A Related Work

ROC curve & cost-sensitive learning. ROC curve and cost curve are two statistical tools frequently
used in machine learning applications. Over the past two decades, some studies have explored
their relationship and achieved significant success. [| 0] found that AUC implicitly uses a threshold
weighting function corresponding to a cost weighting function. When these weighting functions
output constant, we can infer that the cost function is a linear transformation of AUC. [21] shown
that utilizing a natural threshold choice method can transfer ROC curves to cost space. [2()] proposed
a unified view of performance metrics. With the help of ROC convex hull [V], they give a clear
interpretation of the threshold choice of the ROC curve. However, all of the above studies are based
on the assumption of a uniform distribution in costs and thresholds. Moreover, their method can not
be applied to end-to-end learning.

AUC. Since AUC offers some excellent properties in classification, it has become one of the standard
performance metrics for binary imbalanced learning [/, 31, 43]. A partial list of the related studies
includes [13, 7,42, 22,35, 12, 36, 47]. In deep age, there are some studies [27, 15, 48] focused on
applying the AUC metric to deep end-to-end learning.

PAUC. The concept of PAUC was first introduced by [3 1], mainly used in disease diagnosis and
biology. Prior to the deep learning era, earlier studies focused on optimizing PAUC in negative
cost-sensitive scenarios. A partial list of the related studies includes [34, 33, 45, 50, 46, 38]. However,
both AUC nor PAUC optimization does not consider the relationship between the ROC curve and
cost space, which is hard to be applied in reality.

WAUC. The idea of weighting thresholds in AUC is first described by [40]. [25] constructed a
framework for ROC analysis that incorporates the specificity distribution (e.g., normal distribution).
[30] proved exponential bounds on the estimation error of their proposed WAUC estimator and given
conditions of the weight function. However, the weighting functions of these works are pre-selected,
which are problem-independent, do not relate to the cost, and are too far from the practical application.

Bilevel optimization. Bilevel optimization is a classical algorithm for operations research. This
formulation focuses on coupled optimization problems, where the inner optimization problem is the
constraint of the outer optimization [, 59, 6]. Recently, many studies have focused on designing
gradient-based first-order algorithms to solve bilevel optimization problems [37, | 1, 28, 5]. Most of
them assume that the inner optimization problem has good properties, e.g., strong convexity.

B Experiment details

B.1 Main Idea of Experiments
Our experiments mainly explore the following three problems:

* Our method versus the recent SOTA cost-sensitive learning algorithm. Direct optimization
of cost function leads to the model is sensitive to the class distribution, while AUC has the
advantage of being robust to the class distribution. Compared with previous cost-sensitive
learning methods, we combine the advantages of AUC and cost metrics, allowing the model
to enjoy a higher WAUC value while minimizing the cost. Models trained with our method
can be applied to cost-sensitive decision problems (e.g., financial market prediction, higher
WAUC to guarantee decision profit)

* Traditional AUC is inconsistent with the cost-related metrics and cannot be used in cost-
sensitive learning scenarios. From the experimental results in our paper, we can see that most
AUC optimization methods do not minimize the misclassification cost. This indicates that in
practical applications, using AUC optimization may maximize revenue without considering
the cost. Ultimately, the misclassification cost of the decision is not acceptable.

* Our method versus the model trained with AUC/PAUC/CE first and then solves the op-

timal threshold with ﬁCOST for a decision. We want to prove that model trained with
AUC/PAUC/CE first and then getting the posterior threshold performs poorly in cost-
sensitive learning. Hence, developing a novel one-stage method to address this problem is
necessary.

13

B.2 Dataset Details

Binary CIFAR-10-Long-Tail Dataset. The CIFAR-10 dataset [23] consists of 60,000 images divided
into ten categories. By choosing one superclass as positive and the other as negative, we construct a
long-tail binary version of CIFAR-10. For scalability, we generate three subsets of CIFAR-10 which
are composed of the different superclasses, including 1) birds, 2) automobiles, and 3) cats.

Binary CIFAR-100-Long-Tail Dataset. Different from CIFAR-10, We choose a set of classes in
CIFAR-100 [23] as positive and the rest of the classes as negative. Similarly, we construct three
subsets and the positive set containing 1) insects, 2) vegetables and fruits, and 3) large omnivores and
herbivores.

Jane Street Market Prediction. In reality, some applications like financial markets prediction [4]
involve investment issues. Every investment has a cost involved. Developing trading strategies to
identify and take advantage of inefficiencies is challenging. We adopt the actual financial markets
data [4] to test all methods on real cost situation.

B.3 Implementation Details

We conducted all experiments on a Ubuntu 16.04.1 server equipped with an Intel(R) Xeon(R) Silver
4110 CPU and four RTX 3090 GPUs. We implement all algorithms code in Python 3.8 and
pytorch 1.8.2 environment. For the fairness of the experiment, we adopt the ResNet-18 model as
the backbone of all competitors. The model’s output will be scaled into [0, 1] with a Sigmoid function.
We set the batch size as 256 (64 per GPU) and epochs as 50. We employ torch.optim.SGD as the
basic optimizer and torch.nn.DataParallel as tools for parallel computing. We set n. as 50.

B.4 Parameter Tuning

We tune the learning rate of all methods in the range [1072,107°] and the weight decay in
[1073,107°]. Following the original paper, the warm-up steps for PAUC-poly and PAUC-
exp is tuned in [3,20]. Specifically, control parameter in PAUC-poly is searched in
{0.03,0.05,0.08,0.1,1,3,5}. For PAUC-exp, ~ is searched in [8,30]. For PAUCI, stepsize re-
lated parameter & is tuned in [1, 10], v, A,c1, ¢o are searched in [0, 1]. m, K, w is tuned in [10, 100],
[2, 6], [0, 4] respectively. For our method, we set inner loop iterations 7' = 3, tune bandwidth m in
[0.1, 0.5], smooth parameter 3 in [1, 10] and M, M’, x in [32, 64,128,256,512,1024].

B.5 Competitors

We implement two types of our methods, including Gaussian kernel \/% exp (7%x2) and Logis-

tics kernel m respectively. We denote them as WAUC-Gau and WAUC-Log. For other
competitors, we classify them into three categories

(1) Common methods for binary classification problems, including the class balanced CE loss (BCE)
[¢]; the Exp loss of AUC (ExAUC); the square loss of AUC (SqAUC); the naive WAUC estimator
(NWAUC).

(2) Recent SOTA methods of PAUC, including approximated PAUC estimator PAUC-poly [45] (poly
calibrated weighting function) and PAUC-exp [+ 5] (exp calibrated weighting function); asymptotically
unbiased instance-wise regularized PAUC optimization [3&] which is denoted as PAUCL.

(3) The cost-sensitive learning algorithms, including cost-sensitive classification with rejection which
is denoted as CS-hinge [“], Bayes risk estimator for cost-sensitive classification [?] which is denoted
as AdaCOS, expected cost loss which is denoted as ECL.

B.6 Experiment Results

We give the details of the dataset used in the experiment in the following table. All serial numbers
and category names correspond to the information in the original dataset.

We also conduct experiments to study our method’s performance under other categories of cost
distributions. We sampled the cost from the truncated uniform distribution U[0.5,1] and beta

14

Table 4: Details of dataset.

Dataset Pos. Class ID Pos. Class Name #Pos #Neg
CIFAR-10-LT-1 2 birds 1,508 8,907
CIFAR-10-LT-2 1 automobiles 2,517 17,898
CIFAR-10-LT-3 3 birds 904 9,511
CIFAR-100-LT-1 6,7,14,18,24 insects 1,928 13,218
CIFAR-100-LT-2 0,51,53,57,83 fruits and vegatables 885 14,261

CIFAR-100-LT-3 15,19,21,32,38 large omnivores herbivores 1,172 13,974

distribution beta(2,4). We then conduct experiments on all competitors in subsets of CIFAR-10-
Long-Tail and CIFAR-100-Long-Tail. All configurations are consistent with the sec.7 except for the
cost data set .S,..

Table 5: Performance comparisons on benchmark datasets with different metrics (cost sampled from
uniform distribution). The first and second best results are highlighted with bold text and underline,
respectively.

‘ ‘ ‘ Subset1 ‘ Subset2 ‘ Subset3 ‘ AUC 1T
dataset) pe - methods NG lhe s Foosr | WAUCT Zcosr b | WAUCT Zoosr | | Subsetl Subset2 Subset3
BCE 0524 0078 0633 0054 | 0387 0046 | 0776 0908 0810
ExAUC 0472 0076 0709 0098 | 0456 0050 | 0787 0736 0.856
SqAUC 0438 0075 0642 0082 0316 0044 | 0802 0941 0852
NWAUC | 0573 0.063 0714 0072 | 0469 0041 | 0777 0882 0.809
Competitors | PAUC-exp | 0424 0087 0697 0122 0352 0057 | 0754 0810 0814
CIFARI0-LT PAUC-poly | 0.431 0.087 0629 0094 0328 0054 | 0763 0760 0.766
PAUCI 0439 0069 0651 0.085 0339 0050 | 078 0768 0.847
CS-hinge | 0482 0087 0607 009 | 0404 0054 | 0734 0748 0777
AdaCOS | 0.545 0.071 0.631 0.086 0365 0048 | 0747 0903 0.798
ECL 0469 0087 0749 0.110 0307 0042 | 0697 0665 0842
WAUC-Gau | 0642 0.065 0781 0040 | 0511 0042 | 079 0942 0833
Ourmethod | WAUC-Log | 0.668 0.062 0752 0037 | 0509 0040 | 0819 0952 0.864
BCE 0.555 0049 0382 0017 | 0340 0045 | 0868 0947 0765
ExAUC 0.601 0069 0517 0011 0428 0039 | 0710 0956 0.906
SqAUC 0570 0042 0438 0015 0304 0038 | 0905 0957 0.845
NWAUC | 0490 0051 0552 0016 | 038 0038 | 0860 0954 0842
Competitors | PAUC-exp | 0466 0079 0416 0.040 0319 0051 | 0811 0499 0776
CIFAR.100LT PAUC-poly | 0424 0.067 0429 0028 0319 0051 | 0751 0836 0784
PAUCI 0468 0050 0471 0.017 0327 0045 | 0852 0890 0747
CS-hinge | 0.485 0.065 0436 0029 0307 0051 | 0763 0826 0.693
AdaCOS | 0599 0.065 0412 0022 | 0330 0049 | 0762 0921 0.693
ECL 0.503 0.078 0504 0031 0318 0051 | 0845 0787 0722
WAUC-Gau | 0.687 0.047 0547 0016 | 0409 0043 | 0869 0932 0.763
‘ Our method ‘ WAUC-Log | 0663 0035 0534 0010 | 0479 0026 | 0906 0960 0.891

Under the condition of beta cost distribution, the performance of all methods in Tab. 6 is similar to
Tab. 2. We can get a similar analysis result. Under the condition of uniform cost distribution, in Tab.
5, WAUC will degenerate to AUC. Therefore the AUC-related optimization algorithm will perform
well and the gap with our proposed method will become smaller. Since PAUC is a special version of
AUC based on the assumption of truncated uniform distribution of costs, the related algorithm has

a clear advantage. However, although these algorithms have improved performance on the WAUC

metric, the results on Loost are not good. Our proposed WAUC cost-sensitive learning can enjoy
high WAUC metrics and cost metrics on both different kinds of cost distributions.

For the calculation of the WAUC metric needs to involve the solution of the optimal threshold 7*.
However, this optimization problem is non-convex and it is difficult to find the optimal solution
quickly using existing optimization methods. Therefore, we propose an algorithm that can be solved
within O(n4 + n_) iterations to obtain the optimal threshold, with the following details

B.7 Addditional Experiment

In Thm. 5.3, we propose a convex formulation which can approximate the ECOST. According to the

.. 2 3k .
conditions of the penalty, we need s, M — oo and M'? < M 2% to ensure that Thm. 5.3 is

approximately equivalent to ECOST.

15

Table 6: Performance comparisons on benchmark datasets with different metrics (cost sampled from
beta distribution). The first and second best results are highlighted with bold text and underline,
respectively.

| | | Subsetl | Subset2 | Subset3 | AUC 1t
dataset) ype) methods i1 Zooer || WAUCT Zeosr | | WAUCT Zoosr | | Subsetl Subser2 Subset3
BCE 0316 0.033 0.474 0.032 0412 0024 | 0821 0915 0.806
ExAUC 0389 0.035 0474 0.037 0.491 0.021 0841 0967 0867
SqAUC 0270 0.033 0495 0.039 0.425 0022 | 0858 0933 0855
NWAUC 0326 0.034 0538 0.033 0.462 0023 | 0817 0922 0826
Competitors | PAUC-exp | 0.071 0.033 0.490 0.059 0476 0027 | 0783 0715 0740
CIFAR-10-LT PAUC-poly | 0.137 0.035 0477 0.045 0.445 0026 | 0746 0830 0.703
PAUCI 0.185 0.038 0526 0.038 0476 0022 | 079 0844 0787
CS-hinge 0365 0.032 0574 0.035 0.556 0025 | 0756 0897 0771
AdaCOS 0347 0.038 0.567 0.036 0516 0024 | 0803 0900 0.808
ECL 0303 0.034 0.584 0.030 0.537 0022 | 0847 0925 0856
WAUC-Gau | 0.413 0.031 0.640 0.030 0.610 0020 | 0815 0943 0.830
‘ Our method ‘ WAUC-Log ‘ 0.393 0.029 0.578 0.024 0.575 0.019 0852 0959 0.869
BCE 0547 0.025 0.423 0.016 0.190 0027 | 0869 0930 0757
ExAUC 0.646 0.023 0459 0.015 0.184 0.021 0929 0948 0.900
SqAUC 0.460 0.023 0396 0.009 0.157 0025 | 0892 0949 0854
NWAUC 0.652 0.024 0.494 0.009 0.151 0026 | 0889 0941 0819
Competitors | PAUC-exp | 0.566 0.034 0.464 0.015 0.184 0028 | 0800 0835 0793
CIFAR-100-LT PAUC-poly | 0.269 0.029 0410 0.012 0.167 0028 | 0788 0885 0.740
PAUCI 0530 0.024 0.449 0.007 0.193 0025 | 0827 0895 0705
CS-hinge 0.503 0.026 0423 0.010 0272 0017 | 0847 0899 0.749
AdaCOS 0.605 0.027 0452 0.011 0244 0017 | 0852 0915 0.696
ECL 0.503 0.025 0.424 0.010 0.220 0016 | 0872 0930 0.799
WAUC-Gau | 0.747 0.022 0.658 0.008 0275 0023 | 0869 0925 0757
‘ Our method | WAUC-Log ‘ 0.647 0.018 0.645 0.005 0.290 0.017 0911 0961 0865

Algorithm 2 Algorithm for Solving the Optimal Threshold
0
Input: test data S and S’ , cost dataset S.. Initialize: parameters 7* = {0},
for [= 0 to n. do R
7*[l] = argmin, ¢(s¢ st} Loost
end for

In this subsection, we study the optimal value gap between original Zco s problem and Thm. 5.3.
We optimize the Lcost and Eq. (12) in Cifar-10-Long-Tail training set. We set cost distribution as

Uniform and 7 = 0.5. We calculate the mean optimal value (p* = min Loogsr, d* = min Eq. (12))
of them over the cost distribution. Finally, we calculate the error between them ((p* — d*)?) and list
the results in Tab. 7.

Table 7: Optimal value gap between original ljco s optimization problem and Thm. 5.3
M=64 M=128 M =256 M =512 M =1024 M =2048
k=64 K=128 KkK=256 k=512 Kk=1024 K =2048

M’ =32 0.058 0.050 0.048 0.045 0.042 0.041
M' =64 0.049 0.042 0.039 0.036 0.034 0.032
M’ =128 0.038 0.036 0.032 0.029 0.027 0.025
M’ = 256 0.025 0.023 0.020 0.018 0.016 0.015
M’ =512 0.018 0.015 0.013 0.011 0.009 0.008
M’'=1024 0.012 0.010 0.008 0.007 0.007 0.005

In Tab. 7, we find that when x, M, M’ grows, the optimal value gap will increase quickly. Moreover,
when k = M = 64 and M’ = 32, the error is small enough. Hence, in real-world application, the
approximation error and effect of hyparameters is acceptable.

C Proofs for Section 4

C.1 KDE Definition

Here, we give the notation and definition of KDE.

16

Definition C.1 (Kernel density estimation ["]). Denote = as a random variable with probability
density function f,. Given a dataset S = {z;};*, and threshold 7, we denote

1 .-
K(S,7) = 5 3 K(Im7>, (17)

x, €S

as an estimation of f,, where m is bandwidth. The non-negative real-valued integrable function K
satisfies

) /OO K(z)dz =1, 2) K(z) = K(—x). (18)

C.2 Proof of Proposition 5.1

Restatement of Proposition 5.1. Denote K (x) be statistics kernel with bandwidth m and S* =
{s(w, 33;)}?;1 With Lemma 5.2, we have the approximate estimator and loss function for WAUC:

WAUC 2/ TPR(7)K(SY, 7)p(r)dT, ,CWAUC (w,T) - Zh w, ;) (19)

where T = {7 }}'"| and the point loss h is defined by

ny n—

inﬂ—lfn“LE:X: D) —=m) K((s(w,2)) —7)/m)/m. (20)

1=1 j=1

o(z) = 1/(1 + exp(—pzx)), B is smooth parameter and we have o(x) g L.

Proof.

WAUC = /_OO TPR(7)K(S_, 7)p(r)dr

oo

—E. [Pm+[5(w,m+) 7] Ep- {1K< e) T)H

=E, []E + s,z t)>r] - HK()” ey
=E; 5+ [Hs<w,m+>>f' [K <S(w,)”

=K, o+ o- [Hs(w,w+)>r' [mK (wfjn)_T)” '

Replacing the Iy function with o(z) = 1/(1 + exp(—/x)) and change it to empirical formulation.

)= | (=T) 22)

Since we want to maximize the WAUC metric, we employ 1 — WAUC as loss function, then we have

) [a(s(w,w

zt~Sp = ~S_TT

+

1 1 -\ _
(Pop.) Lwauvc = E 1—— o(s(w,x™) — 1) —K (s(w,a:)n)
xt~Dp,x~ ~Dn n = m m
~ - 1 & 1 -y =
(Emp.) Lwauc = E [1 - — o(s(w,z¥) - 1) —K <s(w7w)n>
zt~Sp e ~S_ Nr = m m
= (23)
Reformulating the Lwauc, we have:
=N 1 nr
L T)=—) hw, 2%
wauc(w, T) o ; (w,) (24)

where

"L+ n_—
- 1
hMw,7)=1- e ;;o(s(w,m;«") —mn) K((s(w,z;) —7)/m)/m. (25)
o(z) =1/(1+ exp(—pBz)), B is smooth parameter and we have o (x) Poge I, to approximate TPR
and FPR. O

C.3 Proof of Lemma 5.2

Restatement of Lemma 5.2. Given a scoring function s, if T is known, when the number of instances
is large enough, WAUC almost surely converges to WAUC.

lim [WAUC — WAUC| %% . (26)
n_—oo
Proof.
lim IWAUC — WAUC|

) " n A 1 s(w,z™)—T1 /

= n}lgoo E; o+ [o(s(w,zT) —7) - E;_ %K E— —E; e+ [Hs(w,m+)>r : FPR’S(T)]
. - 1 s(w,z7) — 71

< n}1g1oo TSIiB o(s(w,) —7) - E,_ {mK <(m))] — Ly(w,at)>r - FPR,(T)

< Tim supmax { |o(0)E,- [1K (‘WWH —FPR/(1)|,0(—8)E,- [;K (‘9(“"”_)_7)]

n_—oo m m

o(6)—1 when S—o00 o(—6&)—0 when B—o0

[;K(— H—FPR;(T)
o e)

(¢) Kernel density function consistency lemma

E [Em HK (W)” — FPR.(7)

(d) Law of large numbers

< lim sup|E
n_—oo ;

(a)
< lim sup

n_ —0o0 T

+ lim sup

n_ —0o0 T

=0

(27)
where (a) comes from triangle inequality and § > 0. We assume that E.. .+ [[5(y,2+)=-] = 0. For
terms (c) and (d), please see the proof of [1]. O

C.4 Proof of Theorem 5.3

Restatement of Theorem 5.3. When we set k, M are large positive numbers and M'? < M? (66"%)6

then we have the approximated convex formulation for LcosT
1 n4 n_

Z, 1
T,PGR"ILIJ}{I}VGR”* Leg(w,T,¢)i=c-m- (1= E ;P) (1=¢c)-(1—m)- (ni ;Nj)
+ N ZMfw(S(w,mj) —7)— Pi(s(w,a:j) — 1))+ M(P; — 1) + Myy(r — 1) (28)
ny i
+ nl;M' (s(w,z;) —7) = Nj(s(w,z;) — 7)) + M(N; = 1) 0 <7, P, N,

where (x) = log(1 + exp(kx))/k. Zeq in Eq.(12) is pg-strongly convex w.r.t. T. Eq.(12) has same
solution as min, LoosT when the parameters satisfy the conditions of the penalty.

Proof. According to the definition of ﬁcogT, we have:

71+ n_
. 1
min ¢ - (1 . ZH <w,mr)—ﬂ> 1= (1=m) | =) Twer) 29)

j=1
st. 0<7<1.

Then we have the equivalent formulation:

min ¢ -7 - (1—ZP> (I-¢)-(1—m)- nanNj

7, P,N n4 im1 j=1
s.t. max(s(w,z;) — 7,0) = P;(s(w,z}) — 7) 30)
max(s(w,z;) — 7,0) = N;(s(w,z;) —7)
0< Tap’iaN] <1,

where P € R"+, N € R"- and P; € P, N; € IN. Since the equality constraint is hard to process,
we convert it to inequality constraint (e.g., a = b < a <= b,a >=b).

s.t. Vi max(s(w,z) — 7,0) > Pi(s(w,z}) — 1)
Vj max(s(w,z;) —7,0) > N;(s(w,z;) —7) (31
Vi max(s(w,z;) — 7,0) < Pi(s(w,z;) — 1)
Vj max(s(w,z;) —7,0) < N;(s(w,z;) —7)

Due to the fact that max(s(w,z;) — 7,0) > Pi(s(w,z;) — 7) and max(s(w,z;) — 7,0) >
N;(s(w,z;) — 7) is ground truth all the time. Hence, we have

m1nc7r <IZP> 1-¢)(1l=m)- ZN

s.t. Vi max(s(w,z;) —7,0) < Pi(S(w7m;r) -) 52)
Vj max(s(w,z;) — 7,0) < N;(s(w,z;) —7)
Vij 0<r P, N; <1

Then we apply the penalty function method to convert the constraint optimization into approximated
unconstrained optimization:

Tfr}lomc - (1—ZP) (1-¢)-1—m)- ZN + My(r—1)

M+ i=1
" i > M W(s(w,af) = 1) = Pi(s(w,a)) = 7) + M(P; — 1)) (33)
i=1
£ S M (s, 7) — 7) — Ny(s(w, 7)) —) + Mup(N; ~ 1)
VZj O S T, PL',N]'

19

where ¢ () = w is penalty function (¢(x) "= max(x,0)), M and M’ denote positive

number which are large enough. It’s noticed that when x, M, M’ — oo, then Eq.(33) is equivalent to
Eq.(32). Next, we will prove the strong convexity of 7 in Eq.(33). Firstly, we give the hessian matrix
of Eq.(33):

r er(T—1) B
+i Z?il (ef(ePi—:)+1)2 M//M M//M
1 n_ ke (Ni—T)
H=M +o Zj:l N D12 ()
Kk(P;—1
M//M i Z?;rl (eg(eP,i—l)+1)2 0
1 n_ Rem(Njfl)
i M//M 0 o Zj:l ("= D {1)2 |
(34)
For computational simplicity, we define
. rer(T=1) 1 n ke (Pi—T) 1 n_ re"Ni=7)
xTr = ‘(e~(7—71)+1)2 + H Zzil (en(Pi77)+122 +)E Zj:l (en(NjfT)_*_l)Q
n rer(Pi—1
Y= 2ih RV (35)
z = n% Z;L;l (e:(p}vj_i)+1)2
Then we reformulate the hessian matrix
x M /M MM
H=M|M/M Y 0 (36)
M'/M 0 z
where
3ker 3K Ker K
€ k1 12 4 | Y € 7 e | 1\2° 4 37
. Lewl)? 4] b Lewn? 4} Gn
We calculate the principal minor of the hessian matrix
Dy =2>0 (38)
D - M < a2 3y 39
=zy — >0= < <
2 xy M2 = (e,@ I 1)4 Ty ()
M" 6r2e3r M?zyz
D3 = - >0= M"?< M? < 40
3 = TYz (y+z)M2 = (en+1)6 y+z (40)
Hence, we find that if we have M < min (M 2 e M2 e) then we can ensure 7 is

strongly convex for Eq.(33). We define the approximated equivalent formulation

min Leg(w,7,¢) :=c-7- (1 — 1+ ZPZ-)+(1—C)-(1—7T)-(LZNJ-)

7, PeER"+ /NeR"— nf Pt n_ =
4
£ S M Y(s(aw,) —) - Pils(w,) — 1)) + Mg(P— 1)+ My(r—1) @D
+ =1

+ %ZM’ (s(w,z;) —71) = Nj(s(w,z;) — 7)) + Mp(N; — 1) Vij 0 < 7, P, N;

Then we can calculate the strong convexity of 7. According to the definition of strong convex
> 0,¥7 € 0,1, P € [0,1]", N € [0,1]" V2Loy = pgl (42)

Assuming that 1y > 0, in order to satisfy the strong convexity, we need to ensure the positive
definiteness of the Hessian matrix

x—py M /M M /M
H=M|M/M y—pu, 0 43)
M' /M 0 Z— lg

20

where

3ke” 3K ke K
- = I 44
“Lewl)f4}*”26[@”1)2’4} @

We calculate the principal minor of the Hessian matrix

Dl:x_“9>0:>ﬂg<m (45)
12
Dy = (& = pg)(y — ng) = 35 > 0=
5 L B2 A2 02 (46)
K¢”+HEW[ﬂW T +y+ /(@ +y)? +dayM?/M>
Hg > 5 > >
M/2
D3 = (x—pg)(y—pg)(z—pg) — (y+2— 2/L9)M >0=
(47)
¢ '
where
p=-—xYy—T2— Yz — ($+y+z)2 _ M (y + 2)
; M : 48)
2@ +y+2)° (9m+9y+92)(—$y—mz—yz—W) (
q=zyz+ = _ -
_ 23r2 M's 331k3 Sk(*%*g[;/fk)
When p = =5 — 357 and ¢ = T — 5 , 1 has a lower bound. Hence, we find

that if we have

[q [z pB K\/K2+3K2M/2/M2
max(\/— 4+27+\/—— 27) 49)

)

<”9<Hmm@~+1ﬁ’@~+1ﬁ

then we can ensure 7 is fi4-strongly convex for Eq.(33). For computational simplicity, we use the

upper bound of y = % > M - pig. O

21

	Related Work
	Experiment details
	Main Idea of Experiments
	Dataset Details
	Implementation Details
	Parameter Tuning
	Competitors
	Experiment Results
	Addditional Experiment

	Proofs for Section 4
	KDE Definition
	Proof of Proposition 5.1
	Proof of Lemma 5.2
	Proof of Theorem 5.3

