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In this supplement, we provide the following:
• Exploration of feature ablation experiments conducted across
different phases of progressive learning.

• Deliberation on the trade-off between training time cost and
performance enhancement resulting from the progressive
learning.

• Results from experiments encompassing a broader array of
proxy tasks.

• Evaluation of the impact of diverse modal inputs (such as
RGB images and optical flow) on progressive learning.

• Qualitative comparison with the SOTA methods and visual-
ization.

0.1 Ablation Experiments on Progressive
Learning

To validate the necessity of each phase in progressive learning, we
conduct ablation experiments on the ShanghaiTech and Campus
datasets. Meanwhile, to demonstrate the necessity of progressive
learning, we supplement the results of simultaneous learning.

Table 1: Ablation experiments on the multi-task learning.
We report the AUC (%) scores on ShanghaiTech and Campus
datasets. ’FP’, ’SR’, and ’Vir’ stand for the proxy tasks of frame
prediction, proposed semantic reconstruction, and virtual
data-basd classification, respectively. In addition, ’Prog’ and
’Simu’ represent the two training strategies of progressive
and simultaneous learning, respectively.

ID FP SR Vir Prog Simu AUC
ShTech Campus

1 ✓ - - - - 73.1 57.9
2 - ✓ - - - 76.1 65.4
3 - - ✓ - - 68.8 58.1
4 ✓ ✓ - ✓ - 77.2 65.4
5 ✓ - ✓ ✓ - 75.1 59.9
6 - ✓ ✓ ✓ - 78.8 65.2
7 ✓ ✓ ✓ ✓ - 79.0 67.2
8 ✓ ✓ - - ✓ 79.2 66.2
9 ✓ - ✓ - ✓ 72.0 57.0
10 - ✓ ✓ - ✓ 79.7 66.9
11 ✓ ✓ ✓ - ✓ 86.2 69.4

As shown in table 1, each phase of the proposed framework is
indispensable. The frame prediction task in the perception phase
learns low-level pixel features to lay the foundation for learning
in subsequent phases. Either progressive learning of subsequent
semantic proxy tasks or simultaneous learning can improve the
performance of the model (ID 2, 4, 8). The semantic reconstruction

task in the comprehension phase learns semantic features, as evi-
denced by the significant performance gains of the model on the
Campus dataset (ID 1, 4, 8). After completing the first two phases
of learning, the model is trained using virtual data in the inference
phase helps to learn general features to improve model detection
(ID 11). In contrast, learning three tasks simultaneously leads to
model convergence to the sub-optimal point, and the model per-
formance is rather inferior to learning two tasks simultaneously
(ID 4, 7). Progressive learning effectively avoids this problem, and
the performance of the model continues to improve over the three
phases (ID 8, 11).

It is important to note that performing the frame prediction task
first and training with virtual data immediately after can lead to
a degradation in model performance (ID 9). This is due to the fact
that the model performs difficult tasks early in training leading
to challenges that are difficult for the model to solve. This also
proves the necessity of the three stages and the training sequence
"Perception - Comprehension - Inference". Performing the semantic
reconstruction task first and then training with virtual data does
not present a similar problem (ID 10).

0.2 Trade-off between Time Cost and
Performance Gain

In order to avoid convergence of the model to a sub-optimal point,
we train with different proxy tasks at different phases. For continu-
ous performance improvement, we propose progressive learning to
provide different but successive optimization goals. The process of
progressive learning in fact transforms simultaneous learning into
multi-phase learning. Multi-phase learning inevitably induces an
increase in the cost of training time, and we explore the trade-off
between training cost and performance gain.

Three tasks of frame prediction, semantic reconstruction, and
virtual data-based classification are used as examples to perform
progressive learning. As shown in Table 1, the model obtained from
progressive learning training achieves AUC scores of 86.2% on the
ShanghaiTech dataset. While, the model that learns three tasks
simultaneously achieves AUC scores of 79.0%. Progressive learning
brings performance gains of up to 7.2%.

With an NVIDIA RTX 3090 GPU, it takes 80 epochs for the model
to learn three tasks simultaneously for training. With the progres-
sive learning, the frame prediction (Perception Phase), semantic
reconstruction (Comprehension Phase) and virtual data-based clas-
sification (Inference Phase) tasks require 30, 40 and 20 epochs,
respectively. Hence, the slight increase in training time is justi-
fied by the significant performance improvements facilitated by
progressive learning. Moreover, the cumulative training duration
across the three phases of progressive learning does not simply
triple compared to simultaneous learning, indicating that the ob-
jectives achieved in the initial phases contribute to the efficiency
of subsequent phases.
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Table 2: AUC (%) performance of models trained with different combinations of tasks using different learning sequences and
models trained simultaneously with the same weights for all tasks on the ShanghaiTech and Campus datasets. The results
indicate that our progressive learning approach achieves the maximum performance improvement when learning multiple
auxiliary tasks, and the performance gains are not limited to specific tasks.

Dataset
Progressive Simultaneous

Learning Order AUC AUCPhase 1 Phase 2 Phase 3 Phase 1 Phase 2 Phase 3

ShanghaiTech

Pre →SR → Virtual 73.1 79.2 84.8 79.0
Pre →Virtual →SR 73.1 72.0 75.5 74.2
SR →Pre →Virtual 76.1 75.5 76.8 76.3
CLS →Virtual →SR 65.4 64.2 73.2 70.1
- →Virtual →SR - 68.8 76.2 72.1

Rec →Jigsaw →VL 71.9 81.2 82.3 80.2
Pre →Optical Flow →Virtual 73.1 76.8 78.8 77.2
Pre →Optical Flow→SR →Virtual 73.1 80.2 85.3 79.2
Rec →Completion →VL 71.9 79.8 81.9 79.5
Rec →Completion →Pseudo 71.9 79.8 81.1 80.0

Pre→ Rec - → Pseudo 76.0 76.0 79.3 79.0
Pre→ Rec → SR - 76.0 85.0 85.0 82.3
Pre→ Rec → Jig → Virtual 76.0 85.9 88.6 79.2
Pre→ Rec → Jig → Virtual→ VL 76.0 85.9 88.7 79.5
Pre→ Rec → Jig → Completion → Virtual 76.0 86.1 88.8 78.1

Pre→ Rec→ CLS → SR → Jig → Completion → Virtual 76.8 86.4 88.8 77.9

Campus

Pre →SR → Virtual 57.9 66.2 69.4 67.2
Pre →Virtual →SR 57.9 57.0 68.1 67.2
SR →Pre →Virtual 65.4 64.8 66.1 65.9
CLS →Virtual →SR 54.2 53.9 62.8 62.0
- →Virtual →SR - 58.1 64.3 64.2

Rec →Jigsaw →VL 55.1 71.2 72.1 68.0
Pre →Optical Flow →Virtual 57.9 58.8 59.4 59.4
Pre →Optical Flow→SR →Virtual 57.9 66.5 69.6 67.7
Rec →Completion →VL 55.1 67.9 70.6 67.2
Rec →Completion →Pseudo 55.1 67.9 71.1 67.8

Pre→ Rec - → Pseudo 58.2 58.2 60.6 61.3
Pre→ Rec → SR - 58.2 69.9 69.9 66.1
Pre→ Rec → Jig → Virtual 58.2 71.2 73.3 70.2
Pre→ Rec → Jig → Virtual→ VL 58.2 71.2 73.5 70.0
Pre→ Rec → Jig → Completion → Virtual 58.2 72.3 75.1 66.9

Pre→ Rec→ CLS → SR → Jig → Completion → Virtual 59.1 74.5 75.8 66.8

0.3 More Proxy Task Combinations and
Training Sequences

In the ablation experiments in the main text, we report experi-
mental results for different proxy task combinations and training
sequences. In this Supplementary Material, we report the perfor-
mance of more proxy task combinations and training sequences on
the ShanghaiTech and Campus datasets.

In keeping with the main text, we select the widely used proxy
task. For the visual proxy task, we select the reconstruction [5] and
classification [5] tasks. For the semantic proxy task, we select the
event completion [9] and puzzle task [6]. For the open-set proxy
task, we select the background-agnostic [1] of synthesizing pseudo
anomalies and the Vision-Language task [8] of generating novel
anomalies using pre-trained multi-model model.

As the results in Table 2 show, proxy tasks such as reconstruc-
tion, classification, event completion, and pseudo-data are all con-
sistently improved in model performance when divided and ordered
with the guidelines of progressive learning. More comprehensive
experiments demonstrate that the performance gains from progres-
sive learning are not limited to specific tasks.

0.4 Ablation Experiment on Diverse Modal
Inputs

In both the main text and the above experiments, the input to our
model is RGB images. In fact, there are many SOTA methods [2–4]
that use optical flow images as additional input and design proxy
tasks. Therefore, we further explore the enhancement utility of
optical flow images in progressive learning.
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Figure 1: Frame-level scores example for test video from
ShanghaiTech dataset. The vertical and horizontal axes rep-
resent anomaly scores and video frames respectively. We
show the sampled video frames, the anomalous portion of
the ground truth (gray areas are anomalies), and the anomaly
scores achieved by the anomaly detection model. The red,
green, and blue curves represent the results of progressive
learning of multiple proxy tasks (Ours), learning multiple
proxy tasks simultaneously, and single-task design [7], re-
spectively. Best viewed in color.

Previous studies typically reconstruct optical flow images to
learn motion features (which are semantic features). Therefore, we
are consistent with previous studies that perform optical flow-based
reconstruction in the comprehension phase. As shown in Table 2,
the optical flow images can be unified in our proposed progressive
learning to continuously improve the performance of the model.
Nonetheless, it’s important to note that optical flow information
primarily encapsulates semantic details regarding motion patterns
rather than scene information. Therefore, its augmentative effect
on the Campus dataset isn’t as pronounced as observed with other
semantic proxy tasks.

0.5 Qualitative Experiments and Visualization
Figure 1 shows the anomaly score curves obtained by progressive
learning on the ShanghaiTech dataset. To illustrate the effectiveness
of proposed method, we compare our method with simultaneous
learning and the SOTA single-task method (ROADMAP [7]).

As shown in the figure, the model trained with progressive learn-
ing rises faster when there are anomalies and has a higher anom-
aly score. When the video is normal, the score is even lower and
smoother. The proxy tasks performed by both progressive and si-
multaneous learning are frame prediction, semantic reconstruction,
and virtual data-based classification.
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