproduce good results with Quessard et al. (2020)’s172

method on the Arrow and Square dataset. We highlight a particular case for the Arrow dataset,173

where the method clearly learns the rotations of the arrow but fails to learn color. Figure 3 shows174

reconstructed Arrow images. Since color isn’t learned well, this example doesn’t get a good DLSBD175

score, even though rotation is properly linearly disentangled.176

(a) Input (b) Reconstructions

Figure 3: Results from Quessard et al. (2020)’s method on the Arrow dataset
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Table 5: Scores for the Square dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

.945±.061 .835±.140 .019±.004 .009±.005 .013±.004 .579±.202 .634±.440

β-VAE
.980±.033 .913±.095 .021±.006 .017±.011 .021±.014 .642±.147 .732±.488

CC-VAE
.508±.023 .000±.000 .003±.002 .007±.002 .014±.004 .222±.110 1.905±.023

FACTOR
.974±.048 .910±.104 .020±.003 .019±.017 .017±.010 .712±.183 .667±.428

DIP-I
.972±.042 .861±.097 .020±.005 .010±.002 .011±.002 .618±.117 1.109±.312

DIP-II
.930±.119 .848±.137 .018±.004 .010±.004 .015±.007 .607±.207 .907±.559

QUESSARD
.504±.021 .000±.000 .004±.003 .007±.004 .018±.008 .354±.213 1.686±.294

LSBD-VAE
.970±.079 .913±.121 .018±.003 .052±.052 .018±.004 .884±.183 .749±.554/0

LSBD-VAE
1.000±.000 1.000±.001 .021±.004 .267±.152 .027±.007 .986±.023 .104±.147/256

LSBD-VAE
1.000±.000 1.000±.000 .021±.006 .393±.022 .025±.005 .999±.000 .000±.000/512

LSBD-VAE
1.000±.000 1.000±.000 .019±.004 .387±.014 .025±.004 .999±.000 .000±.000/768

LSBD-VAE
1.000±.000 1.000±.000 .022±.005 .398±.020 .024±.003 .999±.000 .000±.000/1024

LSBD-VAE
1.000±.000 1.000±.000 .023±.003 .389±.016 .023±.003 .999±.000 .000±.000/1280

LSBD-VAE
1.000±.000 1.000±.000 .022±.004 .398±.013 .027±.002 .999±.000 .000±.000/1536

LSBD-VAE
1.000±.000 1.000±.000 .020±.004 .397±.016 .027±.005 .999±.000 .000±.000/1792

LSBD-VAE
1.000±.000 1.000±.000 .021±.006 .380±.027 .027±.005 .999±.000 .000±.000/2048
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Table 6: Scores for the Arrow dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

1.000±.000 .646±.032 .017±.004 .009±.003 .013±.004 .961±.012 1.316±.193

β-VAE
.999±.002 .588±.045 .018±.004 .008±.002 .015±.005 .898±.032 1.178±.065

CC-VAE
.982±.056 .707±.102 .019±.004 .011±.005 .016±.004 .980±.038 1.013±.096

FACTOR
1.000±.000 .659±.028 .017±.003 .008±.003 .014±.002 .935±.037 1.526±.125

DIP-I
1.000±.000 .624±.042 .020±.004 .008±.002 .012±.003 .967±.027 1.521±.113

DIP-II
1.000±.000 .644±.064 .020±.004 .009±.003 .013±.004 .973±.011 1.616±.102

QUESSARD
1.000±.000 .596±.032 .016±.006 .008±.004 .017±.008 .999±.000 1.183±.412

LSBD-VAE
1.000±.001 .664±.105 .016±.002 .009±.004 .019±.005 .897±.108 1.627±.104/0

LSBD-VAE
1.000±.000 .662±.046 .017±.005 .009±.004 .020±.005 .963±.010 1.475±.121/256

LSBD-VAE
1.000±.000 .956±.119 .021±.006 .297±.157 .023±.003 .967±.092 .245±.474/512

LSBD-VAE
1.000±.000 1.000±.000 .022±.006 .390±.022 .026±.003 .999±.000 .000±.000/768

LSBD-VAE
1.000±.000 1.000±.000 .022±.003 .396±.026 .026±.006 .999±.000 .000±.000/1024

LSBD-VAE
1.000±.000 1.000±.000 .019±.005 .401±.018 .026±.004 .999±.000 .000±.000/1280

LSBD-VAE
1.000±.000 1.000±.000 .019±.005 .397±.017 .026±.007 .999±.000 .000±.000/1536

LSBD-VAE
1.000±.000 1.000±.000 .020±.004 .399±.018 .026±.004 .999±.000 .000±.000/1792

LSBD-VAE
1.000±.000 1.000±.000 .020±.006 .444±.186 .027±.004 .999±.000 .000±.000/2048
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Table 7: Scores for the Airplane dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

1.000±.001 .947±.054 .023±.005 .013±.005 .020±.017 .801±.045 1.342±.084

β-VAE
1.000±.001 .997±.005 .018±.005 .036±.012 .028±.012 .816±.104 1.481±.129

CC-VAE
.858±.194 .646±.353 .010±.006 .021±.011 .018±.009 .969±.034 1.481±.174

FACTOR
1.000±.000 .984±.015 .020±.003 .021±.008 .026±.013 .810±.040 1.382±.171

DIP-I
1.000±.000 .994±.008 .022±.004 .029±.012 .026±.012 .842±.073 1.289±.150

DIP-II
.998±.005 .972±.031 .021±.004 .022±.013 .030±.019 .780±.054 1.367±.129

QUESSARD
.999±.003 .987±.026 .018±.007 .016±.009 .018±.005 .795±.107 .558±.239

LSBD-VAE
.536±.065 .000±.000 .002±.001 .007±.004 .005±.003 .956±.046 1.165±.180/0

LSBD-VAE
1.000±.000 1.000±.000 .022±.006 .144±.011 .023±.004 .870±.039 .153±.021/256

LSBD-VAE
1.000±.000 1.000±.000 .023±.008 .151±.015 .020±.004 .846±.032 .168±.022/512

LSBD-VAE
1.000±.000 1.000±.000 .022±.004 .140±.014 .022±.005 .832±.034 .180±.030/768

LSBD-VAE
1.000±.000 1.000±.000 .020±.005 .160±.015 .022±.005 .859±.032 .165±.021/1024

LSBD-VAE
1.000±.000 1.000±.000 .024±.004 .153±.013 .022±.003 .876±.016 .151±.015/1280

LSBD-VAE
1.000±.000 1.000±.000 .021±.005 .160±.016 .022±.004 .896±.025 .140±.018/1536

LSBD-VAE
1.000±.000 1.000±.000 .022±.005 .163±.022 .023±.003 .904±.016 .138±.010/1792

LSBD-VAE
1.000±.000 1.000±.000 .016±.008 .161±.024 .021±.006 .913±.018 .132±.009/2048

Table 8: Scores for the Modelnet40 Airplanes dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

.995±.004 .838±.030 .013±.002 .013±.002 .009±.002 .415±.058 .393±.110

β-VAE
.995±.005 .857±.045 .012±.003 .015±.003 .009±.002 .447±.067 .285±.045

CC-VAE
.997±.003 .818±.093 .011±.003 .017±.004 .011±.003 .567±.063 .281±.191

FACTOR
.996±.004 .856±.052 .012±.002 .014±.003 .010±.003 .444±.077 .388±.096

DIP-I
.988±.009 .783±.070 .012±.002 .013±.002 .008±.001 .343±.082 .416±.142

DIP-II
.994±.006 .832±.042 .013±.003 .014±.003 .011±.002 .433±.080 .379±.130

QUESSARD
.907±.192 .727±.384 .010±.005 .015±.007 .009±.004 .563±.108 .134±.294

LSBD-VAE
.990±.009 .863±.038 .011±.003 .015±.003 .014±.003 .538±.103 .731±.068/0

LSBD-VAE
1.000±.000 .990±.004 .012±.005 .052±.009 .020±.006 .947±.007 .041±.007/256
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Table 9: Scores for COIL 100 dataset.

MODEL BETA ↑ FACTOR ↑ SAP ↑ DCI ↑ MIG ↑ MOD ↑ DLSBD ↓
VAE

1.000±.000 .674±.049 .014±.003 .016±.003 .011±.002 .986±.001 .463±.030

β-VAE
1.000±.001 .740±.024 .015±.004 .014±.004 .013±.003 .982±.001 .579±.095

CC-VAE
.999±.003 .723±.026 .013±.005 .014±.003 .013±.004 .985±.001 .406±.057

FACTOR
1.000±.001 .684±.041 .014±.002 .012±.002 .013±.004 .984±.001 .490±.024

DIP-I
.999±.002 .631±.025 .013±.004 .012±.002 .010±.002 .986±.001 .525±.109

DIP-II
1.000±.001 .643±.043 .013±.003 .014±.002 .011±.002 .985±.001 .568±.079

QUESSARD
1.000±.000 .780±.044 .014±.004 .014±.002 .011±.003 .973±.004 .396±.055

LSBD-VAE
1.000±.001 .739±.047 .014±.003 .014±.001 .011±.001 .982±.004 .515±.099/0

LSBD-VAE
1.000±.000 .655±.028 .015±.004 .029±.003 .013±.003 .802±.056 .112±.026/256
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