
Lifting the veil on hyper-parameters for value-based
deep reinforcement learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Successful applications of deep reinforcement learning (deep RL) combine algo-1

rithmic design and careful hyper-parameter selection. The former often comes2

from iterative improvements over existing algorithms, while the latter is either3

inherited from prior methods or tuned for the specific method being introduced. Al-4

though critical to a method’s performance, the effect of the various hyper-parameter5

choices are often overlooked in favour of algorithmic advances. In this paper, we6

perform an initial empirical investigation into a number of often-overlooked hyper-7

parameters for value-based deep RL agents, demonstrating their varying levels8

of importance. We conduct this study on a varied set of classic control environ-9

ments which helps highlight the effect each environment has on an algorithm’s10

hyper-parameter sensitivity.11

1 Introduction12

Deep reinforcement learning (deep RL) is a burgeoning research area with an astounding number13

of theoretical and empirical advances. Algorithmic progress is usually measured by comparing to14

pre-existing baselines on a set of established benchmarks, where the proposed method is typically15

evaluated using a single (or small set of) hyper-parameter choices. While this approach helps16

demonstrate the potential of new algorithms, they are less effective at demonstrating their robustness17

to varying hyper-parameters, especially those that have been "inherited" from prior methods. We will18

refer to these types of publications as academic deep RL.19

There have been a number of recent success stories in applying deep RL to large-scale real-world20

tasks [Silver et al., 2016, Bellemare et al., 2020, Mirhoseini et al., 2021], but in all these cases21

very specific design decisions (including hyper-parameter choices) were necessary for them to work22

effectively; often, differing from the design choices made in the algorithms leveraged by these works.23

We will refer to these types of publications as applied deep RL.24

Although tackling the same underlying problem, there exists a gap between academic and applied25

deep RL. While progress in the applied side leverages advances made in the academic side, it typically26

requires a group of highly-specialized researchers to successfully adapt the academic insights into a27

workable agent; this produces a de-facto barrier for non-academics to successfully apply deep RL to28

their problem. On the other hand, many of the components ultimately used for large-scale real-world29

problems tend to be specific, resulting in less-than-ideal academic uptake.30

We argue that a key contributor to the gap between academic and applied deep RL is a poor empirical31

understanding of the impact of the aforementioned hyper-parameters on the performance of the overall32

algorithm. In this paper, we begin to "lift the veil" on some commonly overlooked hyper-parameters33

for value-based deep RL in the hope that they help bridge this gap. We aim to (at least partially)34

answer the following questions:35

Submitted to 35th Conference on Neural Information Processing Systems (NeurIPS 2021). Do not distribute.

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

500

400

300

200

100

Fi
na

l r
et

ur
n

Acrobot

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

25

50

75

100

125

150

175

200

CartPole

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

3000

2500

2000

1500

1000

500

0

LunarLander
DQN Rainbow

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

600

500

400

300

200

100

MountainCar

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

10

20

30

40

50

Fi
na

l r
et

ur
n

Asterix

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

20

40

60

80

100

Breakout

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

10

20

30

40

50

60

Freeway

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

50

100

150

200

250

300

SpaceInvaders

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on
Widt

h
Dep

th

Lea
rni

ng
 ra

te

Opti
mize

r

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

10

20

30

40

50

60

70

80
Seaquest

Figure 1: Comparison of hyper-parameter sensitivity for DQN and Rainbow on classic control (top)
and MinAtar (bottom) environments. The colors represent groups of hyper-parameters: network
components (, subsection 3.1), optimizer components (, subsection 3.2), algorithmic components
(, subsection 3.3). Note that the hyper-parameters considered are only those that are within a
reasonable range of the default settings.

1. How sensitive are deep reinforcement learning algorithms to variations in hyper-parameter36

selection?37

2. Does the choice of environment vary the sensitivity to hyper-parameter selection?38

3. Are existing methods under-performing due to a poor hyper-parameter choice?39

2 Background40

Reinforcement learning problems are typically formulated as a Markov decision process (MDP),41

which consists of a 5-tuple 〈X ,A, R,P, γ〉, where X denotes the (possibly infinite) state space, A42

denotes a finite set of actions, R : X × A → R is the reward function, P : X × A → Dist(X)43

encodes the transition dynamics (often written as P(x′|x, a)), and γ ∈ [0, 1) is a discount factor. The44

principal objective of reinforcement learning is to learn a behaviour policy π : X → Dist(A) that45

maximizes the discounted sum of expected rewards. While there are a number of valid approaches46

(see, e.g. Sutton and Barto [1998]), in this paper we focus on value-based methods. These aim to47

learn an approximation to the so-called Q∗-values, defined via the Bellman recurrence:48

Q∗(x, a) := R(x, a) + γEx′∼P(x,a)[maxa′∈AQ
∗(x′, a′)]. The optimal policy π∗ can then be49

obtained from Q∗ as π∗(x) := maxa∈AQ
∗(x, a).50

One of the most common approaches for learning Q∗ is via the method of temporal differences:51

given an estimate Q and a transition tuple (x, a, r, x′), we can obtain a new estimate via: Q(x, a)←52

Q(x, a) + α [r + γmaxa′∈AQ(x′, a′)−Q(x, a)], where α is a learning rate. We often refer to the53

term [r + γmaxa′∈AQ(x′, a′)] as the Bellman target.54

2.1 DQN55

Mnih et al. [2015] defined DQN by combining temporal-difference learning with deep networks,56

and demonstrated its capabilities in achieving super-human performance on the Arcade Learning57

Environment (ALE) [Bellemare et al., 2012]. Specifically, a deep network, parameterized by a vector58

θ, was trained to approximate Q∗: Qθ ≈ Q∗. Mnih et al. [2015] introduced two key components that59

helped stabilize the learning process.60

2

The first was the use of a large replay buffer to store experienced transitions and, after collecting a61

sufficient number of transitions (referred to as the min replay history), use samples from that buffer to62

update the network. By having many transitions in the buffer and sampling from it one can reduce63

the dependency between the elements of a training batch, which helps with neural network training,64

in addition to leveraging speedups from hardware like GPUs. However, this results in off-policy65

learning, which means that the agent is learning from experience obtained from a different (e.g. older)66

policy than the policy it is currently using to act. Exploring the difficulties in off-policy learning is an67

active area of research; nonetheless, the use of replay buffers is ubiquitous in deep RL.68

The second was the use of a target network (parameterized by θ̄), in addition to the main online
network, for stabler bootstrapping targets. The Q-update then becomes

∆Qθ = −α∇θ
(
rt + γ

′
max
a

Qθ̄(x
′, a′)−Qθ(x, a)

)2

The target network parameters are not updated by gradient descent, but rather they are synchronized69

with the online parameters at a lower frequency (e.g. θ̄ ← θ). We refer to the frequency of online70

network updates (via gradient descent) as the online update period, and the frequency of the target71

network updates as the target update period.72

2.2 Rainbow73

Although DQN benchmarked on the 57 ALE games with the same set of hyper-parameters, Anschel74

et al. [2017] and Cini et al. [2020] demonstrated that in some environments it can prove to be rather75

unstable resulting in degraded performance. There were a number of papers that improved on it to76

improve its stability and performance. Hessel et al. [2018] combined many of these into a single77

agent they called "Rainbow". Specifically, they combined DQN with double Q-learning [van Hasselt78

et al., 2016b], prioritized experience replay [Schaul et al., 2016], dueling networks [Wang et al.,79

2016], multi-step learning [Sutton, 1988], noisy nets [Fortunato et al., 2018], and distributional80

reinforcement learning [Bellemare et al., 2017].81

2.3 Experimental details82

As suggested by Obando-Ceron and Castro [2021], we evaluate on four classic control environments83

(CartPole, Acrobot, LunarLander, and MountainCar)1, which can be useful for conducting thorough84

investigations with numerous independent runs. Our implementation is based on the Dopamine frame-85

work [Castro et al., 2018], but the default hyper-parameter settings used for the online experiments86

are those specified by Obando-Ceron and Castro [2021]. All experiments were run on a CPU, and we87

report the mean and 95% confidence intervals, averaged over 30 independent seeds.88

We also evaluated on the MinAtar environment [Young and Tian, 2019], as they can help shed89

some light into the effect of convolutional layers and more complex environments. For the MinAtar90

experiments we use the default settings suggested by Obando-Ceron and Castro [2021], except91

where noted. Given the increased computational complexity of this suite, we ran each setting with 592

independent seeds (each on a separate GPU), and we report the mean 75% confidence intervals.93

3 Lifting the veil94

We organize our experiments into three groups of hyper-parameters: network components (sub-95

section 3.1), optimization hyper-parameters (subsection 3.2), and algorithmic parameters (subsec-96

tion 3.3). Figure 1 presents an overall summary of these experiments, and we will present and discuss97

each individual group below. Due to space constraints we include all the figures in Appendix A and98

include only aggregate plots in the main paper.99

3.1 Network components100

The aggregate results for these experiments are summarized in Figure 2.101

1Available in the OpenAI Gym library [Brockman et al., 2016]

3

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

500

400

300

200

100

Fi
na

l r
et

ur
n

Acrobot

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

25

50

75

100

125

150

175

200

CartPole

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

3000

2500

2000

1500

1000

500

0

LunarLander
DQN Rainbow

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

600

500

400

300

200

100

MountainCar

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

0

10

20

30

40

50

Fi
na

l r
et

ur
n

Asterix

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

0

20

40

60

80

100

Breakout

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

0

10

20

30

40

50

60

Freeway

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

0

50

100

150

200

250

300

SpaceInvaders

Ini
tia

liza
tio

n

Acti
va

tio
n F

n

Norm
aliz

ati
on

Widt
h

Dep
th

0

10

20

30

40

50

60

70

80
Seaquest

Figure 2: Comparison of hyper-parameter sensitivity for DQN and Rainbow, for the network compo-
nent hyper-parameters (subsection 3.1).

Initializations Initialization is the term used to define the initial values for the parameters of a102

neural network. While there exists a broad literature studying initialization strategies for neural103

networks [Glorot and Bengio, 2010, He et al., 2015, Saxe et al., 2014]. With a few exceptions, these104

strategies have not been studied in detail in deep reinforcement learning [Andrychowicz et al., 2020,105

Hussenot et al., 2021, Paine et al., 2020].106

In Figure 5 and Figure 6 we can observe that, for the most part, there is little difference when varying107

the initialization scheme. This is somewhat expected due to RL’s "self-correcting nature"; that is, it is108

not optimizing towards a fixed target, but rather a shifting one (as a consequence of bootstrapping).109

There are two notable exceptions worth mentioning:110

(1) All-zeros and all-ones initialization almost always fails to learn with DQN. This is most likely due111

to zero gradients occurring as a consequence of the combination of constant predictions with little112

reward variability. In Rainbow this issue is not present, perhaps due to the presence of noisy networks113

(which break the constancy of predictions). (2) DQN on MountainCar seems to be rather sensitive to114

the choice of initialization. This is likely due to the properties of this particular environment, which115

we discuss below.116

In Figure 7 we can see that we have the same level of stability in the MinAtar environments.117

Activation functions Non-linear activation functions are a fundamental part of Deep Neural Net-118

works, as their removal effectively turns the network into a linear function approximator. Many119

different activation functions have been proposed for different settings ([Devlin et al., 2019, Elfwing120

et al., 2018, Dauphin et al., 2017]), yet it’s rare to see comparisons between the many possible options121

[Shamir et al., 2020] and, to the best of our knowledge, there are no previous examples of doing such122

comparison in the Reinforcement Learning setting.123

In Figure 8 (and in Figure 10 for MinAtar environments) we can see that there is little difference124

across the top activation functions, with DQN on MountainCar once again being a notable exception.125

However, in Figure 9 we can see that there is a fair bit of variability across the 16 possible activation126

functions. Of note is how sensitive Rainbow seems to be to these on CartPole, which is arguably the127

simplest of all the environments. A more detailed investigation of the effect (and interaction with128

other components) of activation functions is an interesting avenue for future work.129

Normalization Normalization plays an important role in various deep learning applications, and130

it is well established in supervised learning [Tan and Le, 2020, Xie et al., 2017]. Surprisingly, the131

use of normalization is fairly rare in deep reinforcement learning, with a few exceptions [Bhatt132

et al., 2019, Arpit et al., 2019, Lillicrap et al., 2019, Silver et al., 2017]. We explore two types of133

4

Lea
rni

ng
 ra

te

Opti
mize

r
500

400

300

200

100

Fi
na

l r
et

ur
n

Acrobot

Lea
rni

ng
 ra

te

Opti
mize

r

25

50

75

100

125

150

175

200

CartPole

Lea
rni

ng
 ra

te

Opti
mize

r

3000

2500

2000

1500

1000

500

0

LunarLander
DQN Rainbow

Lea
rni

ng
 ra

te

Opti
mize

r
600

500

400

300

200

100

MountainCar

Lea
rni

ng
 ra

te

Opti
mize

r
0

10

20

30

40

50

Fi
na

l r
et

ur
n

Asterix

Lea
rni

ng
 ra

te

Opti
mize

r
0

20

40

60

80

100

Breakout

Lea
rni

ng
 ra

te

Opti
mize

r
0

10

20

30

40

50

60

Freeway

Lea
rni

ng
 ra

te

Opti
mize

r
0

50

100

150

200

250

300

SpaceInvaders

Lea
rni

ng
 ra

te

Opti
mize

r
0

10

20

30

40

50

60

70

80
Seaquest

Figure 3: Comparison of hyper-parameter sensitivity for DQN and Rainbow, for the optimizer
hyper-parameters (subsection 3.2).

normalization: batch normalization [Ioffe and Szegedy, 2015] and layer normalization [Ba et al.,134

2016]. In Figure 11 we can see that although there are some minor differences, there appears to135

be little gain to using normalization. This may very well be a consequence of the simplicity of the136

environments (indeed, the biggest differences are observed in MountainCar) and the shallowness of137

the networks we’re using. Although batch normalization does not seem to provide clear benefits, it138

also does not seem to hurt (with the exception of MountainCar), a finding that is somewhat at odds139

with that of Salimans and Kingma [2016], who affirm that batch normalization is not well suited for140

Deep Reinforcement Learning.141

We investigated this further on the MinAtar suite in Figure 12. It is worth noting that since the default142

setting for MinAtar is to use a single convolutional layer with no dense layers, we added one dense143

layer (based on the depth results from Figure 14) and applied the normalization on this extra dense144

layer. The results provide even more evidence that there is little gain to using normalization, and145

this can in fact hurt performance. It is worth investigating whether applying normalization to the146

convolutional layer can help address this.147

Network capacity Improvements in deep learning architectures have played a vital role in moving148

forward the state of supervised and unsupervised learning in computer vision, but neural network149

architecture design for deep reinforcement learning is relatively unexplored, with a few exceptions150

[Sinha et al., 2020, Andrychowicz et al., 2020].151

We vary network capacity via the depth (e.g. the number of hidden layers) and the width (e.g. the152

number of neurons) of each hidden layer. In Figure 13 we observe an interesting phenomenon where153

fewer layers seems to help DQN (e.g. MoutainCar) whereas in Rainbow performance is correlated154

with the number of layers. We hypothesize that this form of network capacity has a non-trivial155

interaction with the type of loss (e.g. expectational versus distributional), and may help further156

understand the difference between the two forms of TD-learning [Lyle et al., 2019]. Huh et al. [2021]157

and Kumar et al. [2020] demonstrated that deeper networks tend to be biased towards lower rank158

(e.g. simpler) solutions. This may help explain why in DQN, shallower networks work best with159

Mountaincar (the most complex off the four classic control environments).160

In Figure 14 we investigate the effect of depth on the MinAtar suite. The default setting for MinAtar161

is to use a single convolutional layer (depth = 0), so we investigated the effect of adding dense layers162

after the convolutional layer. In DQN there is a clear benefit to adding more layers, but the best163

results are obtained when adding only a single layer. It is interesting to note that in Freeway, the164

simplest of the five games, the best performance is obtained without any extra layers. This strongly165

suggests that there is a close relationship between network depth and environment complexity, where166

5

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

500

400

300

200

100

Fi
na

l r
et

ur
n

Acrobot

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

25

50

75

100

125

150

175

200

CartPole

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

3000

2500

2000

1500

1000

500

0

LunarLander
DQN Rainbow

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

600

500

400

300

200

100

MountainCar

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

10

20

30

40

50

Fi
na

l r
et

ur
n

Asterix

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

20

40

60

80

100

Breakout

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

10

20

30

40

50

60

Freeway

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

50

100

150

200

250

300

SpaceInvaders

Rew
ard

 cli
pp

ing

Disc
ou

nt
fac

tor

Min
rep

lay
 hi

sto
ry

Upd
ate

 ho
riz

on

Onlin
e u

pd
ate

 pe
rio

d

Ta
rge

t u
pd

ate
 pe

rio
d

Num
be

r o
f a

tom
s

0

10

20

30

40

50

60

70

80
Seaquest

Figure 4: Comparison of hyper-parameter sensitivity for DQN and Rainbow, for the algorithmic
hyper-parameters (subsection 3.1).

the best performance is obtained in a “goldilocks region”, and this region varies across environments.167

In Rainbow, we can further observe how much this “goldilocks region” varies from game to game:168

from a wide region (Asterix) to a very narrow one (Seaquest).169

In Figure 15 we can see that, in general, increasing width improves performance. It is somewhat170

surprising the significant differences observed with Rainbow in CartPole (arguably the easiest of the171

environments), yet there is no noticeable difference in DQN.172

Given the results of the depth experiments, we explored varying width in the MinAtar environments173

by adding one dense layer after the convolutional layer. In Figure 16 we see surprising variation174

across environments where performance is sometimes proportional to width (SpaceInvaders), and175

sometimes inversely proportional (Asterix and Freeway).176

3.2 Optimizer hyper-parameters177

Although the choice of optimizer is a design choice in itself, Obando-Ceron and Castro [2021]178

demonstrated the superior performance of the Adam optimizer [Kingma and Ba, 2015] relative to179

candidates such as RMSProp. We explore two hyper-parameters of this optimizer: learning rate and180

epsilon values.The aggregate results for these hyper-parameters are summarized in Figure 3.181

In Figure 17 we can see that both algorithms are relatively robust to varying learning rates between182

10−4 and 0.01; however in Figure 18 we explore a wider range and observe a deterioration in183

performance in both algorithms. In Figure 19 we can see a fair bit of variation across the MinAtar184

environments for the learning rates considered, with the ordering based on performance varying185

between environments (e.g. Asterix versus Breakout on DQN).186

We also observe that DQN seems to exhibit greater stability with larger ε values than Rainbow (see187

Figure 20 and Figure 21). To further investigate this observation, we ran the ε experiment on the188

MinAtar suite (Figure 22). We observe that the qualitative differences between DQN and Rainbow189

are mostly gone, suggesting that the observations in the classic control environment are perhaps due190

more to Rainbow’s stability on simpler environments.191

3.3 Algorithmic parameters192

There are a number of algorithmic design choices for RL agents that are often overlooked, but can193

play a significant role in performance. Hessel et al. [2019] explored this to some extent, focusing194

6

on variants of the A2C algorithm [Mnih et al., 2016]. The aggregate results for this group of195

hyper-parameters is presented in Figure 4.196

Reward clipping Reward clipping was an important design decision for the original DQN algo-197

rithm, as it enabled normalizing scores across games [Mnih et al., 2015]. Clipping rewards changes198

the objective, which can result in qualitatively different learned behaviours. This design decision has199

often been adopted by derivative algorithms for other domains without properly evaluating its efficacy.200

Indeed, Figure 23 suggests that the agents can actually perform better without reward clipping. This201

is somewhat at odds with the findings of van Hasselt et al. [2016a], where they found reward-clipping202

to be useful for learning. In the MinAtar environments we do not see much difference between the203

two (Figure 24).204

Discount factor The importance of γ has been observed in a number of recent works [Amit et al.,205

2020, Hessel et al., 2019, Gelada and Bellemare, 2019, van Seijen et al., 2019, François-Lavet et al.,206

2016], and in particular the discrepancy between the γ value used for training and the one used for207

evaluation. As Figures 25 and 26 demonstrate, algorithmic performance is rather sensitive to the208

choice of γ; a result consistent with the findings of Hessel et al. [2019].209

In Figure 27 we evaluate three values of γ on the MinAtar environments and see a fair bit of variability210

across environments (compare DQN on SpaceInvaders versus Seaquest, for instance).211

Minimum replay history As mentioned above, the agent stores its experience in a replay memory,212

from which it then samples mini-batches for learning. It is common practice to only begin sampling213

from the replay buffer when a minimum number of transitions have been recorded: the minimum214

replay history. The purpose of this parameter is to avoid overfitting to a sample set of samples at the215

early stages of training. Perhaps, surprisingly, Figure 28 and Figure 29 suggest that the choice of this216

parameter has very little effect on the performance of either algorithm.217

Update horizon Multi-step learning [Sutton, 1988] computes the temporal difference error using218

multi-step transition, instead of a single step. DQN uses a single-step update by default, whereas219

Rainbow chose a 3-step update. In Figure 30 we compare various update horizons. It is interesting to220

note that DQN is mostly unaffected by the update horizon, whereas Rainbow seems to have degraded221

performance with a single-step update horizon. It thus seems that one of the Rainbow components222

benefits from the multi-step update, an interesting question left for future work.223

The update horizon has been argued to trade-off between the bias and the variance of the return224

estimate [Kearns and Singh, 2000]. This effect has been observed in the linear function approximation225

case, but it has not been very well studied with deep networks. Hernandez-Garcia and Sutton226

[2019] perform a statistical analysis on the effect the update horizon has on the performance of six227

reinforcement algorithms in MountainCar and find that the performance of each algorithm at the228

beginning of training was better with larger update horizons. These findings are confirmed by our229

results on MountainCar (Figure 30), but they are less evident on the other environments. Indeed, DQN230

seems to perform worse with a larger update horizon on Acrobot. These findings further highlight the231

sensitivity of the different DRL components relative to the environment on which they are run.232

In Figure 31 we see this effect in high relief, where the benefit of the update horizon seems to be233

closely tied with environmental complexity. Compare, for instance, both algorithms on Freeway and234

Seaquest: in the former, an update horizon of 1 performs best, while in the latter an update horizon of235

10 yields a dramatic improvement for both algorithms.236

Update periods For synchronous agents (like DQN and Rainbow), the update of the online network237

parameters is not done after every step taken in the environment; instead, it is performed at a frequency238

specified by the update period. The default value used is 4, which means that the online network239

parameters are only updated after every 4 steps taken in the environment.240

The effect of varying the update period for the online network can be seen in Figure 32. The results241

vary from environment to environment (compare the performance of an update period equal to 8 in242

Acrobot and MountainCar with DQN); this variability is likely due to the complex learning dynamics243

of RL and merits further study. Interestingly, this parameter does not seem to have much of an effect244

on the MinAtar environments (Figure 31).245

7

As mentioned previously, the target network parameters are updated less frequently than the online246

parameters. It has been observed that less frequent updates can result in improvements [Hernandez-247

Garcia and Sutton, 2019]. However, our findings in Figure 34 suggest that the best performance is248

obtained between values of 50-200, but any higher or lower results in decreased performance. We249

also find that DQN seems to be more sensitive to this choice than Rainbow in the classic control250

environments, but there is little variation for both DQN and Rainbow in the MinAtar environments251

(Figure 35).252

Number of atoms One of the key components of the Rainbow algorithm is distributional reinforce-253

ment learning. With this approach, the output layer predicts the distribution of the returns for each254

action a in a state s, instead of the mean Qπ(s, a). Rainbow uses the distribution parameterization255

originally proposed by Bellemare et al. [2017]; namely, representing the return distribution as a256

categorical distribution parameterized by N "atoms". Bellemare et al. [2017] found that empirically257

setting N = 51 proved best for the ALE; in Figure 36 we revisit this design choice.258

Somewhat surprisingly, we observe little sensitivity to this choice in the four environments considered.259

Obando-Ceron and Castro [2021] hypothesized that the role of the number of atoms may be larger260

when the deep networks include convolutional layers. To investigate this, we repeated this experiment261

on the MinAtar suite (see Figure 37) and observe that, rather than being dependent on the use of262

convolutional layers, the role of this parameter is affected by the environment. In particular, we263

observe very little difference between the number of atoms in Asterix, but see a clear difference in264

SpaceInvaders, where more atoms results in better performance.265

4 Discussion266

There is a growing interest and concern in the effect of hyperparameter choice, and the ensuing267

reproducibiliity, for deep reinforcement learning. Henderson et al. [2019] and Islam et al. [2017]268

highlight issues with reproducibility in RL, including performance differences between different269

code implementations, hyperparameters, and the high level of non-determinism due to random seeds.270

Fu et al. [2019] experimentally investigate potential issues of deep Q-learning algorithms. Other271

large-scale studies similar to ours have been carried out by Andrychowicz et al. [2020], Hussenot272

et al. [2021], and Paine et al. [2020], but not for online value-based methods.273

Figure 1 summarizes our experiments for both agents. We hearken back to the questions raised in the274

introduction and discuss them with respect to our findings.275

How sensitive are DQN and Rainbow to variations in hyper-parameter selection? While in276

aggregate the two agents have comparable sensitivity, there are some notable exceptions. Network277

capacity seems to be strongly affected by environment complexity; indeed, in the simpler classic278

control environments Rainbow has a higher sensitivity to over-parameterization, while in the more279

difficult MinAtar suite both algorithms have noticeable sensitivity. Rainbow seems to be more280

affected by the choice of ε for the Adam optimizer. High values of ε make Adam behave more like281

SGD with Momentum then as diagonal natural gradient descent [Choi et al., 2020]; this leads us to282

wonder about the relationship between the distributional loss and these different forms of optimization.283

In the classic control environments, Rainbow seems to be unaffected by different choices of the284

number of atoms (in contrast with the original findings of Bellemare et al. [2017]); this result may285

very well be a consequence of the relative simplicity of these environments, as further evidenced by286

the findings in MinAtar (Figure 37).287

Does the choice of environment vary the sensitivity to hyper-parameter selection? This is most288

certainly the case, as we observed stark qualitative differences between MountainCar and the other289

classic control environments. Indeed, any differences between hyper-parameter values seem to be290

brought into high-relief when evaluated in MountainCar. Additionally, a somewhat surprising finding291

is that CartPole (often considered the simplest of all four) proved quite effective at highlighting292

important qualitative differences between DQN and Rainbow (e.g. network width/depth, optimizer293

ε). We observed similar qualitative differences between the different MinAtar games (e.g. Figure 37294

demonstrated the effect of number of atoms is best observed in SpaceInvaders, relative to the other295

games).296

8

Some of our experiments are interesting in that their behavior is different from all other combinations297

of actor-environment:298

• While for most environments initializations seemed to have little effect on the performance299

of our agents, we see a much higher effect when varying initializations on DQN on Moun-300

taincar.301

• Although in general changing activation functions did not impact performance significantly,302

we can see that in both DQN on Mountaincar, and Rainbow on Breakout there are clearly303

activation functions that are better than the rest, most interestingly is how relu6 shows a304

clear improvement over all other activations in Rainbow on Breakout.305

• The next striking behavior comes from the depth experiments in DQN on Mountaicar, where306

we see shallower networks being significantly better than deeper networks, a result opposite307

to what we see in the other combinations of agents and classic control environments.308

• The experimental results on MinAtar show that the optimal choice for a number of hyper-309

parameters are quite sensitive to the environment itself. Specifically, see the results and310

discussion on varying learning rates, layer width, γ, and the update horizon.311

Are existing methods under-performing due to a poor hyper-parameter choice? There are no312

canonical hyper-parameter values for the environments considered in this paper; the ones we have313

labeled as "default" are using the values provided by Obando-Ceron and Castro [2021]. However,314

some interesting findings that merit further investigation are:315

• As mentioned previously, there seems to be a “goldilocks region” for network capacity that316

is conditional on the environment. As we observed in Figure 13, a network with a single317

hidden layer seems to be sufficient for DQN, and in fact yields improved performance on318

MountainCar. On the other hand, in Figure 14 we see that deeper networks can help, but319

only up to a point.320

• As discussed above, while reward clipping may be useful for the ALE, it is worth revisiting321

for any new environment as it can sometimes prove detrimental to performance.322

• Our results suggest both algorithms are quite sensitive to the choice of γ, and this sensitivity323

varies across environments. As such, this parameter must be selected with care for new324

environments.325

• While 51 atoms may have proved best for the ALE experiments conducted by Bellemare et al.326

[2017], our results suggest smaller values can suffice for simpler environments. However,327

this question can be somewhat sidestepped by using different parameterizations of the return328

distribution [Dabney et al., 2018a,b].329

• Although we provided some insights into some aspects of the replay buffer and network330

updates, a more thorough investigation into the relationship between the size and frequency331

of updates, dubbed the replay ratio by Fedus et al. [2020] is warranted.332

The present work aims at investigating the importance of a broad set of hyper-parameters that need333

to be chosen when designing and implementing off-policy learning algorithms. Although we found334

surprising insights on the classic control environments, we would like to run further experiments on335

the ALE [Bellemare et al., 2012].336

References337

Ron Amit, Ron Meir, and Kamil Ciosek. Discount factor as a regularizer in reinforcement learning,338

2020.339

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphael Marinier,340

Léonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier341

Bachem. What matters in on-policy reinforcement learning? a large-scale empirical study, 2020.342

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization343

for deep reinforcement learning, 2017.344

9

Devansh Arpit, Victor Campos, and Yoshua Bengio. How to initialize your network? robust345

initialization for weightnorm & resnets, 2019.346

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.347

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-348

ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, Vol.349

47:253–279, 2012. cite arxiv:1207.4708.350

Marc G. Bellemare, Will Dabney, and R. Munos. A distributional perspective on reinforcement351

learning. In ICML, 2017.352

Marc G. Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C. Machado,353

Subhodeep Moitra, Sameera S. Ponda, and Ziyu Wang. Autonomous navigation of strato-354

spheric balloons using reinforcement learning. Nature, 588(7836):77–82, 2020. doi: 10.1038/355

s41586-020-2939-8. URL https://doi.org/10.1038/s41586-020-2939-8.356

Aditya Bhatt, Max Argus, Artemij Amiranashvili, and Thomas Brox. Crossnorm: Normalization for357

off-policy td reinforcement learning, 2019.358

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and359

Wojciech Zaremba. Openai gym, 2016.360

Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and Marc G. Bellemare.361

Dopamine: A research framework for deep reinforcement learning, 2018.362

Dami Choi, Christopher J. Shallue, Zachary Nado, Jaehoon Lee, Chris J. Maddison, and George E.363

Dahl. On empirical comparisons of optimizers for deep learning, 2020.364

Andrea Cini, Carlo D’Eramo, Jan Peters, and Cesare Alippi. Deep reinforcement learning with365

weighted q-learning, 2020.366

W. Dabney, M. Rowland, Marc G. Bellemare, and R. Munos. Distributional reinforcement learning367

with quantile regression. In AAAI, 2018a.368

Will Dabney, Georg Ostrovski, David Silver, and Remi Munos. Implicit quantile networks for369

distributional reinforcement learning. In Proceedings of the 35th International Conference on370

Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 1096–1105.371

PMLR, 2018b.372

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated373

convolutional networks. In Proceedings of the 34th International Conference on Machine Learning374

- Volume 70, ICML’17, page 933–941. JMLR.org, 2017.375

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep376

bidirectional transformers for language understanding, 2019.377

Stefan Elfwing, E. Uchibe, and K. Doya. Sigmoid-weighted linear units for neural network function378

approximation in reinforcement learning. Neural networks : the official journal of the International379

Neural Network Society, 107:3–11, 2018.380

W. Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, H. Larochelle, Mark Rowland,381

and Will Dabney. Revisiting fundamentals of experience replay. In ICML, 2020.382

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Osband, Alexander383

Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, and Shane384

Legg. Noisy networks for exploration. 2018.385

Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. How to discount deep reinforcement386

learning: Towards new dynamic strategies, 2016.387

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-learning388

algorithms, 2019.389

10

https://doi.org/10.1038/s41586-020-2939-8

Carles Gelada and Marc G. Bellemare. Off-policy deep reinforcement learning by bootstrapping the390

covariate shift, 2019.391

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward392

neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth393

International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of394

Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May395

2010. PMLR. URL https://proceedings.mlr.press/v9/glorot10a.html.396

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing397

human-level performance on imagenet classification, 2015.398

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.399

Deep reinforcement learning that matters, 2019.400

J. Fernando Hernandez-Garcia and Richard S. Sutton. Understanding multi-step deep reinforcement401

learning: A systematic study of the dqn target, 2019.402

Matteo Hessel, Joseph Modayil, H. V. Hasselt, T. Schaul, Georg Ostrovski, Will Dabney, Dan Horgan,403

Bilal Piot, M. G. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement404

learning. In AAAI, 2018.405

Matteo Hessel, Hado van Hasselt, Joseph Modayil, and David Silver. On inductive biases in deep406

reinforcement learning. CoRR, abs/1907.02908, 2019. URL http://arxiv.org/abs/1907.407

02908.408

Minyoung Huh, Hossein Mobahi, Richard Zhang, Brian Cheung, Pulkit Agrawal, and Phillip Isola.409

The low-rank simplicity bias in deep networks. arXiv preprint arXiv:2103.10427, 2021.410

Leonard Hussenot, Marcin Andrychowicz, Damien Vincent, Robert Dadashi, Anton Raichuk, Lukasz411

Stafiniak, Sertan Girgin, Raphael Marinier, Nikola Momchev, Sabela Ramos, Manu Orsini, Olivier412

Bachem, Matthieu Geist, and Olivier Pietquin. Hyperparameter selection for imitation learning,413

2021.414

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by415

reducing internal covariate shift, 2015.416

Riashat Islam, Peter Henderson, Maziar Gomrokchi, and Doina Precup. Reproducibility of bench-417

marked deep reinforcement learning tasks for continuous control, 2017.418

Michael J. Kearns and Satinder P. Singh. Bias-variance error bounds for temporal difference updates.419

In Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, COLT420

’00, page 142–147, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc. ISBN421

155860703X.422

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua423

Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations,424

ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL425

http://arxiv.org/abs/1412.6980.426

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization427

inhibits data-efficient deep reinforcement learning, 2020.428

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,429

David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.430

Clare Lyle, Pablo Samuel Castro, and Marc G. Bellemare. A comparative analysis of expected and431

distributional reinforcement learning. In Proceedings of the Thirty-Third AAAI Conference on432

Artificial Intelligence (AAAI’19), 2019.433

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen434

Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong,435

Kavya Srinivasa, William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger436

Carpenter, and Jeff Dean. A graph placement methodology for fast chip design. Nature, 594437

(7862):207–212, 2021. doi: 10.1038/s41586-021-03544-w. URL https://doi.org/10.1038/438

s41586-021-03544-w.439

11

https://proceedings.mlr.press/v9/glorot10a.html
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1907.02908
http://arxiv.org/abs/1412.6980
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w
https://doi.org/10.1038/s41586-021-03544-w

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-440

mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,441

Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,442

Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.443

Nature, 518(7540):529–533, February 2015.444

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim445

Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement446

learning, 2016.447

Johan S Obando-Ceron and Pablo Samuel Castro. Revisiting rainbow: Promoting more insightful and448

inclusive deep reinforcement learning research. In International Conference on Machine Learning449

(ICML), 2021.450

Tom Le Paine, Cosmin Paduraru, Andrea Michi, Caglar Gulcehre, Konrad Zolna, Alexander Novikov,451

Ziyu Wang, and Nando de Freitas. Hyperparameter selection for offline reinforcement learning,452

2020.453

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to454

accelerate training of deep neural networks, 2016.455

Andrew M. Saxe, James L. McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics456

of learning in deep linear neural networks, 2014.457

T. Schaul, John Quan, Ioannis Antonoglou, and D. Silver. Prioritized experience replay. CoRR,458

abs/1511.05952, 2016.459

G. Shamir, Dong Lin, and Lorenzo Coviello. Smooth activations and reproducibility in deep networks.460

ArXiv, abs/2010.09931, 2020.461

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,462

Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,463

Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine464

Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with465

deep neural networks and tree search. Nature, 529(7587):484–489, jan 2016. ISSN 0028-0836.466

doi: 10.1038/nature16961.467

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,468

Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan469

Hui, Laurent Sifre, George Driessche, Thore Graepel, and Demis Hassabis. Mastering the game of470

go without human knowledge. Nature, 550:354–359, 10 2017. doi: 10.1038/nature24270.471

Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg. D2rl: Deep dense472

architectures in reinforcement learning, 2020.473

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3474

(1):9–44, August 1988.475

Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning. MIT Press,476

Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.477

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural478

networks, 2020.479

Hado van Hasselt, Arthur Guez, Matteo Hessel, Volodymyr Mnih, and David Silver. Learning values480

across many orders of magnitude, 2016a.481

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-482

learning. In Proceedings of the Thirthieth AAAI Conference On Artificial Intelligence (AAAI),483

2016, 2016b. cite arxiv:1509.06461Comment: AAAI 2016.484

Harm van Seijen, Mehdi Fatemi, and Arash Tavakoli. Using a logarithmic mapping to enable lower485

discount factors in reinforcement learning, 2019.486

12

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling487

network architectures for deep reinforcement learning. In Proceedings of the 33rd International488

Conference on Machine Learning, volume 48, pages 1995–2003, 2016.489

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual490

transformations for deep neural networks, 2017.491

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for thorough and reproducible492

reinforcement learning experiments, 2019.493

13

A All figures494

0 10 20 30
500

400

300

200

100
DQ

N
re

tu
rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Initialization
orthogonal
variance_baseline
xavier_nor
he_uni

0 10 20 30

400

300

200

100

0
LunarLander

0 10 20 30
600

500

400

300

200

MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 5: Comparison of initializations on DQN (top) and Rainbow (bottom). The default initialization
is Xavier Normal.

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 300

25

50

75

100

125

150

175

200
CartPole

Initialization
he_nor
he_uni
lecun_nor
lecun_uni
ones
orthogonal
variance_0.1
variance_0.3
variance_0.8
variance_10
variance_3
variance_5
variance_baseline
xavier_nor
xavier_uni
zeros

0 10 20 30

800

600

400

200

0

LunarLander

0 10 20 30
600

500

400

300

200

100
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 6: Comparison of all initializations on DQN (top) and Rainbow (bottom). The default
initialization is Xavier Normal.

14

0 2 4 6 8
5

10

15

20

25

30

35

40

DQ
N

re
tu

rn
Asterix

0 2 4 6 8
3

4

5

6

7

8

9

10
Breakout

0 2 4 6 8

40

45

50

55

60
Freeway

init
he_uni
he_nor
xavier_uni
xavier_nor
orthogonal

0 2 4 6 8

20

30

40

50

60
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

14

0 2 4 6 8
Environment steps

25

30

35

40

45

50

55

0 2 4 6 8
Environment steps

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Environment steps

2

4

6

8

10

12

14

16

Figure 7: MinAtar comparison of initializations on DQN (top) and Rainbow (bottom). The default
initialization is Xavier Normal.

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Activation Fn
silu
selu
gelu
relu6
relu

0 10 20 30
600

500

400

300

200

100

0

LunarLander

0 10 20 30
600

500

400

300

200

100
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 8: Comparison of activations on DQN (top) and Rainbow (bottom). The Default Activation is
ReLU.

15

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn
Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Activation Fn
non_activation
relu
relu6
sigmoid
softplus
soft_sign
silu
log_sigmoid
hard_sigmoid
hard_silu
hard_tanh
elu
celu
selu
gelu
glu

0 10 20 30
600

500

400

300

200

100

0

100

LunarLander

0 10 20 30
600

500

400

300

200

100
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

500

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 9: Comparison of all activations on DQN (top) and Rainbow (bottom). The default activation
is ReLU.

0 2 4 6 8
5

10

15

20

25

30

35

40

DQ
N

re
tu

rn

Asterix

0 2 4 6 8
3

4

5

6

7

8

9

10

11 Breakout

0 2 4 6 8
42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0
Freeway

activation
silu
selu
gelu
relu6
relu

0 2 4 6 8

20

30

40

50

60
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

50

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

14

16

0 2 4 6 8
Environment steps

25

30

35

40

45

50

55

0 2 4 6 8
Environment steps

20

40

60

80

100

0 2 4 6 8
Environment steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 10: MinAtar comparison of activations on DQN (top) and Rainbow (bottom). The default
initialization is Xavier Normal.

16

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn
Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Normalization
non_normalization
BatchNorm
LayerNorm

0 10 20 30

400

300

200

100

0

LunarLander

0 10 20 30
600

500

400

300

200

MountainCar

0 10 20 30
Environment steps

500

400

300

200

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 11: Comparison of normalization on DQN (top) and Rainbow (bottom). The default normal-
ization is None.

0 2 4 6 8
0

5

10

15

20

25

30

35

DQ
N

re
tu

rn

Asterix

0 2 4 6 8
0

10

20

30

40

50

60

70

Breakout

0 2 4 6 8

30

35

40

45

50

55

60

Freeway

normalization
non_normalization
BatchNorm
LayerNorm

0 2 4 6 8
0

25

50

75

100

125

150

175

SpaceInvaders

0 2 4 6 8
0

5

10

15

20

25

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

10

20

30

40

50

60

70

80

0 2 4 6 8
Environment steps

40

45

50

55

60

0 2 4 6 8
Environment steps

50

100

150

200

250

300

350

0 2 4 6 8
Environment steps

0

10

20

30

40

50

60

70

Figure 12: MinAtar comparison of normalization on DQN (top) and Rainbow (bottom). The default
normalization is None.

17

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn
Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Depth
1
2
3
4

0 10 20 30

500

400

300

200

100

0

LunarLander

0 10 20 30
600

500

400

300

200

MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 13: Comparison of depth on DQN (top) and Rainbow (bottom). The default depth is 2.

0 2 4 6 8

5

10

15

20

25

30

35

DQ
N

re
tu

rn

Asterix

0 2 4 6 8
0

10

20

30

40

50

60

70

80
Breakout

0 2 4 6 8
35

40

45

50

55

60
Freeway

depth
0
1
2
3

0 2 4 6 8

25

50

75

100

125

150

175

SpaceInvaders

0 2 4 6 8
0

5

10

15

20

25

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

0

20

40

60

80

0 2 4 6 8
Environment steps

20

30

40

50

60

0 2 4 6 8
Environment steps

50

100

150

200

250

300

0 2 4 6 8
Environment steps

0

10

20

30

40

50

60

Figure 14: MinAtar comparison of the number of dense layers (on top of the single convolutional
layer) on DQN (top) and Rainbow (bottom). The default is a depth of 0.

18

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn
Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Width
64
128
256
512
1024

0 10 20 30

400

300

200

100

0
LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200

MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 15: Comparison of width on DQN (top) and Rainbow (bottom). The default width is 512.

0 2 4 6 8

5

10

15

20

25

30

35

40

DQ
N

re
tu

rn

Asterix

0 2 4 6 8

10

20

30

40

50

60

70

80
Breakout

0 2 4 6 8

35

40

45

50

55

60

Freeway

width
32
64
128
256
512
1024

0 2 4 6 8

25

50

75

100

125

150

175

SpaceInvaders

0 2 4 6 8
0

5

10

15

20

25

30

35 Seaquest

0 2 4 6 8
Environment steps

10

20

30

40

50

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

10

20

30

40

50

60

70

80

0 2 4 6 8
Environment steps

35

40

45

50

55

60

0 2 4 6 8
Environment steps

50

100

150

200

250

300

350

0 2 4 6 8
Environment steps

0

10

20

30

40

50

60

70

Figure 16: MinAtar comparison of width of one dense layer (on top of the single convolutional layer)
on DQN (top) and Rainbow (bottom). The default is a depth of 0.

19

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn
Acrobot

0 10 20 300

25

50

75

100

125

150

175

200
CartPole

Learning rate
0.01
0.001
0.0001

0 10 20 30

600

500

400

300

200

100

0
LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200
MountainCar

0 10 20 30
Environment steps

500

400

300

200

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 17: Comparison of learning rates on DQN (top) and Rainbow (bottom). The default learning
rate is 0.001, except for MountainCar where it is 0.01.

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 300

25

50

75

100

125

150

175

200
CartPole

Learning rate
0.1
0.01
0.001
0.0001
1e-05

0 10 20 30
800

700

600

500

400

300

200

100

0
LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200
MountainCar

0 10 20 30
Environment steps

500

400

300

200

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

600

400

200

0

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 18: Comparison of all learning rates on DQN (top) and Rainbow (bottom). The default
learning rate is 0.001, except for MountainCar where it is 0.01.

20

0 2 4 6 8
0

10

20

30

40

DQ
N

re
tu

rn
Asterix

0 2 4 6 8

4

6

8

10

Breakout

0 2 4 6 8
0

10

20

30

40

50

60
Freeway

learning_rate
0.01
0.001
0.0001

0 2 4 6 8
10

20

30

40

50

60
SpaceInvaders

0 2 4 6 8
0

1

2

3

4

5

6
Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

14

0 2 4 6 8
Environment steps

30

35

40

45

50

55

60

0 2 4 6 8
Environment steps

20

40

60

80

100

0 2 4 6 8
Environment steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Figure 19: MinAtar comparison of learning rates on DQN (top) and Rainbow (bottom).

0 10 20 30
500

450

400

350

300

250

200

150

100

DQ
N

re
tu

rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Optimizer
0.003125
0.0003125
3.125e-05

0 10 20 30

400

300

200

100

0

LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200
MountainCar

0 10 20 30
Environment steps

500

400

300

200

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 20: Comparison of optimizer ε on DQN (top) and Rainbow (bottom). The default ε is
0.0003125.

21

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn
Acrobot

0 10 20 300

25

50

75

100

125

150

175

200
CartPole

Optimizer
0.5
0.3125
0.03125
0.003125
0.0003125
3.125e-05

0 10 20 30

400

300

200

100

0

LunarLander

0 10 20 30
600

500

400

300

200

MountainCar

0 10 20 30
Environment steps

500

400

300

200

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

500

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 21: Comparison of all optimizer ε values on DQN (top) and Rainbow (bottom). The default ε
is 0.0003125.

0 2 4 6 8
0

10

20

30

40

DQ
N

re
tu

rn

Asterix

0 2 4 6 8

3

4

5

6

7

8

9

Breakout

0 2 4 6 8
0

10

20

30

40

50

60
Freeway

epsilon
0.03125
0.0003125
3.125e-05

0 2 4 6 8

20

30

40

50

60
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

2

4

6

8

10

12

0 2 4 6 8
Environment steps

20

30

40

50

60

0 2 4 6 8
Environment steps

0

20

40

60

80

100

0 2 4 6 8
Environment steps

0

1

2

3

4

5

6

7

Figure 22: Minatar comparison of optimizer ε on DQN (top) and Rainbow (bottom). The default ε is
0.0003125.

22

0 10 20 30
500

450

400

350

300

250

200

150

100

DQ
N

re
tu

rn
Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Reward clipping
True
False

0 10 20 30

400

300

200

100

0

LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 23: Comparison of reward clipping on DQN (top) and Rainbow (bottom). The default is True.

0 2 4 6 8
5

10

15

20

25

30

35

40

DQ
N

re
tu

rn

Asterix

0 2 4 6 8

3

4

5

6

7

8

9
Breakout

0 2 4 6 8

45.0

47.5

50.0

52.5

55.0

57.5

60.0
Freeway

clip_rewards
True
False

0 2 4 6 8

20

30

40

50

60
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

0 2 4 6 8
Environment steps

20

25

30

35

40

45

50

55

0 2 4 6 8
Environment steps

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Environment steps

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 24: MinAtar comparison of reward clipping on DQN (top) and Rainbow (bottom). The default
is True.

23

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn
Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Discount factor
0.9
0.99
0.995

0 10 20 30
500

400

300

200

100

0
LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 25: Comparison of γ on DQN (top) and Rainbow (bottom). The default γ is 0.99.

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Discount factor
0.1
0.5
0.9
0.99
0.995
0.999

0 10 20 30
1600

1400

1200

1000

800

600

400

200

0
LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 26: Comparison of all γ values on DQN (top) and Rainbow (bottom). The default γ is 0.99.

24

0 2 4 6 8
5

10

15

20

25

30

35

40

DQ
N

re
tu

rn
Asterix

0 2 4 6 8
3

4

5

6

7

8

9

Breakout

0 2 4 6 8

40

45

50

55

60
Freeway

gamma
0.9
0.99
0.995

0 2 4 6 8

20

30

40

50

SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

7
Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

0 2 4 6 8
Environment steps

20

30

40

50

0 2 4 6 8
Environment steps

20

40

60

80

100

0 2 4 6 8
Environment steps

0

5

10

15

20

25

Figure 27: MinAtar comparison of γ on DQN (top) and Rainbow (bottom). The default γ is 0.99.

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Min replay history
250
375
500
625
750
875
1000

0 10 20 30

400

300

200

100

0

LunarLander

0 10 20 30
600

500

400

300

200

MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 28: Comparison of minimum replay history on DQN (top) and Rainbow (bottom). The default
value is 500.

25

0 2 4 6 85

10

15

20

25

30

35

40

DQ
N

re
tu

rn
Asterix

0 2 4 6 8
3

4

5

6

7

8

9

10

Breakout

0 2 4 6 8

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0
Freeway

min_replay_history
500
1000
1500
2000

0 2 4 6 8

20

30

40

50

60
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

50

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

0 2 4 6 8
Environment steps

30

35

40

45

50

55

0 2 4 6 8
Environment steps

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Environment steps

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 29: MinAtar comparison of minimum replay history on DQN (top) and Rainbow (bottom).

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Update horizon
1
2
3
4
5
8
10

0 10 20 30

400

300

200

100

0

100

LunarLander

0 10 20 30
600

500

400

300

200

100
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 30: Comparison of update horizon on DQN (top) and Rainbow (bottom). The default value
for DQN is 1, while for Rainbow it is 3.

26

0 2 4 6 8

10

20

30

40

50

DQ
N

re
tu

rn
Asterix

0 2 4 6 8

4

6

8

10

12

14
Breakout

0 2 4 6 8

40

45

50

55

60
Freeway

update_horizon
1
3
5
10

0 2 4 6 8

20

30

40

50

60

70

80

SpaceInvaders

0 2 4 6 8
0

5

10

15

20

25

30

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

14

16

0 2 4 6 8
Environment steps

20

30

40

50

60

0 2 4 6 8
Environment steps

20

30

40

50

60

70

80

90

100

0 2 4 6 8
Environment steps

0

5

10

15

20

25

30

35

Figure 31: MinAtar comparison of update horizon on DQN (top) and Rainbow (bottom). The default
value for DQN is 1, while for Rainbow it is 3.

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Online update period
2
3
4
8

0 10 20 30

500

400

300

200

100

0

LunarLander

0 10 20 30
600

500

400

300

200

100
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

100

Figure 32: Comparison of online network update period on DQN (top) and Rainbow (bottom). The
default value is 4.

27

0 2 4 6 8
5

10

15

20

25

30

35

40

DQ
N

re
tu

rn
Asterix

0 2 4 6 8

3

4

5

6

7

8

9

10

11
Breakout

0 2 4 6 8

40

45

50

55

60
Freeway

update_period
2
3
4
8

0 2 4 6 8

20

30

40

50

60
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

14

0 2 4 6 8
Environment steps

10

20

30

40

50

0 2 4 6 8
Environment steps

20

40

60

80

100

0 2 4 6 8
Environment steps

2

4

6

8

10

12

Figure 33: MinAtar comparison of online network update period on DQN (top) and Rainbow (bottom).
The default value is 4.

0 10 20 30
500

400

300

200

100

DQ
N

re
tu

rn

Acrobot

0 10 20 30

25

50

75

100

125

150

175

200
CartPole

Target update period
25
50
100
200
400
800

0 10 20 30
500

400

300

200

100

0

LunarLander

0 10 20 30
600

550

500

450

400

350

300

250

200
MountainCar

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

0 10 20 30
Environment steps

25

50

75

100

125

150

175

200

0 10 20 30
Environment steps

400

300

200

100

0

100

200

0 10 20 30
Environment steps

600

500

400

300

200

Figure 34: Comparison of target network update period on DQN (top) and Rainbow (bottom). The
default value is 100.

28

0 2 4 6 8
5

10

15

20

25

30

35

40
DQ

N
re

tu
rn

Asterix

0 2 4 6 8
3

4

5

6

7

8

9

10

11
Breakout

0 2 4 6 8

42.5

45.0

47.5

50.0

52.5

55.0

57.5

60.0
Freeway

target_update_period
500
1000
1500
2000

0 2 4 6 8
15

20

25

30

35

40

45

50

55
SpaceInvaders

0 2 4 6 8

1

2

3

4

5

6

Seaquest

0 2 4 6 8
Environment steps

0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8
Environment steps

4

6

8

10

12

14

0 2 4 6 8
Environment steps

20

25

30

35

40

45

50

55

0 2 4 6 8
Environment steps

20

40

60

80

100

0 2 4 6 8
Environment steps

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Figure 35: MinAtar comparison of target network update period on DQN (top) and Rainbow (bottom).

0 10 20 30
Environment steps

500

450

400

350

300

250

200

150

100

Ra
in

bo
w

re
tu

rn

Acrobot

0 10 20 30
Environment steps

0

25

50

75

100

125

150

175

200
CartPole

Number of atoms
11
21
31
41
51
61
71
81

0 10 20 30
Environment steps

400

300

200

100

0

100

200

LunarLander

0 10 20 30
Environment steps

600

500

400

300

200

100
MountainCar

Figure 36: Comparison of number of atoms on Rainbow. The default value is 51.

0 2 4 6 8
0

10

20

30

40

Ra
in

bo
w

re
tu

rn

0 2 4 6 8

4

6

8

10

12

14

0 2 4 6 8
20

25

30

35

40

45

50

55

num_atoms
11
31
51
71

0 2 4 6 8
20

30

40

50

60

70

80

90

100

0 2 4 6 8

2

4

6

8

10

12

Figure 37: MinAtar comparison of number of atoms on Rainbow. The default value is 51.

29

B Best Hyperparameters settings for DQN and Rainbow accros the495

environments496

Table 1 shows the best values for each hyperparameter across all the classic control environments and497

MinAtar games.498

Table 1: Best Hyperparameters settings for DQN and Rainbow accros the environments
Classic control envs MinAtar

Hyperparameter DQN Rainbow DQN Rainbow

gamma 0.99 0.99
update horizon 4 10

min replay history 1000 625
update period 4 2

target update period 100 50
hidden layer 1 3 1 1

neurons 256 1024
initialization Orthogonal He uniform Orthogonal Xavier uniform

activation function Gelu Selu
normalization LayerNorm LayerNorm Non-normalization Batch-normalization

num atoms 71 71

clip False False

learning rate 0.001 0.01
eps 0.003125 3.125e-5 3.125e-5 0.0003125

30

C Hyperparameters settings for Classic control environments and MinAtar499

games500

Table 2, 3, 4 list the choice configurations we used to run several experiments on classic control501

environments and MinAtar games.502

Table 2: Hyperparameters settings for Classic control environments and MinAtar games
activation init learning_rate epsilon normalization

None activation orthogonal 10 1 None
relu zeros 5 0.5 BatchNorm
relu6 ones 2 0.3125 LayerNorm
sigmoid xavier_uni 1 0.03125
softplus xavier_nor 0.1 0.003125
soft_sign lecun_uni 0.01 0.0003125
silu lecun_nor 0.001 3.125e-05
swish he_uni 0.0001 3.125e-06
log_sigmoid he_nor 1e-05
hard_sigmoid variance_baseline
hard_silu variance_0.1
hard_swish variance_0.3
hard_tanh variance_0.8
elu variance_3
celu variance_5
selu variance_10
gelu
glu

Table 3: Hyperparameters settings for Classic control environments and MinAtar games
target_update_period update_period width depth

10 1 32 1
25 2 64 2
50 3 128 3
100 4 256 4
200 8 512
400 10 1024
800 12
1600

Table 4: Hyperparameters settings for Classic control environments and MinAtar games
min_replay_history update_horizon gamma num_atoms clip_rewards

125 1 0.1 11 True
250 2 0.5 21 False
375 3 0.9 31
500 4 0.99 41
625 5 0.995 51
750 8 0.999 61
875 10
1000

31

	Introduction
	Background
	DQN
	Rainbow
	Experimental details

	Lifting the veil
	Network components
	Optimizer hyper-parameters
	Algorithmic parameters

	Discussion
	All figures
	Best Hyperparameters settings for DQN and Rainbow accros the environments
	Hyperparameters settings for Classic control environments and MinAtar games

