
A Related Work

ROC curve & cost-sensitive learning. ROC curve and cost curve are two statistical tools frequently
used in machine learning applications. Over the past two decades, some studies have explored
their relationship and achieved significant success. [16] found that AUC implicitly uses a threshold
weighting function corresponding to a cost weighting function. When these weighting functions
output constant, we can infer that the cost function is a linear transformation of AUC. [21] shown
that utilizing a natural threshold choice method can transfer ROC curves to cost space. [20] proposed
a unified view of performance metrics. With the help of ROC convex hull [9], they give a clear
interpretation of the threshold choice of the ROC curve. However, all of the above studies are based
on the assumption of a uniform distribution in costs and thresholds. Moreover, their method can not
be applied to end-to-end learning.

AUC. Since AUC offers some excellent properties in classification, it has become one of the standard
performance metrics for binary imbalanced learning [1, 31, 43]. A partial list of the related studies
includes [13, 7, 42, 22, 35, 12, 36, 47]. In deep age, there are some studies [27, 15, 48] focused on
applying the AUC metric to deep end-to-end learning.

PAUC. The concept of PAUC was first introduced by [31], mainly used in disease diagnosis and
biology. Prior to the deep learning era, earlier studies focused on optimizing PAUC in negative
cost-sensitive scenarios. A partial list of the related studies includes [34, 33, 45, 50, 46, 38]. However,
both AUC nor PAUC optimization does not consider the relationship between the ROC curve and
cost space, which is hard to be applied in reality.

WAUC. The idea of weighting thresholds in AUC is first described by [40]. [25] constructed a
framework for ROC analysis that incorporates the specificity distribution (e.g., normal distribution).
[30] proved exponential bounds on the estimation error of their proposed WAUC estimator and given
conditions of the weight function. However, the weighting functions of these works are pre-selected,
which are problem-independent, do not relate to the cost, and are too far from the practical application.

Bilevel optimization. Bilevel optimization is a classical algorithm for operations research. This
formulation focuses on coupled optimization problems, where the inner optimization problem is the
constraint of the outer optimization [3, 39, 6]. Recently, many studies have focused on designing
gradient-based first-order algorithms to solve bilevel optimization problems [37, 11, 28, 5]. Most of
them assume that the inner optimization problem has good properties, e.g., strong convexity.

B Experiment details

B.1 Main Idea of Experiments

Our experiments mainly explore the following three problems:

• Our method versus the recent SOTA cost-sensitive learning algorithm. Direct optimization
of cost function leads to the model is sensitive to the class distribution, while AUC has the
advantage of being robust to the class distribution. Compared with previous cost-sensitive
learning methods, we combine the advantages of AUC and cost metrics, allowing the model
to enjoy a higher WAUC value while minimizing the cost. Models trained with our method
can be applied to cost-sensitive decision problems (e.g., financial market prediction, higher
WAUC to guarantee decision profit)

• Traditional AUC is inconsistent with the cost-related metrics and cannot be used in cost-
sensitive learning scenarios. From the experimental results in our paper, we can see that most
AUC optimization methods do not minimize the misclassification cost. This indicates that in
practical applications, using AUC optimization may maximize revenue without considering
the cost. Ultimately, the misclassification cost of the decision is not acceptable.

• Our method versus the model trained with AUC/PAUC/CE first and then solves the op-
timal threshold with L̂COST for a decision. We want to prove that model trained with
AUC/PAUC/CE first and then getting the posterior threshold performs poorly in cost-
sensitive learning. Hence, developing a novel one-stage method to address this problem is
necessary.

13

B.2 Dataset Details

Binary CIFAR-10-Long-Tail Dataset. The CIFAR-10 dataset [23] consists of 60,000 images divided
into ten categories. By choosing one superclass as positive and the other as negative, we construct a
long-tail binary version of CIFAR-10. For scalability, we generate three subsets of CIFAR-10 which
are composed of the different superclasses, including 1) birds, 2) automobiles, and 3) cats.

Binary CIFAR-100-Long-Tail Dataset. Different from CIFAR-10, We choose a set of classes in
CIFAR-100 [23] as positive and the rest of the classes as negative. Similarly, we construct three
subsets and the positive set containing 1) insects, 2) vegetables and fruits, and 3) large omnivores and
herbivores.

Jane Street Market Prediction. In reality, some applications like financial markets prediction [14]
involve investment issues. Every investment has a cost involved. Developing trading strategies to
identify and take advantage of inefficiencies is challenging. We adopt the actual financial markets
data [14] to test all methods on real cost situation.

B.3 Implementation Details

We conducted all experiments on a Ubuntu 16.04.1 server equipped with an Intel(R) Xeon(R) Silver
4110 CPU and four RTX 3090 GPUs. We implement all algorithms code in Python 3.8 and
pytorch 1.8.2 environment. For the fairness of the experiment, we adopt the ResNet-18 model as
the backbone of all competitors. The model’s output will be scaled into [0, 1] with a Sigmoid function.
We set the batch size as 256 (64 per GPU) and epochs as 50. We employ torch.optim.SGD as the
basic optimizer and torch.nn.DataParallel as tools for parallel computing. We set nc as 50.

B.4 Parameter Tuning

We tune the learning rate of all methods in the range [10−2, 10−5] and the weight decay in
[10−3, 10−5]. Following the original paper, the warm-up steps for PAUC-poly and PAUC-
exp is tuned in [3, 20]. Specifically, control parameter γ in PAUC-poly is searched in
{0.03, 0.05, 0.08, 0.1, 1, 3, 5}. For PAUC-exp, γ is searched in [8, 30]. For PAUCI, stepsize re-
lated parameter k is tuned in [1, 10], ν, λ,c1, c2 are searched in [0, 1]. m, κ, ω is tuned in [10, 100],
[2, 6], [0, 4] respectively. For our method, we set inner loop iterations T = 3, tune bandwidth m in
[0.1, 0.5], smooth parameter β in [1, 10] and M , M ′, κ in [32, 64,128,256,512,1024].

B.5 Competitors

We implement two types of our methods, including Gaussian kernel 1√
2π

exp
(
− 1

2x
2
)

and Logis-
tics kernel 1

ex+2+e−x respectively. We denote them as WAUC-Gau and WAUC-Log. For other
competitors, we classify them into three categories

(1) Common methods for binary classification problems, including the class balanced CE loss (BCE)
[8]; the Exp loss of AUC (ExAUC); the square loss of AUC (SqAUC); the naive WAUC estimator
(NWAUC).

(2) Recent SOTA methods of PAUC, including approximated PAUC estimator PAUC-poly [45] (poly
calibrated weighting function) and PAUC-exp [45] (exp calibrated weighting function); asymptotically
unbiased instance-wise regularized PAUC optimization [38] which is denoted as PAUCI.

(3) The cost-sensitive learning algorithms, including cost-sensitive classification with rejection which
is denoted as CS-hinge [4], Bayes risk estimator for cost-sensitive classification [2] which is denoted
as AdaCOS, expected cost loss which is denoted as ECL.

B.6 Experiment Results

We give the details of the dataset used in the experiment in the following table. All serial numbers
and category names correspond to the information in the original dataset.

We also conduct experiments to study our method’s performance under other categories of cost
distributions. We sampled the cost from the truncated uniform distribution U [0.5, 1] and beta

14

Table 4: Details of dataset.

Dataset Pos. Class ID Pos. Class Name # Pos #Neg

CIFAR-10-LT-1 2 birds 1,508 8,907
CIFAR-10-LT-2 1 automobiles 2,517 7,898
CIFAR-10-LT-3 3 birds 904 9,511

CIFAR-100-LT-1 6,7,14,18,24 insects 1,928 13,218
CIFAR-100-LT-2 0,51,53,57,83 fruits and vegatables 885 14,261
CIFAR-100-LT-3 15,19,21,32,38 large omnivores herbivores 1,172 13,974

distribution beta(2, 4). We then conduct experiments on all competitors in subsets of CIFAR-10-
Long-Tail and CIFAR-100-Long-Tail. All configurations are consistent with the sec.7 except for the
cost data set Sc.

Table 5: Performance comparisons on benchmark datasets with different metrics (cost sampled from
uniform distribution). The first and second best results are highlighted with bold text and underline,
respectively.

dataset type methods
Subset1 Subset2 Subset3 ÂUC ↑

ˆWAUC ↑ L̂COST ↓ ˆWAUC ↑ L̂COST ↓ ˆWAUC ↑ L̂COST ↓ Subset1 Subset2 Subset3

CIFAR-10-LT
Competitors

BCE 0.524 0.078 0.633 0.054 0.387 0.046 0.776 0.908 0.810
ExAUC 0.472 0.076 0.709 0.098 0.456 0.050 0.787 0.736 0.856
SqAUC 0.438 0.075 0.642 0.082 0.316 0.044 0.802 0.941 0.852
NWAUC 0.573 0.063 0.714 0.072 0.469 0.041 0.777 0.882 0.809

PAUC-exp 0.424 0.087 0.697 0.122 0.352 0.057 0.754 0.810 0.814
PAUC-poly 0.431 0.087 0.629 0.094 0.328 0.054 0.763 0.760 0.766

PAUCI 0.439 0.069 0.651 0.085 0.339 0.050 0.786 0.768 0.847
CS-hinge 0.482 0.087 0.607 0.096 0.404 0.054 0.734 0.748 0.777
AdaCOS 0.545 0.071 0.631 0.086 0.365 0.048 0.747 0.903 0.798

ECL 0.469 0.087 0.749 0.110 0.307 0.042 0.697 0.665 0.842

Our method
WAUC-Gau 0.642 0.065 0.781 0.040 0.511 0.042 0.790 0.942 0.833
WAUC-Log 0.668 0.062 0.752 0.037 0.509 0.040 0.819 0.952 0.864

CIFAR-100-LT
Competitors

BCE 0.555 0.049 0.382 0.017 0.340 0.045 0.868 0.947 0.765
ExAUC 0.601 0.069 0.517 0.011 0.428 0.039 0.710 0.956 0.906
SqAUC 0.570 0.042 0.438 0.015 0.304 0.038 0.905 0.957 0.845
NWAUC 0.490 0.051 0.552 0.016 0.384 0.038 0.860 0.954 0.842

PAUC-exp 0.466 0.079 0.416 0.040 0.319 0.051 0.811 0.499 0.776
PAUC-poly 0.424 0.067 0.429 0.028 0.319 0.051 0.751 0.836 0.784

PAUCI 0.468 0.050 0.471 0.017 0.327 0.045 0.852 0.890 0.747
CS-hinge 0.485 0.065 0.436 0.029 0.307 0.051 0.763 0.826 0.693
AdaCOS 0.599 0.065 0.412 0.022 0.330 0.049 0.762 0.921 0.693

ECL 0.503 0.078 0.504 0.031 0.318 0.051 0.845 0.787 0.722

Our method
WAUC-Gau 0.687 0.047 0.547 0.016 0.409 0.043 0.869 0.932 0.763
WAUC-Log 0.663 0.035 0.534 0.010 0.479 0.026 0.906 0.960 0.891

Under the condition of beta cost distribution, the performance of all methods in Tab. 6 is similar to
Tab. 2. We can get a similar analysis result. Under the condition of uniform cost distribution, in Tab.
5, WAUC will degenerate to AUC. Therefore the AUC-related optimization algorithm will perform
well and the gap with our proposed method will become smaller. Since PAUC is a special version of
AUC based on the assumption of truncated uniform distribution of costs, the related algorithm has
a clear advantage. However, although these algorithms have improved performance on the ŴAUC

metric, the results on L̂COST are not good. Our proposed WAUC cost-sensitive learning can enjoy
high WAUC metrics and cost metrics on both different kinds of cost distributions.

For the calculation of the ŴAUC metric needs to involve the solution of the optimal threshold τ̂ ∗.
However, this optimization problem is non-convex and it is difficult to find the optimal solution
quickly using existing optimization methods. Therefore, we propose an algorithm that can be solved
within O(n+ + n−) iterations to obtain the optimal threshold, with the following details

B.7 Addditional Experiment

In Thm. 5.3, we propose a convex formulation which can approximate the L̂COST . According to the
conditions of the penalty, we need κ,M → ∞ and M ′2 < M2 6κ2e3κ

(eκ+1)6 to ensure that Thm. 5.3 is

approximately equivalent to L̂COST .

15

Table 6: Performance comparisons on benchmark datasets with different metrics (cost sampled from
beta distribution). The first and second best results are highlighted with bold text and underline,
respectively.

dataset type methods
Subset1 Subset2 Subset3 ÂUC ↑

ˆWAUC ↑ L̂COST ↓ ˆWAUC ↑ L̂COST ↓ ˆWAUC ↑ L̂COST ↓ Subset1 Subset2 Subset3

CIFAR-10-LT
Competitors

BCE 0.316 0.033 0.474 0.032 0.412 0.024 0.821 0.915 0.806
ExAUC 0.389 0.035 0.474 0.037 0.491 0.021 0.841 0.967 0.867
SqAUC 0.270 0.033 0.495 0.039 0.425 0.022 0.858 0.933 0.855
NWAUC 0.326 0.034 0.538 0.033 0.462 0.023 0.817 0.922 0.826

PAUC-exp 0.071 0.033 0.490 0.059 0.476 0.027 0.783 0.715 0.740
PAUC-poly 0.137 0.035 0.477 0.045 0.445 0.026 0.746 0.830 0.703

PAUCI 0.185 0.038 0.526 0.038 0.476 0.022 0.796 0.844 0.787
CS-hinge 0.365 0.032 0.574 0.035 0.556 0.025 0.756 0.897 0.771
AdaCOS 0.347 0.038 0.567 0.036 0.516 0.024 0.803 0.900 0.808

ECL 0.303 0.034 0.584 0.030 0.537 0.022 0.847 0.925 0.856

Our method
WAUC-Gau 0.413 0.031 0.640 0.030 0.610 0.020 0.815 0.943 0.830
WAUC-Log 0.393 0.029 0.578 0.024 0.575 0.019 0.852 0.959 0.869

CIFAR-100-LT
Competitors

BCE 0.547 0.025 0.423 0.016 0.190 0.027 0.869 0.930 0.757
ExAUC 0.646 0.023 0.459 0.015 0.184 0.021 0.929 0.948 0.900
SqAUC 0.460 0.023 0.396 0.009 0.157 0.025 0.892 0.949 0.854
NWAUC 0.652 0.024 0.494 0.009 0.151 0.026 0.889 0.941 0.819

PAUC-exp 0.566 0.034 0.464 0.015 0.184 0.028 0.800 0.835 0.793
PAUC-poly 0.269 0.029 0.410 0.012 0.167 0.028 0.788 0.885 0.740

PAUCI 0.530 0.024 0.449 0.007 0.193 0.025 0.827 0.895 0.705
CS-hinge 0.503 0.026 0.423 0.010 0.272 0.017 0.847 0.899 0.749
AdaCOS 0.605 0.027 0.452 0.011 0.244 0.017 0.852 0.915 0.696

ECL 0.503 0.025 0.424 0.010 0.220 0.016 0.872 0.930 0.799

Our method
WAUC-Gau 0.747 0.022 0.658 0.008 0.275 0.023 0.869 0.925 0.757
WAUC-Log 0.647 0.018 0.645 0.005 0.290 0.017 0.911 0.961 0.865

Algorithm 2 Algorithm for Solving the Optimal Threshold
0

Input: test data St
+ and St

−, cost dataset Sc. Initialize: parameters τ̂ ∗ = {0}nc

l=1
for l = 0 to nc do
τ̂ ∗[l] = argminτ∈{St

+,St
−} L̂COST

end for

In this subsection, we study the optimal value gap between original L̂COST problem and Thm. 5.3.
We optimize the L̂COST and Eq. (12) in Cifar-10-Long-Tail training set. We set cost distribution as
Uniform and π = 0.5. We calculate the mean optimal value (p∗ = min L̂COST , d∗ = min Eq. (12))
of them over the cost distribution. Finally, we calculate the error between them ((p∗ − d∗)2) and list
the results in Tab. 7.

Table 7: Optimal value gap between original L̂COST optimization problem and Thm. 5.3
M = 64

κ = 64

M = 128

κ = 128

M = 256

κ = 256

M = 512

κ = 512

M = 1024

κ = 1024

M = 2048

κ = 2048

M ′ = 32 0.058 0.050 0.048 0.045 0.042 0.041
M ′ = 64 0.049 0.042 0.039 0.036 0.034 0.032
M ′ = 128 0.038 0.036 0.032 0.029 0.027 0.025
M ′ = 256 0.025 0.023 0.020 0.018 0.016 0.015
M ′ = 512 0.018 0.015 0.013 0.011 0.009 0.008
M ′ = 1024 0.012 0.010 0.008 0.007 0.007 0.005

In Tab. 7, we find that when κ, M , M ′ grows, the optimal value gap will increase quickly. Moreover,
when κ = M = 64 and M ′ = 32, the error is small enough. Hence, in real-world application, the
approximation error and effect of hyparameters is acceptable.

C Proofs for Section 4

C.1 KDE Definition

Here, we give the notation and definition of KDE.

16

Definition C.1 (Kernel density estimation [49]). Denote x as a random variable with probability
density function fx. Given a dataset S = {xi}nx

i=1 and threshold τ , we denote

K(S, τ) =
1

|S|m
∑
xi∈S

K

(
xi − τ

m

)
, (17)

as an estimation of fx, where m is bandwidth. The non-negative real-valued integrable function K
satisfies

(1)
∫ ∞

−∞
K(x)dx = 1, (2) K(x) = K(−x). (18)

C.2 Proof of Proposition 5.1

Restatement of Proposition 5.1. Denote K(x) be statistics kernel with bandwidth m and Sw
− =

{s(w,x−
j)}

n−
j=1. With Lemma 5.2, we have the approximate estimator and loss function for WAUC:

ŴAUC =

∫ −∞

∞
TPRs(τ)K(Sw

− , τ)p(τ)dτ, L̂WAUC(w, τ) =
1

nτ

nτ∑
l=1

ĥ(w, τl) (19)

where τ = {τl}nτ

l=1 and the point loss ĥ is defined by

ĥ(w, τ) = 1− 1

n+n−

n+∑
i=1

n−∑
j=1

σ(s(w,x+
i)− τl) ·K((s(w,x−

j)− τl)/m)/m. (20)

σ(x) = 1/(1 + exp(−βx)), β is smooth parameter and we have σ(x)
β→∞−→ Ix.

Proof.

ŴAUC =

∫ −∞

∞
TPR(τ)K(S−, τ)p(τ)dτ

= Eτ

[
Px+ [s(w,x+) > τ] · Ex−

[
1

m
K

(
s(w,x−)− τ

m

)]]
= Eτ

[
Ex+ [Is(w,x+)>τ] · Ex−

[
1

m
K

(
s(w,x−)− τ

m

)]]
= Eτ,x+

[
Is(w,x+)>τ · Ex−

[
1

m
K

(
s(w,x−)− τ

m

)]]
= Eτ,x+,x−

[
Is(w,x+)>τ ·

[
1

m
K

(
s(w,x−)− τ

m

)]]
.

(21)

Replacing the I(·) function with σ(x) = 1/(1 + exp(−βx)) and change it to empirical formulation.

Ê
x+∼S+,x−∼S−,τ∼τ

[
σ(s(w,x+)− τ) ·

[
1

m
K

(
s(w,x−)− τ

m

)]]
(22)

Since we want to maximize the WAUC metric, we employ 1− ŴAUC as loss function, then we have

(Pop.) LWAUC = E
x+∼DP ,x−∼DN

[
1− 1

nτ

nτ∑
l=1

σ(s(w,x+)− τl) ·
1

m
K

(
s(w,x−)− τl

m

)]

(Emp.) L̂WAUC = Ê
x+∼S+,x−∼S−

[
1− 1

nτ

nτ∑
l=1

σ(s(w,x+)− τl) ·
1

m
K

(
s(w,x−)− τl

m

)]
.

(23)
Reformulating the L̂WAUC, we have:

L̂WAUC(w, τ) =
1

nτ

nτ∑
l=1

ĥ(w, τl) (24)

17

where

ĥ(w, τ) = 1− 1

n+n−

n+∑
i=1

n−∑
j=1

σ(s(w,x+
i)− τl) ·K((s(w,x−

j)− τl)/m)/m. (25)

σ(x) = 1/(1 + exp(−βx)), β is smooth parameter and we have σ(x)
β→∞−→ Ix to approximate T̂PR

and F̂PR.

C.3 Proof of Lemma 5.2

Restatement of Lemma 5.2. Given a scoring function s, if τ is known, when the number of instances
is large enough, ŴAUC almost surely converges to WAUC.

lim
n−→∞

|ŴAUC−WAUC| a.s.−→ 0. (26)

Proof.

lim
n−→∞

|ŴAUC−WAUC|

= lim
n−→∞

∣∣∣∣Êτ,x+

[
σ(s(w,x+)− τ) · Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]]
− Eτ,x+

[
Is(w,x+)>τ · FPR′

s(τ)
]∣∣∣∣

≤ lim
n−→∞

sup
τ,x+

∣∣∣∣σ(s(w,x+)− τ) · Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]
− Is(w,x+)>τ · FPR′

s(τ)

∣∣∣∣
≤ lim

n−→∞
sup
τ

max


∣∣∣∣∣∣∣∣∣σ(δ)Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]
︸ ︷︷ ︸

σ(δ)→1 when β→∞

−FPR′(τ)

∣∣∣∣∣∣∣∣∣ , σ(−δ)Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]
︸ ︷︷ ︸

σ(−δ)→0 when β→∞


≤ lim

n−→∞
sup
τ

∣∣∣∣Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]
− FPR′

s(τ)

∣∣∣∣
(a)

≤ lim
n−→∞

sup
τ

∣∣∣∣Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]
− E

[
Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]]∣∣∣∣︸ ︷︷ ︸
(c) Kernel density function consistency lemma

+ lim
n−→∞

sup
τ

∣∣∣∣E [Êx−

[
1

m
K

(
s(w,x−)− τ

m

)]]
− FPR′

s(τ)

∣∣∣∣︸ ︷︷ ︸
(d) Law of large numbers

= 0
(27)

where (a) comes from triangle inequality and δ > 0. We assume that Eτ,x+ [Is(w,x+)=τ] = 0. For
terms (c) and (d), please see the proof of [41].

C.4 Proof of Theorem 5.3

Restatement of Theorem 5.3. When we set κ,M are large positive numbers andM ′2 < M2 6κ2e3κ

(eκ+1)6 ,

then we have the approximated convex formulation for L̂COST

min
τ,P∈Rn+ ,N∈Rn−

L̂eq(w, τ, c) := c · π · (1− 1

n+

n+∑
i=1

Pi) + (1− c) · (1− π) · (1

n−

n−∑
j=1

Nj)

+
1

n+

n+∑
i=1

M ′ψ(s(w,x+
i)− τ)− Pi(s(w,x

+
i)− τ)) +Mψ(Pi − 1) +Mψ(τ − 1)

+
1

n−

n−∑
j=1

M ′ψ(s(w,x−
j)− τ)−Nj(s(w,x

−
j)− τ)) +Mψ(Nj − 1) 0 ≤ τ, Pi, Nj

(28)

18

where ψ(x) = log(1 + exp(κx))/κ. L̂eq in Eq.(12) is µg-strongly convex w.r.t. τ . Eq.(12) has same
solution as minτ L̂COST when the parameters satisfy the conditions of the penalty.

Proof. According to the definition of L̂COST , we have:

min
τ

c · π ·

(
1− 1

n+

n+∑
i=1

I[s(w,x+
i)−τ]

)
+ (1− c) · (1− π) ·

 1

n−

n−∑
j=1

I[s(w,x−
j)−τ]


s.t. 0 ≤ τ ≤ 1.

(29)

Then we have the equivalent formulation:

min
τ,P ,N

c · π ·

(
1− 1

n+

n+∑
i=1

Pi

)
+ (1− c) · (1− π) ·

 1

n−

n−∑
j=1

Nj


s.t.max(s(w,x+

i)− τ, 0) = Pi(s(w,x
+
i)− τ)

max(s(w,x−
j)− τ, 0) = Nj(s(w,x

−
j)− τ)

0 ≤ τ,Pi, Nj ≤ 1,

(30)

where P ∈ Rn+ , N ∈ Rn− and Pi ∈ P , Nj ∈ N . Since the equality constraint is hard to process,
we convert it to inequality constraint (e.g., a = b⇔ a <= b, a >= b).

min
τ,P ,N

c · π ·

(
1− 1

n+

n+∑
i=1

Pi

)
+ (1− c)·(1− π) ·

 1

n−

n−∑
j=1

Nj


s.t. ∀i max(s(w,x+

i)− τ, 0) ≥ Pi(s(w,x
+
i)− τ)

∀j max(s(w,x−
j)− τ, 0) ≥ Nj(s(w,x

−
j)− τ)

∀i max(s(w,x+
i)− τ, 0) ≤ Pi(s(w,x

+
i)− τ)

∀j max(s(w,x−
j)− τ, 0) ≤ Nj(s(w,x

−
j)− τ)

∀i, j 0 ≤ τ,Pi, Nj ≤ 1

(31)

Due to the fact that max(s(w,x+
i) − τ, 0) ≥ Pi(s(w,x

+
i) − τ) and max(s(w,x−

j) − τ, 0) ≥
Nj(s(w,x

−
j)− τ) is ground truth all the time. Hence, we have

min
τ,P ,N

c · π ·

(
1− 1

n+

n+∑
i=1

Pi

)
+ (1− c)·(1− π) ·

 1

n−

n−∑
j=1

Nj


s.t. ∀i max(s(w,x+

i)− τ, 0) ≤ Pi(s(w,x
+
i)− τ)

∀j max(s(w,x−
j)− τ, 0) ≤ Nj(s(w,x

−
j)− τ)

∀ij 0 ≤τ, Pi, Nj ≤ 1

(32)

Then we apply the penalty function method to convert the constraint optimization into approximated
unconstrained optimization:

min
τ,P ,N

c · π ·

(
1− 1

n+

n+∑
i=1

Pi

)
+ (1− c) · (1− π) ·

 1

n−

n−∑
j=1

Nj

+Mψ(τ − 1)

+
1

n+

n+∑
i=1

M ′(ψ(s(w, x+i)− τ)− Pi(s(w, x
+
i))− τ) +Mψ(Pi − 1))

+
1

n−

n−∑
j=1

M ′(ψ(s(w, x−j)− τ)−Nj(s(w, x
−
j))− τ) +Mψ(Nj − 1))

∀ij 0 ≤ τ, Pi, Nj

(33)

19

where ψ(x) = log(1+exp(κx))
κ is penalty function (ψ(x) κ→∞→ max(x, 0)), M and M ′ denote positive

number which are large enough. It’s noticed that when κ,M,M ′ → ∞, then Eq.(33) is equivalent to
Eq.(32). Next, we will prove the strong convexity of τ in Eq.(33). Firstly, we give the hessian matrix
of Eq.(33):

H =M



κeκ(τ−1)

(eκ(τ−1)+1)2

+ 1
n+

∑n+

i=1
κeκ(Pi−τ)

(eκ(Pi−τ)+1)2

+ 1
n−

∑n−
j=1

κeκ(Nj−τ)

(eκ(Nj−τ)+1)2

M ′/M M ′/M

M ′/M 1
n+

∑n+

i=1
κeκ(Pi−1)

(eκ(Pi−1)+1)2
0

M ′/M 0 1
n−

∑n−
j=1

κeκ(Nj−1)

(eκ(Nj−1)+1)2


(34)

For computational simplicity, we define

x = κeκ(τ−1)

(eκ(τ−1)+1)2
+ 1

n+

∑n+

i=1
κeκ(Pi−τ)

(eκ(Pi−τ)+1)2
+ 1

n−

∑n−
j=1

κeκ(Nj−τ)

(eκ(Nj−τ)+1)2

y = 1
n+

∑n+

i=1
κeκ(Pi−1)

(eκ(Pi−1)+1)2

z = 1
n−

∑n−
j=1

κeκ(Nj−1)

(eκ(Nj−1)+1)2

(35)

Then we reformulate the hessian matrix

H =M

[
x M ′/M M ′/M

M ′/M y 0
M ′/M 0 z

]
(36)

where

x ∈
[

3κeκ

(eκ + 1)2
,
3κ

4

]
, y, z ∈

[
κeκ

(eκ + 1)2
,
κ

4

]
(37)

We calculate the principal minor of the hessian matrix

D1 = x > 0 (38)

D2 = xy − M ′2

M2
> 0 ⇒M ′2 ≤M2 3κ2e2κ

(eκ + 1)4
< M2xy (39)

D3 = xyz − (y + z)
M ′2

M2
> 0 ⇒M ′2 ≤M2 6κ2e3κ

(eκ + 1)6
<
M2xyz

y + z
(40)

Hence, we find that if we have M ′2 < min
(
M2 3κ2e2κ

(eκ+1)4 ,M
2 6κ2e3κ

(eκ+1)6

)
, then we can ensure τ is

strongly convex for Eq.(33). We define the approximated equivalent formulation

min
τ,P∈Rn+ ,N∈Rn−

L̂eq(w, τ, c) := c · π · (1− 1

n+

n+∑
i=1

Pi) + (1− c) · (1− π) · (1

n−

n−∑
j=1

Nj)

+
1

n+

n+∑
i=1

M ′ψ(s(w,x+
i)− τ)− Pi(s(w,x

+
i)− τ)) +Mψ(Pi − 1) +Mψ(τ − 1)

+
1

n−

n−∑
j=1

M ′ψ(s(w,x−
j)− τ)−Nj(s(w,x

−
j)− τ)) +Mψ(Nj − 1) ∀ij 0 ≤ τ, Pi, Nj

(41)

Then we can calculate the strong convexity of τ . According to the definition of strong convex

∃µ > 0,∀τ ∈ [0, 1],P ∈ [0, 1]n+ ,N ∈ [0, 1]n− ∇2L̂eq ⪰ µgI (42)

Assuming that µg > 0, in order to satisfy the strong convexity, we need to ensure the positive
definiteness of the Hessian matrix

H =M

[
x− µg M ′/M M ′/M
M ′/M y − µg 0
M ′/M 0 z − µg

]
(43)

20

where

x ∈
[

3κeκ

(eκ + 1)2
,
3κ

4

]
, y, z ∈

[
κeκ

(eκ + 1)2
,
κ

4

]
(44)

We calculate the principal minor of the Hessian matrix

D1 = x− µg > 0 ⇒ µg <
3κeκ

(eκ + 1)2
(45)

D2 = (x− µg)(y − µg)−
M ′2

M2
> 0 ⇒

µg >
κ
√
κ2 + 3κ2

16 M
′2/M2

2
≥
x+ y +

√
(x+ y)2 + 4xyM ′2/M2

2

(46)

D3 = (x− µg)(y − µg)(z − µg)− (y + z − 2µg)
M ′2

M2
> 0 ⇒

µg >
3

√
−q
2
+

√
q2

4
+
p3

27
+

3

√
−q
2
−
√
q2

4
+
p3

27

(47)

where

p = −xy − xz − yz − (x+ y + z)
2

3
− M ′ (y + z)

M

q = xyz +
2 (x+ y + z)

3

27
−

(9x+ 9y + 9z)
(
−xy − xz − yz − M ′(y+z)

M

)
27

(48)

When p = − 23κ2

24 − M ′κ
2M and q = 331k3

1728 −
5k

(
− 7k2

16 −M′k
2M

)
12 , µ has a lower bound. Hence, we find

that if we have

max(
3

√
−q
2
+

√
q2

4
+
p3

27
+

3

√
−q
2
−
√
q2

4
+
p3

27
,
κ
√
κ2 + 3κ2

16 M
′2/M2

2
)

< µg < min(
κeκ

(eκ + 1)2
,

3κeκ

(eκ + 1)2
)

(49)

then we can ensure τ is µg-strongly convex for Eq.(33). For computational simplicity, we use the
upper bound of µ = 3Mκeκ

(eκ+1)2 ≥M · µg .

21

	Related Work
	Experiment details
	Main Idea of Experiments
	Dataset Details
	Implementation Details
	Parameter Tuning
	Competitors
	Experiment Results
	Addditional Experiment

	Proofs for Section 4
	KDE Definition
	Proof of Proposition 5.1
	Proof of Lemma 5.2
	Proof of Theorem 5.3

