
A Background589

A.1 Riemannian geometry590

Riemannian geometry is a part of differential geometry that studies Riemannian manifolds, smooth591

manifolds equipped with a Riemannian metric. A manifoldM is a generalization and abstraction592

of the notion of a curved surface. It is a topological set that is modeled closely on Euclidean space593

locally but may vary widely in global properties. It means for each p ∈ M, one can associate a594

tangent space Tp(M) ⊆ Rd, corresponding to the union of all tangent vectors of differentiable curves595

passing through p. Consequently, at any point p ∈ M, the tangent space Tp(M) is spanned by a596

basis {∂xi,p}Ni=1:597

Tp(M) = {γ̇(0)|γ : R→M ∈ C1and γ(0) = p} = span{∂xi,p}Ni=1. (5)

A Riemannian manifold is a differentiable manifoldM with a Riemannian metricR, a 2-tensor field,598

such that at each p ∈M, we have a functionR|p : Tp(M)× Tp(M)→ R which is symmetric and599

positive definite. At each g ∈ G, the Riemannian metric can be expressed by its local representation,600

a symmetric positive definite matrix Rp whose components are given by:601

rij(p) = R|p(∂xi,p, ∂xj ,p). (6)

In the following we consider Riemannian metric with diagonal local representation at the origin e,602

that is:603

rij(e) =

{
ri if i = j
0 otherwise . (7)

The Riemannian metric induces an inner product, such that for any u = ui∂xi,e and v = vi∂xi,e,604

we have 〈u, v〉R(e) = uiriv
i and ||u||2R(e) = uiriu

i. Between each pair of points p and q of605

a Riemannian manifold, we define their Riemannian distance as the length of the shortest curve606

connecting the two points (a.k.a. geodesic). More formally, we have:607

d(p, q) = inf
γ∈C∞p,q

∫ 1

0

||γ̇(τ)||Rγ(τ)dτ, (8)

where C∞p,q = {γ : [0, 1] →M|γ ∈ C∞, γ(0) = p, γ(1) = q}. An more convenient way to define608

the Riemannian between two points is via the exponential and logarithmic Riemannian maps (Figure609

5). The Riemannian exponential map expp Tp(M)→M is defined as:610

expp(v) = γp,v(1), (and by extension expp(tv) = γp,v(t)), (9)

where γp,v(1) is the unique Riemannian geodesic starting at p ∈M with initial velocity v ∈ Tp(M).611

We can interpret the exponential map as follows. Let’s choose any direction in our tangent space612

and follow it with a step forward. We make sure to take the shortest path and end up at a new613

point. This process is what we called the exponential map.6 The inverse mapping of the exponential614

map, the logarithmic map logp :M→ Tp(M) will map an element p ∈ M to the smallest vector615

v = logp q ∈ Tp(M) as measured by the Riemannian metric such that q = expp v ∈M.616

A.2 Group theory617

A group (G, ·) is a set G equipped with a binary operation · : G→ G called group product, satisfying618

the four group axioms (closure, associativity, identity element and inverse elements). To map the619

structure of the group to some mathematical object, one requires a representation. We define H as620

the vector space to which our mathematical object belongs and B(H) the space of bounded linear621

invertible operators H → H . A representation V : G→ B(H) maps a group element to an operator622

such that the identity element, the group product and the group inverse are preserved. We define the623

left-regular representation Lg on the (infinite-dimensional) vector space of functions G→ Rd via:624

(Lg ◦ f)(h) = f(g−1h), (10)

with f : G → Rd a function on the group G and g, h elements of the group G. Using this group625

representation, we can formally define the left-invariance (a.k.a. equivariance).626

6It comes from the fact that all these tiny steps magically resemble the series expansion of the exponential
function.
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Figure 5: Riemannian exponential map expp : Tp(M) → M and Riemannian logarithmic map
logp :M→ Tp(M).

Definition A.1 (Equivariance) An operator Φ : X → Y from one vector space to the other is627

equivariant (or left-invariant under group transformation) if it satisfies the following property:628

L′g ◦ Φ = Φ ◦ Lg, ∀g ∈ G. (11)

Equivariance can be realized in many ways, and in particular, the group representations Lg and L′g629

need not be the same, as they act on different spaces X and Y . Note that the familiar concept of630

invariance is a special kind of equivariance where L′g is the identity transformation for all element g631

of the group G.632

A Lie group is a continuous group whose group elements are parameterized by a finite-dimensional633

differentiable manifold. In essence, this means that a Lie group is a group to which we can apply634

differential geometry. From now on, we also assume the group manifold is equipped with a Rieman-635

nian metric, that is it is Riemannian manifold. To each element g of G, we can associate a tangent636

space Tg(G), which is spanned by a basis of left-invariant vectors denoted by {Ai|g}ni=1. We write637

Tg(G) = span{A1|g, . . . ,An|g} and we can express tangent vectors γ̇(t) of Tg(G) in this basis via638

γ̇(t) = ci(t)Ai|γ(t).639

Moreover, because this frame of basis vector is left-invariant, the coefficients ci(t) remain unchanged640

if the curve is moved by applying left group product. The tangent space at the origin Te(G) is spanned641

by a basis {Ai}ni=1 where Ai = Ai|e. We make a subtle difference in notation between A and A,642

where A represents a whole vector field and A|g represents the vector at location g. The straight A643

is used to indicate a vector in the Lie algebra, the tangent space at the origin. Via the push-forward644

(Lg)∗, we can generate a whole vector space by picking a vector in the Lie algebra and transporting645

tangent vectors from γ̇(0) ∈ Te(G) to g · γ̇(0) ∈ Tg(G) using:646

Ai|g = (Lg)∗Ai, ∀g ∈ G. (12)

The left-invariant frame of basis vectors could also be interpreted as the directional derivative of647

functions defined on the group G. At any element g, the value of the directional derivative of a648

function f defined on G can be computed using the push-forward operation:649

Ai|gf = (Lg)∗Ai|ef := Ai|e(f ◦ Lg−1), (13)

so Ai|gf represents the directional derivative along the vector field at location g, which can be650

defined by translating the function back to the origin via Lg−1 and compute the derivative at the651

origin along the direction specified by Ai|e. In the above Lgh := gh.652
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The Laplace-Beltrami operator, the generalization to Riemannian manifold of the Laplace operator7653

is defined below.654

Definition A.2 (Laplace-Beltrami operator) Let g be an element of the Lie group (M, ·). The655

Laplace-Beltrami operator on the Riemannian manifoldM is defined as656

∆R(g) = div(∇R(g)) (14)

Using the left-invariant frame of basis vectors as directional differential operators, we can define the657

gradient, expressed as a vector relative to the basis Ai|g , of a function f : G→ G:658

∇R(g)f = R−1g (A1|gf, . . . ,An|gf)>, (15)

where Rg is the Riemannian metric tensor defined relative to the basis Ai, that corrects for local659

scaling and shrinking of the manifold as measured by the metric tensor. The divergence of a vector660

field F : G→ Rn is the operator:661

div(F ) =

n∑
i=1

Ai|gFi. (16)

The Laplace-Beltrami operator depends on a Riemannian metric tensor, which describes how lengths662

of vectors should be measured in different directions, and in the Laplace-Beltrami operator, it rescales663

the derivates accordingly. While the usual Laplacian is isotropic (derivatives are threated the same in664

each direction), the Laplace-Beltrami operator can be anisotropic due to the Riemannian metric that665

is used.666

Theorem A.1 (Left-invariance of the Laplace-Beltrami operator) The Laplace-Beltrami opera-667

tor ∆R(g) is left-invariant and satisfies:668

∆R(g) = (Lg)∗∆R(e). (17)

A Lie algebra g is a vector space (here the tangent space at the identity element Te(G)) that is669

endowed with a binary operator called the Lie bracket or commutator [·, ·] : Te(G)×Te(G)→ Te(G)670

that is bilinear, alternative and satisfies the Jacobi identity. Conceptually, the Lie bracket [A,B] of671

two vector fields A,B is the derivative of B along the flow generated by A.8 In the following, we672

take {Ai}ni=1 with Ai = Ai|e as Lie Algebra and get left-invariant vector fields via the push-forward673

operation.674

The Lie group exponential and logarithmic maps define the mappings between the group and the675

tangent space. The exponential map on a Lie group can be thought of as picking a vector A in the676

Lie algebra, construct a left-invariant vector field A via the push-forward operator, and follow this677

vector field by taking infinitesimal steps along the direction indicated by the vector field. Integrating678

along the vector field defined by A for unit time brings to some point g ∈ G. So g = expA, where679

exp : g→ G.9680

7Another equivalent definition in local coordinates exists too. It explicitly takes into account the Riemannian
metric tensor fieldR previously defined. Here we use a more compact definition but using the subscriptR(g)
to indicate that the Laplace-Beltrami operator depends on the location on the Riemannian manifold and the
Riemannian metric tensor field.

8Two vector fields are commutative (zero Lie bracket) if and only if its flows are too, in the sense that there is
no difference starting at one point p, traveling a time ta over the flow of A and then a time tb over the flow of B,
or, instead, traveling first tb over the flow of B and then ta over the flow of A.

9Note that Riemannian and Lie group exponential maps are different. For the general Riemannian exponential
map, the vector field along which we compute the path integral is defined by the Riemannian metric. In the
Lie group exponential map, the vector field is defined by the push forward of left-multiplication. The curves
defined by the path integrals in the Riemannian exponential are known to be geodesics. The exponential curves
in the Lie group case are "straight curves" with respect to a moving frame of reference but are not necessarily
geodesics. The Riemannian and Lie group exponential maps only coincide when the Riemannian metric is both
left and right invariant (see Section 4.5 in Bekkers [2017]).
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A.3 Graph theory681

Graphs are generic data representation forms that are useful for describing the geometric structure682

of data domains [West et al., 1996]. More formally, we define a graph G as a structure modeling683

a finite set of interactions called edges E between a finite set of objects called vertices V . In the684

following, we denote by |V| the number of vertices and by |E| the number of edges. We denote vi685

the i-th vertex and e(vi, vj) the potential edge from vi to vj . We call the neighborhood of the vertex686

vi the set of vertices connected to vi by an edge and denote it by N (vi). More generally, we write687

N k(vi) for the k-hops neighborhood of vertex vi, that is, the set of vertices connected to vi with a688

path of at most k edges. In some cases, it can be useful to add weights on graph edges. In general,689

the weights can take any value. Nevertheless, in this thesis, we assume weights in the range [0, 1)690

and measuring the similarity rather than the distance. When the edges’ weights are not naturally691

defined by an application, a common way to define them is to apply a kernel K : R+ → [0, 1) on692

the distance between connected vertices. For theoretical convergence results, we use a Gaussian693

weighting scheme:694

w(vi, vj) =

{
exp

(
−d

2(vi,vj)
4t

)
if e(vi, vj) ∈ E

0 otherwise
, (18)

where d(vi, vj) denotes the (Riemannian) distance between vertices vi and vj and t is a positive real695

number called bandwidth of the Gaussian kernel. From now on, we furthermore assume that the696

graphs are undirected and without self-loop.697

The field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with698

computational harmonic analysis to process such signals on graphs [Shuman et al., 2013]. A signal699

on a graph is a function f : V → Rd, mapping each vertex of the graph to a d-dimensional real700

valued vector. In matrix form, this signal is a |V| × d real valued matrix f whose rows are given by701

f i = f(vi) ∈ Rd.702

An essential object in graph signal processing is the Laplacian operator. Under some specific703

conditions that we will state later, it can be interpreted as a discrete version of the Laplace-Beltrami704

operator.705

Definition A.3 (Symmetric normalized Laplacian) Let G be an undirected weighted graph without706

self-loops. The symmetric normalized Laplacian ∆ is the |V| × |V| real valued matrix whose707

components are given by:708

∆i,j =


1 if i = j and deg(vi) > 0

− w(vi,vj)√
deg(vi) deg(vj)

if i 6= j and deg(vi) > 0

0 otherwise
. (19)

Assuming a function f defined on the graph vertices V , by inspection on the components of ∆kf , we709

remark that the Laplacian acts as a k-op neighborhood operator. We can prove that ∆ is a symmetric710

positive definite matrix. Hence it admits a unique eigendecomposition of the form ∆ = ΦΛΦ>711

where the j-th column of Φ correponds to the eigenvector φj associated with real positive eigenvalue712

λj . In these settings, the eigenvalues are in the range [0, 2] [Chung and Graham, 1997]. By analogy713

with the Euclidean case where the Laplacian’s eigenfunctions correspond to the Fourier basis, we can714

construct a graph Fourier basis from the eigendecomposition of the graph Laplacian, and define the715

graph Fourier transform and its inverse.10716

Definition A.4 (Graph Fourier transform) Let G = (V, E) be a graph with Laplacian ∆ and let717

f : V → R be a signal defined on the graph’s vertices. The graph Fourier transform f̂ of f is given718

by:719

f̂(λj) = f̂j = {Φ>f}j =
∑
i

φijfi =
∑
vi

φ(vi, λj)f(vi), (20)

and its inverse transform by:720

f(vi) = fi = {Φf̂}i =
∑
j

φij f̂j =
∑
λj

φ(vi, λj)f̂(λj). (21)

10The existence of an inverse transform is a direct consequence of the orthonormality of the eigenvectors.
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B Lie groups721

At the moment, all the group’s elements we are interested in are in 1-1 correspondence with elements722

of the 3-dimensional general linear group GL(3), the group of 3× 3 real matrices. We will use this723

representation since working with matrices is more convenient. Indeed, in this case the group product,724

group inverse, group exponential and group logarithm respectively coincide with the matrix product,725

matrix inverse, matrix exponential and matrix logarithm.726

For the roto-translation group SE(2), the spatial part corresponds to the planar translations and the727

orientation part to the rotation angles. Group elements g ∈ SE(2) are given in matrix formulation728

by:729

g = (x, y, θ)↔ Gg =

(
cos θ − sin θ x
sin θ cos θ y

0 0 1

)
, (22)

hence the group is 3 dimensional with two parameters x, y coming from the spatial space R2 and one730

orientation parameter coming from [−π, π).731

The Lie algebra se(2) is the set of 3× 3 matrices:732

A1 =

(
0 0 1
0 0 0
0 0 0

)
, A2 =

(
0 0 0
0 0 1
0 0 0

)
, and A3 =

(
0 −1 0
1 0 0
0 0 0

)
(23)

Naturally, it is impossible to uniformly sample elements on this group because the R2 space is infinite.733

Adding boundaries to the euclidean space, we get the [0, 1)2 space, which is not homogeneous734

anymore, but on which it is possible to uniformly sample |Vs| elements. Because we are considering735

anisotropic Laplace-Beltrami operators which are symmetric under reflections, it is sufficient to736

sample the rotation angles θ in the range [−π/2, π/2).737

As defined by its Lie algebra, the matrix logarithm related to an element of the SE(2) group has the738

form:739

logeGg =

(
0 −c3 c1
c3 0 c2
0 0 0

)
(24)

It results that the logarithmic map loge : SE(2)→ se(2) admits a closed form expression loge g =740

(c1, c2, c3)> with11:741

c1 =
θ

2

(
y + x cot

θ

2

)
, c2 =

θ

2

(
−x+ y cot

θ

2

)
, and c3 = θ. (25)

The group SO(3) of all rotations about the origin of 3-dimensional Euclidean space can be split into a742

"spatial" part which is the sphere, and a rotation part, which is a rotation around a particular reference743

axis. Using ZY Z representation, group elements g ∈ SO(3) are given in matrix formulation by:744

g = (α, β, γ)↔ Gg = Rγ,zRβ,yRα,z, (26)

where α ∈ [−π, π], β ∈ [−π/2, π/2] and γ ∈ [−π, π]. We view the sphere S2 as the spatial part,745

just like we view our Earth as locally flat. S2 is parametrized with Euler angles β and γ, which are746

independent of α. The rotation part is then parametrized by α.747

The Lie algebra so(3) is the set of antisymmetric 3× 3 matrices:748

A1 =

(
0 0 1
0 0 0
−1 0 0

)
, A2 =

(
0 −1 0
1 0 0
0 0 0

)
, and A3 =

(
0 0 0
0 0 −1
0 1 0

)
. (27)

To uniformly sample on the group SO(3) is quite challenging because a perfectly uniform sampling749

on the sphere does not exist. Fortunately, this task has been largely studied, and many algorithms750

11In the isotropic case, corresponding to the 2-d Euclidean space, one can check that using the exact same
expression of the logarithmic map with θ = 0 gives the Euclidean distance.
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have been proposed: equiangular12 [Driscoll and Healy, 1994], HEALPix [Gorski et al., 2005], and751

icosahedral [Baumgardner and Frederickson, 1985] samplings. As before, due to the same symmetry752

argument, it is sufficient to restrict the orientation range to [−π/2, π/2) and to sample |Vo| elements753

on this restricted range.754

The matrix logarithm related to an element of the SO(3) group has the form:755

logeGg =

(
0 −c3 c2
c3 0 −c1
−c2 c1 0

)
. (28)

Using the Rodrigues’ rotation formula [Rodrigues, 1840], we derive a closed form expression for the756

logarithmic map loge : SO(3)→ so(3), with notation loge g = (c1, c2, c3)>. We get13:757

c1 =
θ

2 sin θ
(Gg,3,2−Gg,2,3), c2 =

θ

2 sin θ
(Gg,2,1−Gg,1,2), and c3 =

θ

2 sin θ
(Gg,1,3−Gg,3,1).

(29)

Due to the π periodicity of the orientation axis, the π-periodic Riemannian distance between two758

elements of the groups is the minimal distance between:759

• the original distance without offset;760

• the original distance with a negative offset −π on the orientation axis;761

• the original distance with a positive offset +π on the orientation axis.762

C Experiment details763

Empirical evidence showed that deep and wide neural networks are keys to good performances. To764

help going deeper we use residual convolutional layers [He et al., 2016] and batch normalization765

[Ioffe and Szegedy, 2015]. To avoid tuning of the learning rate, we use ADAM optimizers [Kingma766

and Ba, 2014] for all our experiments. Last, we initialise our models’ parameters via the Kaiming767

method [He et al., 2015].768

Stability test on MNIST. In these experiments, we used a Wide Residual ChebNet with three769

convolutional residual layers with rectified linear units and kernel of size 4. As we do not pool at all,770

we only define one SE(2) 16-NN graph with 28× 28× 6 = 4704 vertices. We use extreme spatial771

anisotropy with ε2 = 0.1 and reach the 40/60 ratio by setting ξ accordingly. The residual layers are772

followed by a projective global max pooling layer and a fully connected with LogSoftMax output773

layer.774

Orientation anisotropic test on CIFAR10. In these experiments, we used a Wide Residual Cheb-775

Net with three residual layers with rectified linear units and kernel of size 4. We use two R2RandPool776

layers. Hence we define three SE(2) 16-NN graphs with 32× 32× 6 = 6144, 16× 16× 6 = 1536,777

and 8× 8× 6 = 384 vertices. We use extreme spatial anisotropy with ε2 = 0.1. The residual layers778

are followed by a projective global max pooling layer and a fully connected with LogSoftMax output779

layer.780

Spatial anisotropic test on CIFAR10. In these experiments, we used a Wide Residual ChebNet781

with 3 residual layers with rectified linear units and kernel of size 4. We use two R2RandPool layers.782

Hence we define three SE(2) 16-NN graphs with 32× 32× 6 = 6144, 16× 16× 6 = 1536, and783

8× 8× 6 = 384 vertices. We use moderate orientation anisotropies to reach the 40/60 ratio on each784

graphs by setting ξ accordingly. The isotropic case is constructed using ε2 = ξ2 = 1 on three R2785

12Equiangular is far from uniform, but it has a sampling theorem.
13To compute the logarithmic map in the isotropic case corresponding to S2, we must use a slightly modified

version such that c3 = 0, which via the exponential map generate torsion free exponential curves. The
logarithmic of any rotation matrix defined by (−γ, β, γ) yields this results [Bekkers, 2019, Portegies et al.,
2015].
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8-NN graphs with 32× 32× 1 = 784, 16× 16× 1 = 256, and 8× 8× 1 = 64 vertices. The residual786

layers are followed by a projective global max pooling layer and a fully connected with LogSoftMax787

output layer.788

Scalability test on STL10. In these experiments, we used a Wide Residual ChebNet with three789

residual layers with rectified linear units and kernel of size 4. We use two R2RandPool layers. Hence790

we define three SE(2) 16-NN graphs with 96 × 96 × 6 = 55296, 48 × 48 × 6 = 13824, and791

8× 8× 6 = 3456 vertices. We use extreme spatial anisotropy with ε2 = 0.1 and reach the 40/60 ratio792

on each graphs by setting ξ accordingly. The isotropic case is constructed using ε = ξ = 1 on three793

R2 8-NN graphs with 96× 96× 1 = 9216, 48× 48× 1 = 2304, and 24× 24× 1 = 576 vertices.794

The residual layers are followed by a projective global max pooling layer and a fully connected with795

LogSoftMax output layer. The residual layers are followed by a projective global max pooling layer796

and a fully connected with LogSoftMax output layer.797

Scalability test on ClimateNet. In these experiments, we used a U-ChebNet with three residual798

layers with rectified linear units and kernel of size 3. We use five S2MaxPool (encoding) and five799

S2AvgUnpool (decoding) layers. Hence we define six SO(3) 16-NN graphs with 10242×6 = 61452,800

2562× 6 = 15372, 642× 6 = 3852, 162× 6 = 972, 42× 6 = 252, and 12× 6 = 72 vertices. We801

use extreme spatial anisotropy with ε2 = 0.1 and reach the 40/60 ratio on each graphs by setting ξ802

accordingly. The residual layers are followed by a projective global max pooling layer and a fully803

connected with LogSoftMax output layer.804

D Stability under random perturbations805

In sensitive domains, the stability of a neural network to random perturbation is a desired property.806

We aim at demonstrate the high stability of our approach, as random perturbations are added to graphs807

during the training. We introduce two methods, both consisting in randomly pruning the original808

graph to construct a random sub-graph (see Figure 6). At test time, random perturbations are removed809

in order to evaluate a perturbation-free model.810
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(a) One constructs a random sub-graph by randomly
sampling a rate κE of edges of the complete graph
based on their weight. As a direct consequence of the
work of Keriven et al. [2020], the Laplacian of a quasi-
sparse graph with randomly sampled edges remains
consistent. Then, the unsampled edges are pruned by
setting their weight to zero. One must be aware that
this process could lead to isolated vertices or cluster
of vertices. It is not necessarily a problem, but it is
important to be mindful of this potential effect.
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(b) This method based on vertices sampling consists
of creating a random sub-graph by randomly sampling
a rate κV of vertices from the complete graph. The
edges between one or mode unsampled vertices are
discarded too. This method is more drastic and should
be used carefully, as such a vertices pruning leads to a
violation of the uniform distribution of vertices.

Figure 6: Edge- and vertex-based sampling methods.

We run a bunch of experiments with a Wide Residual architecture on MNIST [LeCun and Cortes,811

2010], varying the rates of edges or vertices to sample. The objective of these experiments is twofold.812

First, we would like to test the stability of the model under random perturbations. Second, this813

experiment is also a good manner to demonstrate the equivariance property of our method. In this814

purpose, we train our model on the original training set of MNIST, adding some perturbations. At815

test time, we evaluate the perturbation-free model on the test set with and without random rotations.816
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Figure 7: Stability and group equivariance under random perturbations.

Equivariance. With these experiments, we empirically demonstrated the rotation-equivariance817

of a ChebLieNet. An extrinsic equivariance error can explain the slight difference in performance818

between the original test set and the randomly rotated one. This error is not related to the model but819

the evaluation’s method and can be semantic (e.g. is it always possible to differentiate a six from a820

nine without orientation information) or numerical (e.g., how to rotate a low-resolution image by 10821

degrees without alteration).822

Robustness. While in this specific case, our dropout-like method does not help to improve our823

model on the test set, we expect it could help to reduce the over-fitting on other tasks. In addition, one824

could notice that even at middle-low sampling rates, the models remain stable. First of all, it supports825

the idea that there is no point using a fully connected graph; more edges capture the geometry better826

but with diminishing returns. Secondly, the model is robustly able to catch the semantic information827

in an image, even with partial alterations.828

E Empirical convergence in eigenmaps of the graph Laplacians829

As it has been proven by Belkin and Niyogi [2006], assuming a suitably constructed graph, the830

graph Laplacian converges in eigenmaps to its continuous counterpart, the Laplace-Beltrami operator.831

Hence, a good sanity check is to compare the eigenmaps of the discrete and continuous Laplace832

operators.833

Firstly, we recall the eigenvalues of symmetric normalized graph Laplacians satisfies 0 ≤ λk ≤ 2 for834

all k. As the eigenvalues can be interpreted as frequency components, the eigenvector associated to835

an high eigenvalue would correspond to an high frequency signal on the graph. To finish with, we836

propose a detailed analysis of the eigenmaps of our spaces of interest in terms of the Fourier basis837

and the spherical harmonics.838

Isotropic 2-dimensional grid. The eigenmaps of the [0, 1)2 space are shown in figure 8. It is a839

well-known fact that the 2-dimensional grid with periodic boundaries can be spanned by the Fourier840

basis. Consequently, the eigenvectors of this space corresponds to the sine and cosine trigonometric841

functions. In this case, the eigenvalues have multiplicity two (excepted the first one associated with a842

constant eigenvector), one for the sine and the other for the cosine. When the periodic condition at843

the boundaries are relaxed, the space is not homogeneous anymore, and the symmetries of the space844

change a little bit. The [0, 1)2 space is such a space where periodic condition does not hold. Hence,845

the eigenmaps of this space are not equal to the Fourier basis, but very close.846

Anisotropic 2-dimensional grid. The eigenmaps of the [0, 1)2 × [−π/2, π/2) space are shown847

in figure 10. We can extend the discussion we add in the isotropic case to justify the fact that the848

eigenmaps of the [0, 1)2 × [−π/2, π/2) is close to the Fourier basis. Moreover, we an additional849

orientation dimension, the rotation of the [0, 1)2 induces a torsion all along the orientation axis850

because of the anisotropic Riemannian metric.851

Isotropic 2-dimensional sphere. The eigenmaps of the S2 space are shown in figure 9. It is a852

well-known fact that the 2-dimensional sphere is spanned by the spherical harmonics. The eigenvalues853
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associated to this eigenvectors have increasing multiplicities of the form 2m+ 1 where m is the order854

of the spherical harmonic.855

Anisotropic 2-dimensional sphere. The eigenmaps of the S2 × [−π/2, π/2) space are shown856

in figure 11. We can extend the discussion we add in the isotropic case to justify the fact that the857

eigenmaps of the S2 × [−π/2, π/2) are close to the spherical harmonics. Nevertheless, the role of858

the orientation dimension is not easily interpretable. Indeed the notion of orientation is arduous to859

understand, as the kernel’s orientation depends on the path, and not on this orientation location.860
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(a) Eigenvalues of the [0, 1]2 space, from λ0 to λ49.

(b) Eigenvectors of the [0, 1]2 space, from φ0 (left) to φ9 (right).

Figure 8: Eigenmaps of the [0, 1]2 space.
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(a) Eigenvalues of the S2 space, from λ0 to λ49.

(b) Eigenvectors of the S2 space, from φ0 (left) to φ9 (right).

Figure 9: Eigenmaps of the S2 space.
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(a) Eigenvalues of the [0, 1]2 × [−π/2, π/2) space, from λ0 to λ49.

(b) Eigenvectors of the [0, 1]2 × [−π/2, π/2) space, from φ0 (left) to φ9 (right).

Figure 10: Eigenmaps of the [0, 1]2 × [−π/2, π/2) space.
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(a) Eigenvalues of the S2 × [−π/2, π/2) space, from λ0 to λ49.

(b) Eigenvectors of the S2 × [−π/2, π/2) space, from φ0 (left) to φ9 (right).

Figure 11: Eigenmaps of the S2 × [−π/2, π/2) space.
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