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Abstract1

Graph neural networks (GNNs) have been shown to be highly sensitive to the2

choice of aggregation function. While summing over a node’s neighbours can3

approximate any permutation-invariant function over discrete inputs, Cohen-Karlik4

et al. [2020] proved there are set-aggregation problems for which summing cannot5

generalise to unbounded inputs, proposing recurrent neural networks regularised6

towards permutation-invariance as a more expressive aggregator. We show that7

these results carry over to the graph domain: GNNs equipped with recurrent aggre-8

gators are competitive with state-of-the-art permutation-invariant aggregators, on9

both synthetic benchmarks and real-world problems. However, despite the benefits10

of recurrent aggregators, their OpV q depth makes them both difficult to parallelise11

and harder to train on large graphs. Inspired by the observation that a well-behaved12

aggregator for a GNN is a commutative monoid over its latent space, we propose a13

framework for constructing learnable, commutative, associative binary operators.14

And with this, we construct an aggregator of Oplog V q depth, yielding exponen-15

tial improvements for both parallelism and dependency length while achieving16

performance competitive with recurrent aggregators. Based on our empirical obser-17

vations, our proposed learnable commutative monoid (LCM) aggregator represents18

a favourable tradeoff between efficient and expressive aggregators.19

1 Introduction20

When dealing with irregularly structured data [Bronstein et al., 2021], neural networks typically21

need to process data of arbitrary sizes. In such scenarios, the heart of the network is arguably its22

aggregation function—a function that reduces a collection of neighbour feature vectors into a single23

vector. Indeed, graph neural networks (GNNs) have been shown empirically to be highly sensitive to24

the choice of aggregator [Veličković et al., 2019, Richter and Wattenhofer, 2020], with a wide range25

of aggregators (e.g. sum, max and mean) and their combinations [Corso et al., 2020] in common use.26

In this paper, we offer a new perspective for studying aggregators, with clear theoretical and practical27

implications. It can be said that the true objective of choosing an aggregator is to make it as simple as28

possible (i.e. to minimise the sample complexity required) for the parameters of the GNNs to exploit29

that aggregator in a way that makes it easier to solve the learning problem. Specifically, we study this30

in the context of learning to align the GNN’s aggregator to a desirable target aggregation function31

(as defined in [Xu et al., 2019a]). It is already a known fact that higher alignment implies reduced32

sample complexity [Xu et al., 2019a], and in the context of algorithmic reasoning, it is well-known33

that a neural network will be better at learning to imitate an algorithm if its aggregator matches that34

of the algorithm it is trying to imitate [Veličković et al., 2019, Xu et al., 2020].35

However, beyond the realm of learning a task with a concrete aggregator, many real-world problems36

offer more challenging settings, wherein the optimal aggregator to learn is not clear—but unlikely37

to be a trivial fixed aggregator. To formalise this notion, while preserving the useful assumption of38

permutation invariance, we leverage commutative monoids as a formalism for both the aggregators39

supported by GNNs and the (potentially unknown) target aggregators one would wish to align to.40

This formalism allows us to derive several relevant results, including the fact that using any fixed41
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commutative monoid F (e.g. sum or max) as an aggregator would compel the GNN to learn a42

commutative monoid homomorphism from F to the target commutative monoid, purely from data.43

We hypothesise that this is often difficult to do robustly, and verify our hypothesis by demonstrating44

several instances (both synthetic and real-world) where fixed aggregators (including combinations of45

them [Corso et al., 2020]) fail to generalise.46

Our perspective, inspired by the functional programming motif of folds (or catamorphisms) over47

arbitrary data structures, leads us to consider flexible and learnable aggregation functions, which48

can more easily fit a wide range of commutative monoids directly, without needing to learn such49

a homomorphism. The most popular such aggregator has previously been the RNN (i.e. ‘a fold50

over a list’) – used, for instance, in GraphSAGE [Hamilton et al., 2017]. The reason for RNNs’51

expressive power is simple: their usage of a hidden recurrent state allows them to break away from the52

constraints of commutative monoids and aggregate inputs more flexibly. However, while empirically53

powerful, the sequential structure of RNN aggregators leads to clear shortcomings in efficiency: if an54

RNN had learnt to aggregate n neighbours under a commutative monoid operation ‘, it would do so55

with a depth that is linear in n, as pppp. . . px1 ‘ x2q ‘ x3q ‘ . . . q ‘ xn´1q ‘ xnq.56

But, by folding over a binary tree instead of a list (in other words, rearranging the order of operations57

to a balanced binary tree p. . . ppx1 ‘ x2q ‘ px3 ‘ x4qq ‘ ¨ ¨ ¨ ‘ pxn´1 ‘ xnq . . . q), we derive an58

aggregator that achieves a favourable trade-off between flexibility and efficiency, empirically retaining59

most of the performance of RNNs while having a depth that is logarithmic in n. We also demonstrate60

how such layers can be effectively constrained and regularised to respect the commutative monoid61

axioms (essentially creating a learnable commutative monoid), leading to further gains in robustness.62

2 Motivation63

Before exploring GNN aggregators, we first review the structure of a GNN. For a graph G “ pV,Eq64

whose nodes u have one-hop neighbourhoods Nu “ tv P V | pv, uq P Eu and features xu, a message-65

passing GNN over G is defined by Bronstein et al. [2021] as hu “ ϕ
`

xu,
À

vPNu
ψpxu,xvq

˘

for ψ66

the message function, ϕ the readout function and ‘ a permutation-invariant aggregation function.67

This GNN ‘template’ can be instantiated in many ways, with different choices of ϕ, ψ and ‘ yielding68

popular architectures such as GCNs [Kipf and Welling, 2017] and GATs [Veličković et al., 2018].69

2.1 To learn a complex aggregator is to learn a commutative monoid homomorphism70

So we’ve seen that, in order to define a GNN, we must define a permutation-invariant aggregator ‘71

over its messages. But how can we characterise a permutation-invariant aggregator in general?72

In abstract algebra (and in functional programming), a permutation-invariant aggregator over a set can73

be described as (maps into and out of) a commutative monoid. A commutative monoid pM,‘, e‘q74

is a set M equipped with a commutative, associative binary operator ‘ : M ˆ M Ñ M and an75

identity element e‘ P M – in other words, an instance of the following Haskell typeclass, satisfying76

the identities to the right for all x y z :: a (see Snippet 1 in Appendix I for a Python version):77

class CommutativeMonoid a = x <> e == e
e :: a x <> y == y <> x
<> :: a -> a -> a x <> (y <> z) == (x <> y) <> z

Intuitively, commutative monoids over a set M are ‘operations you can use to reduce a multiset,78

whose members are in M , to a single value’. These include GNN aggregators, like sum-aggregation79

pRn,`,0q and max-aggregation pRn,max,0q. Indeed, Dudzik and Veličković [2022] observe that,80

for the aggregation function ‘ of a GNN to be well-behaved (in the sense of respecting the axioms of81

the multiset monad), it must form a commutative monoid pS,‘, e‘q over some subspace S of Rn.82

The vast majority of GNNs choose a fixed permutation-invariant function ‘ (or fixed combinations of83

them [Corso et al., 2020]). While some research [Pellegrini et al., 2020, Li et al., 2020] has explored84

aggregation functions with learnable parameters, these functions are only very weakly parameterised,85

and give us limited additional expressivity.86

For problems where we can anticipate the kind of aggregation function we might need, this approach87

works well: indeed, choosing a commutative monoid that aligns with the algorithm we want our88

GNN to learn can improve performance both in and out of distribution [Veličković et al., 2019]. But89
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there are many problems (e.g. those involving learning aggregations over representations of discrete90

values, or representations encoding many different types of data) for which these monoids may not91

always be the most natural choice for the aggregation we’re trying to learn. So in such cases, ψ92

and ϕ must take on some of the work of mapping our representations into and out of a space where93

‘-aggregation makes sense.94

Formally, suppose we use a GNN equipped with a fixed commutative monoid aggregator pF,‘, e‘q,95

on a problem for which the ‘true’ aggregation we want to perform is the commutative monoid96

pM, ˚, e˚q over the GNN’s latent space. What would it take for our GNN to perform M -aggregation?97

98

Proposition 1. Let pM, ˚, e˚q and pF,‘, e‘q be commutative monoids. Then for functions g :M Ñ99

F and h : F Ñ M , ˚xPX x “ hp
À

xPX gpxqq for all finite multisets X of M , if and only if h is both100

a left inverse of g and a surjective monoid homomorphism from xgpMqy Ď F 1 to M .101

Now, given Proposition 1 above (proven in Appendix A), suppose we had a trained GNN, parame-102

terised by ϕ : Rk ˆ F Ñ Rk and ψ : Rk ˆ Rk Ñ F , with a fixed F -aggregator. Suppose this GNN103

has learned to imitate the M -aggregation commutative monoid. We will model this property as there104

existing functions ϕ1 : Rk ˆM Ñ Rk, ψ1 : Rk ˆ Rk Ñ M , g :M Ñ F and h : F Ñ M such that105

ϕpxu,mN puqq “ ϕ1pxu, hpmN puqqq, ψpxu,xvq “ gpψ1pxu,xvqq and ˚xPX x “ hp‘xPXgpxqq for106

all finite multisets X of M . Observe that this implies, for all nodes u, v in graphs G, the following:107

ϕ

˜

xu,
à

vPNu

ψpxu,xvq

¸

“ ϕ1

ˆ

xu, ˚
vPNu

ψ1
pxu,xvq

˙

“ ϕ1

˜

xu, h

˜

à

vPNu

gpψ1
pxu,xvqq

¸¸

Hence h is a surjective monoid homomorphism from xgpMqy to M (i.e. M is a subquotient of F ).108

So at a high level, for a GNN with aggregator F to imitate an aggregator M , it must learn a function109

that can decompose into a surjective monoid homomorphism from a submonoid of F to M .110

2.2 Limitations on expressivity and generalisation for constructed aggregators111

Given this result, what are the implications for prior and present work?112

As has been seen in [Veličković et al., 2019, Sanchez-Gonzalez et al., 2020], it’s clear that if our113

fixed commutative monoid F is aligned with a target monoid M for the problem we want to solve –114

intuitively, ‘if the homomorphism doesn’t have to do much work’ – then we can easily learn to imitate115

M . Indeed, if the target homomorphism is linear, and we have appropriate training set coverage, then116

by [Xu et al., 2020] it may well generalise out-of-distribution – a result that holds (to an extent) in the117

case of learning to imitate path-finding algorithms such as Bellman-Ford [Veličković et al., 2019].118

But there are many cases where M is more complex, and there is no commonly-used fixed aggregator119

F for which we can simply apply a linear homomorphism to get from F to M . One such example is120

the problem of finding the 2nd-minimum element in a set. Here, the desired monoid M is as follows:121

(Snippet 2)122

type M = (Int, Int)
instance CommutativeMonoid M where

e = (infinity, infinity)
(a1, a2) <> (b1, b2) = (c1, c2)

where c1:c2:_ =
sort [a1, a2, b1, b2]

secondMinimum :: [Int] -> Int
secondMinimum = dec . agg . map enc

where
enc x = (x, infinity)
agg = reduce (<>)
dec (_, x2) = x2

123

Observe that, for this monoid, there is no such F (e.g. sum, max, min, mean) for which there is a124

trivial choice of homomorphism from F to M .125

In principle, there exists an F from which it is possible to construct a homomorphism to M : by126

[Zaheer et al., 2017] and [Xu et al., 2019a], for any pM, ˚, e˚q with M Ď Qn, there exists a surjective127

monoid homomorphism h from pRn,`, 0q to pM, ˚, e˚q. But Wagstaff et al. [2019] show that128

this guarantee may require an h that is highly discontinuous, and therefore not only hard to learn129

in-distribution2, but fully misaligned with the assumptions of the universal approximation theorem.130

1
xgpMqy denotes the submonoid of F generated by gpMq.

2Suppose f : X Ñ Y is a model trained to learn h : X Ñ Y given a training set tpxi, yiu
n
i“1 Ď D for

yi “ hpxiq and D the support of the training distribution. Now, for some loss function L : Y ˆ Y Ñ R, we say
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Further, as domphq “ xgpMqy, we are not learning a function whose domain is a bounded set, so we131

have little hope of generalising out-of-distribution. Indeed, we demonstrate in Section 3.1 that all132

common fixed aggregators fail to learn the 2nd-minimum problem, both in and out of distribution.133

Similarly, Cohen-Karlik et al. [2020] show that sum-aggregators as implemented in [Zaheer et al.,134

2017] (i.e. maps in and out of the pRn,`, 0q commutative monoid) require Ωplog 2nq neurons to learn135

the parity function over sets of size n. Intuitively, the crux of their proof is that the homomorphism136

the aggregator would have to learn from pRn,`, 0q to the parity monoid is a periodic function with137

unbounded domain. Similar arguments hold for all aggregation tasks involving modular counting.138

2.3 Fully learnable recurrent aggregators and their limitations139

We will now take a step back from homomorphisms, and try to discover a more flexible aggregator.140

An emerging narrative within deep learning is that of representations as types [Olah, 2015]. If we141

view the construction of neural networks as the construction of differentiable, parameterised pure142

functional programs, many of the design patterns commonly used in deep learning correspond to143

higher-order functions commonly used in functional programming (FP). This paradigm has proven144

valuable in recent times, embodied by deep learning frameworks such as JAX [Bradbury et al., 2018].145

In FP, a simple way to aggregate a multiset of elements is to represent them as a list and fold over it:3146

(Snippet 3)147

fold :: (a -> b -> b) -> b -> [a] -> b
fold f z [] = z
fold f z (x:xs) = f x (fold f z xs)

And in some sense, a recurrent neural network (RNN) is simply a fold over a list, parameterised by a148

learnable accumulator f and a learnable initialisation element z:4 (Snippet 4)149

rnnCell :: Learnable
(Vec R h1 -> Vec R h2 -> Vec R h2)

initialState :: Learnable (Vec R h2)

rnn :: Learnable
([Vec R h1] -> Vec R h2)

rnn = fold rnnCell initialState
150

Hence a natural way to construct a learnable aggregator over multisets could be to use an RNN – a151

‘learnable fold’ – and to somehow ensure it is permutation-invariant.152

Indeed, this approach has been used for permutation-invariant set aggregation, with Murphy et al.153

[2019] enforcing permutation-invariance by design by taking the average of an RNN applied154

to all permutations of its input, and Cohen-Karlik et al. [2020] regularising RNNs f towards155

permutation-invariance by adding a pairwise regularisation term Lswappx1,x2q “ pfpfps,x1q,x2q´156

fpfps,x2q,x1qq2 (which we motivate through the lens of commutative monoids in Appendix B).157

Recurrent aggregators have also occasionally seen use in GNNs [Hamilton et al., 2017, Xu et al.,158

2018], but they are scarcely used despite their competitive performance. We assume RNNs likely159

remain unpopular as a GNN aggregator due to their depth. Indeed, observe that an N -layer GNN160

equipped with a recurrent aggregator has (worst-case) depth OpV Nq. By contrast, the same GNN161

equipped with a fixed aggregator has (worst-case) depth OpNq. And as many graphs on which we162

want to deploy GNNs can have upwards of 100,000 nodes [Hu et al., 2020], the same problems of163

efficiency and maximum dependency length observed by Vaswani et al. [2017] when using RNNs for164

sequence transduction also hold when using RNNs for graph message aggregation.165

2.4 A compromise: fully learnable commutative monoids166

So, if recurrent aggregators are too deep, is there any way to get a fully learnable aggregator? We’ve167

considered the fixed-aggregator approach, where we learn maps into and out of the carrier set of a168

pre-determined commutative monoid. We’ve considered the recurrent-aggregator approach, where169

that f has learned h in-distribution if Ex„DrLpfpxq, hpxqqs is small, and that f has learned h out-of-distribution
if if Ex„P rLpfpxq, hpxqqs is small for distributions P over XzD.

3Note that a Ñ b Ñ b is an equivalent way (via currying) of specifying a function aˆ b Ñ b.
4Note that an RNN can also be viewed as a map to the carrier set of the monoid of endofunctions (i.e.

functions from a set to itself – in this case, from b to b) under composition: see Appendix B for details.
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we represent multisets as lists and implement aggregation as a learnable fold over lists.5 But another170

way to represent multisets in FP is as a balanced binary tree, over which aggregation is implemented171

as a fold parameterised by a commutative monoid. So what if we implemented aggregation as a172

learnable fold over a balanced binary tree? Or in other words, what if, instead of learning maps into173

and out of some commutative monoid, we simply learn the commutative monoid itself ?174

Let’s make precise what exactly we mean by ‘learning a commutative monoid’ for use in a GNN. Re-175

call that a commutative monoid pM,‘, e‘q is defined by its carrier set M , its binary operation ‘ and176

its identity element e‘. So given some learnable commutative, associative binary operator ‘ (written177

binOp :: Learnable (Vec R h -> Vec R h -> Vec R h)), and some learnable identity ele-178

ment e‘ (written identity :: Learnable (Vec R h)), we can define a learnable commutative179

monoid over some learned embedding space (in other words, a subset of Rh): (Snippet 5)180

type HiddenState = Vec R h
instance CommutativeMonoid HiddenState where

e = identity; <> = binOp

Thus, our aggregation function can be specified simply, as
À

x x, or181

aggregate :: Learnable ([HiddenState] -> HiddenState)
aggregate = reduce (<>)

Note that, here, the carrier set is implicit – when used in a GNN, we expect the message function (i.e.182

the producer of the elements to be aggregated) to learn a ‘return type’ representation whose members183

are elements of this implicit carrier set, and similarly for the ‘input type’ of the readout function.184

Now, why do we care about this at all? Indeed, if we implement reduce as a fold, we’re no185

better off than if we just used a recurrent aggregator. But consider the computation graph (or rather,186

computation binary tree) of such an aggregation x1 ‘px2 ‘px3 ‘x4qq. By Tamari’s theorem [Tamari,187

1962], the associativity of ‘ means that the result of evaluating this computation tree is invariant188

under rotations of nodes in the tree. Therefore, in order to minimise the depth of the computation,189

we can rewrite our reduction as a balanced binary tree: px1 ‘ x2q ‘ px3 ‘ x4q (see Appendix D).190

And by doing so, for V elements to aggregate, we obtain a network with OpV q applications of ‘ and191

Oplog V q depth – an exponential improvement over our OpV q-depth recurrent aggregators.192

2.5 Commutative, associative binary operators for learnable commutative monoids193

So, given a commutative, associative binary operator, we can get our learnable commutative monoid194

with Oplog V q depth. But how do we construct such an operator in the first place? As with195

permutation-invariant RNNs, we have two options: either we construct an operator that strongly196

enforces the axioms of commutativity and associativity by construction, or we construct some arbitrary197

binary operator and weakly enforce the axioms through regularisation.198

Strong enforcement. While some research has been conducted into learning algebraic structures199

with strongly enforced axioms [Abe et al., 2021, Martires, 2021], these approaches reduce to learning200

maps to and from a fixed aggregator.6 We observe that, while we can strongly enforce commutativity201

in any binary operator fpx, yq by symmetrising it to gpx, yq “
fpx,yq`fpy,xq

2 , we found no such202

construction for associativity which doesn’t sacrifice expressivity.203

So given this, and given the importance of gating [Tallec and Ollivier, 2018] in neural networks204

applied over long time horizons, we can construct a simple strongly commutative binary aggregator205

(Binary-GRU) by symmetrising a GRU [Cho et al., 2014]: (Snippet 6)206

binaryGRU :: Learnable (Vec R h -> Vec R h -> Vec R h)
binaryGRU v1 v2 = do

g <- new gruCell (InputDim h) (HiddenDim h)
return (g v1 v2 + g v2 v1) / 2

5Alternatively, we can see this, as in Appendix B, as learning maps into and out of the carrier set of the
monoid of endofunctions.

6i.e. choosing an algebraic structure (e.g. the Abelian group pRn,`,0q) and learning maps between the
model’s latent space and that structure.
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Weak enforcement. Alternatively, just as we saw with recurrent aggregators in Section 2.3,207

for a learnable binary operator ‘ : Rn Ñ Rn Ñ Rn we could weakly enforce commutativity208

and associativity through regularisation losses Lcommpx,yq “ λcomm|px ‘ yq ´ py ‘ xq|2 and209

Lassocpx,y, zq “ λassoc|px‘py‘zqq´ppx‘yq‘zq|2 (for implementation details, see Appendix E).210

Now, by applying Lassoc to Binary-GRU, we obtain a strongly commutative, weakly associative211

binary operator (Binary-GRU-Assoc).7212

3 Assessing the utility of learnable commutative monoids213

Now, we’ve seen three types of aggregator: fixed aggregators, recurrent aggregators and learnable214

commutative monoids. In order to explore their trade-offs in terms of expressivity, generalisation and215

efficiency, we conduct a range of experiments comparing the performance of state-of-the-art fixed216

aggregators (such as sum-aggregation [Zaheer et al., 2017], max-aggregation [Veličković et al., 2019]217

and PNA [Corso et al., 2020]), recurrent aggregators (specifically GRUs [Cho et al., 2014]) and218

learnable commutative monoid (LCM) aggregators (using the Binary-GRU and Binary-GRU-Assoc219

learnable operators as described in Section 2.5) on the following synthetic and real-world problems:220

2nd-minimum. We test fixed aggregators, recurrent aggregators and learnable commutative monoids221

on the problem of finding the second-smallest element in a set of binary-encoded integers. As222

observed in Section 2.2, this task is a synthetic aggregation problem with an ‘unusual’ commutative223

monoid, in that it doesn’t align well with common fixed aggregators. Therefore, we expect this task224

to be a standard problem for which learnable aggregators would outperform any commonly-used225

fixed aggregator, especially out-of-distribution.226

PNA synthetic benchmark. We then proceed to test the in-distribution performance of our aggrega-227

tors on the synthetic dataset presented in [Corso et al., 2020]. This dataset consists of aggregator-228

heavy, classical graph problems that are mostly aligned with the aggregators used to construct PNA.229

Thus, we expect PNA (and the relevant fixed aggregators) to perform strongly here, potentially230

even out-of-distribution. But while our learnable aggregators don’t necessarily have the inductive231

bias to approximate these monoids well over an unbounded domain, we expect them to perform232

competitively at learning the relevant monoids in-distribution.233

PNA real-world benchmark. Finally, we test our aggregators on the real-world dataset presented in234

[Corso et al., 2020], consisting of chemical (ZINC and MolHIV) and computer vision (CIFAR10235

and MNIST) datasets from the GNN benchmarks of Dwivedi et al. [2020] and Hu et al. [2020]. In236

contrast to the algorithmic tasks in the synthetic benchmark, we expect these real-world problems to237

contain ‘unusual’ target monoids: for both molecular and computer vision problems, it is likely that238

our GNN will learn complex representations whose most natural monoid is not the image of a simple239

homomorphism from any common fixed aggregator. Therefore, we expect fully learnable aggregators240

(GRU and LCMs) to outperform fixed aggregators on this benchmark.241

Training details for all experiments are provided in Appendix F. Notably, for all uses of learnable242

aggregators, we randomly shuffle each batch of sequences before feeding it to the aggregator as a243

form of regularisation through data augmentation.244

3.1 2nd-minimum245

For this experiment, we compared fixed (sum, max, PNA), recurrent (GRU) and LCM (Binary-GRU)246

aggregators on the synthetic 2nd-minimum set aggregation problem. In order to evaluate the effects247

of regularisation towards algebraic axioms on the performance of LCM aggregators, we also tested248

Binary-GRU-Assoc, sweeping over values of the regularisation parameter λ from 100 to 10´7.249

3.1.1 Experimental details250

For training data, we used 65,536 multisets of integers „ Up0, 255q of size „ Up1, 16q. For251

validation data, we used 1,024 multisets of integers „ Up0, 255q of size 32. For evaluation data,252

we used 1,024 multisets of integers „ Up0, 255q of size l, for l P r1, 200s. We used a standard253

multiset-aggregation architecture fpXq :“ σpψp
À

xPX ϕpxqqq for ‘ the aggregator being tested,254

7Note that we can instantiate this operator with different values of the regularisation parameter λassoc

(hereafter referred to as λ) by which we scale the associativity loss.
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and ϕ and ψ MLPs. f takes as input a vector of 8-bit binary-encoded integers (as in [Yan et al.,255

2020]), and returns a binary-encoded integer in r0, 1s8. The full architecture (with details on integer256

embedding) is outlined in Appendix C.257

3.1.2 Results and discussion258

Summary. Recall that this problem was chosen for its comparatively unusual commutative monoid,259

which we do not expect aligns well with fixed aggregators. Indeed, we confirm this hypothesis:260

we see in Figure 1 that fixed aggregators fail to learn 2nd-minimum in-distribution, that recurrent261

aggregators learn 2nd-minimum near-perfectly in-distribution, generalising well out-of-distribution,262

and that LCM aggregators learn 2nd-minimum near-perfectly in-distribution and are competitive with263

recurrent aggregators out-of-distribution, while achieving an exponential speedup over recurrent264

aggregators on large sets. Furthermore, we observe that regularising towards algebraic axioms265

improves the performance of LCM aggregators both in and out of distribution.266

Figure 1: Generalisation performance for fixed (max, sum, PNA), recurrent (GRU) and LCM (Binary-
GRU) aggregators, along with the best-performing regularised LCM aggregator (Binary-GRU-Assoc
with λ “ 100). The shaded region is bounded above and below by the maximum and minimum
values across all runs. The vertical purple line denotes the maximum set size present in training data
(16); the vertical blue lines denote powers of 2 (from 21 to 27). For detailed results, see Appendix G.

In-distribution performance. Examining Figure 1, observe that only the fully-learnable aggregators267

– GRU, Binary-GRU and Binary-GRU-Assoc – managed to learn 2nd-minimum near-perfectly in-268

distribution, with the next best performing aggregator being PNA.8269

Out-of-distribution performance (without regularisation). Observe that, out-of-distribution, all270

learnable aggregators generalise near-perfectly up to size 32 (twice the size of the input). Beyond this271

point, while the performance of the recurrent aggregator decays slowly (reaching 0.912 ˘ 0.017 at272

size 200), the performance of the LCM quickly drops (reaching 0.287 ˘ 0.068 at size 200). Despite273

this, both learnable aggregators consistently outperform the fixed aggregators out-of-distribution.274

Furthermore, out of the fixed aggregators, we see that the sum-aggregator’s performance plateaus275

extremely quickly, a result we may attribute to the domain of the learned homomorphism from the276

sum-aggregator being an unbounded set (see Section 2.2).277

Efficiency. As hypothesised in Section 2.4, we see (in Appendix G, Figure 3) that LCMs are indeed278

exponentially faster than RNNs for large sets: for n “ 20, Binary-GRU-Assoc takes 48.2 ˘ 0.4279

seconds per epoch, and GRU takes 46.6 ˘ 0.5 seconds per epoch, while for n “ 200, Binary-GRU-280

Assoc takes 79.4 ˘ 0.5 seconds per epoch, and GRU takes 397.2 ˘ 1.3 seconds per epoch.281

Regularisation towards associativity. We show the results from the best-performing regularised282

LCM aggregator (λ “ 100) in Figure 1 and Table 2. Although the unregularised Binary-GRU per-283

forms better than all fixed aggregators, observe that the regularised Binary-GRU-Assoc outperforms284

its unregularised sibling both in and out of distribution, and achieves generalisation performance285

competitive with GRU. Furthermore, observe that the sudden performance drops experienced by286

8Note that, out of the fixed aggregators, PNA was the only one to achieve near-perfect accuracy on the
training dataset, with a maximum training accuracy of around 0.997.
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Binary-GRU when the size of the set reaches a power of two (i.e. when the depth of the aggregation287

tree increases) are noticeably dampened for Binary-GRU-Assoc, suggesting that regularisation to-288

wards associativity helps prevent overfitting to a particular maximum aggregation tree height. For289

interest, we present the full results of the regularisation parameter sweep in Figure 4 in Appendix G.290

3.2 PNA synthetic benchmark291

For this experiment, we trained recurrent (GRU) and LCM (Binary-GRU, Binary-GRU-Assoc)292

aggregators on the synthetic benchmark from [Corso et al., 2020], comparing against the fixed-293

aggregator baselines presented there (for GATs [Veličković et al., 2018], GCNs [Kipf and Welling,294

2017], GINs [Xu et al., 2019b] and MPNNs [Gilmer et al., 2017] with sum and max aggregators).295

3.2.1 Experimental details296

In the PNA paper [Corso et al., 2020], experiments testing fixed aggregators (sum, max, PNA) are297

conducted on a custom GNN architecture centred around an MPNN layer with dimension 16, split298

into four towers each with hidden dimension 4. As we hypothesise that the low dimensionality of299

these towers could harm the expressivity of learnable aggregators, we test our learnable aggregators300

both in MPNNs of hidden dimension 16, with four towers of hidden dimension 16, and in MPNNs of301

hidden dimension 128, with one tower of hidden dimension 128.302

3.2.2 Results and discussion303

Summary. Recall that this dataset consists of aggregator-heavy classical graph problems9 that are304

mostly aligned with the aggregators used to construct PNA. So, as expected, we see in Table 1 that305

PNA outperforms all other aggregators tested on the dataset in-distribution. But observe that, on306

these problems, our asymptotically more efficient LCMs are competitive with and sometimes beat307

GRUs – and indeed, on the node-based problems in the dataset, our LCMs are as strong as PNA.308

In Appendix G, we observe the surprising result that LCMs are more stable than PNA out-of-309

distribution (OOD), and that regularising LCMs towards associativity improves OOD performance at310

the cost of impairing performance in-distribution. We also discuss the effects of increasing dimension-311

ality on fixed aggregator performance, through the lens of commutative monoid homomorphisms.312

In-distribution performance. Observe in Table 1 that, while PNA beats all other313

aggregators tested, our learnable aggregators perform competitively in-distribution,314

with all learnable aggregators beating all single-aggregator (i.e. non-PNA) architec-315

tures. Interestingly, our Binary-GRUs perform better than the corresponding GRUs:316

perhaps their inductive bias towards commutativity helps us learn in-distribution.317

Node tasks Graph tasks
Model Avg score SSSP Ecc Lap feat Conn Diam Spec rad

GCN -2.05 -2.16 -1.89 -1.60 -1.69 -2.14 -2.79
GAT -2.26 -2.34 -2.09 -1.60 -2.44 -2.40 -2.70
GIN -1.99 -2.00 -1.90 -1.60 -1.61 -2.17 -2.66
MPNN (sum) -2.50 -2.33 -2.26 -2.37 -1.82 -2.69 -3.52
MPNN (max) -2.53 -2.36 -2.16 -2.59 -2.54 -2.67 -2.87

PNA-16 -3.04 -2.99 -2.81 -2.83 -2.91 -2.98 -3.71
PNA-128 -3.09 -2.94 -2.88 -3.82 -2.42 -3.00 -3.48

GRU -2.91 -2.84 -2.71 -3.73 -2.20 -2.88 -3.11
Binary-GRU -3.00 -2.85 -2.77 -3.87 -2.34 -2.88 -3.29
Binary-GRU-Assoc -2.95 -2.99 -2.88 -2.92 -2.62 -2.92 -3.37

Table 1: Mean log10pMSEq on the PNA test dataset

Per-task performance. We318

present the per-task perfor-319

mance of all 128-dimensional320

aggregators (together with fixed-321

aggregator baselines) in Table 1.322

Observe that, in fact, the Binary-323

GRU-assoc outperforms Binary-324

GRU in all tasks apart from the325

the graph Laplacian.326

Furthermore, while learnable327

aggregators do not perform as328

strongly as fixed aggregators329

on whole-graph tasks, they per-330

form equally or better than fixed331

aggregators for node-based tasks. This may be because the benchmark implementation for whole-332

graph tasks uses a sum-aggregator over the readout values: it is likely difficult to learn a homomor-333

phism from the sum aggregator to the complex latent-space monoid learned by the LCM, and perhaps334

fixed aggregators provide an inductive bias towards learning representations for which it is easier to335

map to and from the sum-aggregation monoid.336

9three node-based algorithmic tasks (single-source shortest paths, eccentricity and computing the Laplacian
of node feature vectors) and three graph-based algorithmic tasks (connectedness, diameter and spectral radius)
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3.3 PNA real-world benchmark337

For this experiment, we trained recurrent (GRU) and LCM (Binary-GRU) aggregators on the real-338

world benchmark from Corso et al. [2020], containing two molecular graph property prediction339

datasets (ZINC and MolHIV) and two superpixel graph classification datasets (CIFAR10 and MNIST).340

Note that, due to limitations on compute resources, we were not able to perform a regularisation341

parameter sweep to test Binary-GRU-Assoc. The GNN architecture used here is identical to that342

in [Corso et al., 2020], except that, for learnable aggregators, all MPNN towers have the same343

dimensionality as the MPNN itself (i.e. we do not divide the towers).344

3.3.1 Results and discussion345

Summary. Recall that the real-world benchmark has complex problems that do not necessarily align346

with common fixed aggregators. We observe in Figure 2 that, while PNA in general outperforms all347

other aggregators on property prediction problems over small molecular graphs, the more expressive348

GRU substantially outperforms PNA for the (more discrete) task of image classification. Also, note349

that the (asymptotically efficient) Binary-GRU LCM provides a good trade-off between these two350

aggregators, being the second-best aggregator for all but two problems. Finally, we see that learnable351

aggregators appear particularly powerful on problems involving graphs with edge features.352

Figure 2: Results of learnable aggregators on the PNA real-world dataset, in comparison with those
analysed by Corso et al. [2020]. Best results in bold-face, second-best in underline.

Observe that PNA is the strongest aggregator over both the ZINC dataset without edge features and353

the HIV dataset – indeed, due to the continuous nature of the properties we want to estimate in these354

datasets, it seems likely that the ‘natural’ monoids for aggregation over graphs in these datasets355

would align well with fixed aggregators. By contrast, we observe that GRU-aggregators are the356

strongest when testing on image data, likely as their expressivity lets them easily learn a complex,357

perhaps more discrete aggregation function. And while Binary-GRU does not do quite as well as358

GRU here, in all but one case it outperforms PNA on this problem. Finally, observe that, if we add359

edge features to ZINC, GRU outperforms PNA – and comparing results on the CIFAR-10 dataset360

with and without edge features, the average improvement for fixed aggregators when adding edge361

features is 0.34, whereas such improvement for learnable aggregators is 2.33. Learnable aggregators362

may be particularly strong on tasks with edge features, as making full use of them tends to require363

the learning of a more complex aggregation function.364

4 Conclusions365

In this work we have conducted a thorough study of aggregation functions within graph neural366

networks (GNNs), demonstrating both theoretically and empirically that many tasks of practical367

interest rely on a nontrivial integration of neighbourhoods (i.e. a nontrivial commutative monoid). This368

motivates the use of fully-learnable aggregation functions, but prior proposals based on RNNs had369

several shortcomings in terms of efficiency. Accordingly, we propose learnable commutative monoid370

(LCM) aggregators, which trade off the flexibility of RNNs with efficiency of fixed aggregators,371

producing a simple, yet empirically powerful, GNN aggregator with only Oplog V q depth.372
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Proposition 1. Let pM, ˚, e˚q and pF,‘, e‘q be commutative monoids. Then for functions g :M Ñ469

F and h : F Ñ M , ˚xPX x “ hp
À

xPX gpxqq for all finite multisets X of M , if and only if h is both470

a left inverse of g and a surjective monoid homomorphism from xgpMqy Ď F 10 to M .471

Proof. We proceed by cases.472

10
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pÑq Suppose ˚xPX x “ hp
À

xPX gpxqq for all finite multisets X of M .473

WhenX “ txu, have that hpgpxqq “ x trivially, so hmust be a left inverse of g (and is therefore474

surjective).475

Now for x, y P xgpMqy, we want to show that hpx‘ yq “ hpxq ˚ hpyq and that hpe‘q “ e˚.476

To show the former, observe that x “
À

aPA gpaq and y “
À

bPB gpbq for some finite multisets477

A,B of M .478

Now have that479

hpx‘ yq “ h

˜˜

à

aPA

gpaq

¸

‘

˜

à

bPB

gpbq

¸¸

“ h

˜

à

xPAZB

gpxq

¸

“ ˚
xPAZB

x

“

ˆ

˚
aPA

a

˙

˚

ˆ

˚
bPB

b

˙

“ h

˜

à

aPA

gpaq

¸

˚ h

˜

à

bPB

gpbq

¸

“ hpxq ˚ hpyq

as desired.480

To show the latter, observe that hpe‘q ˚ hpfq “ hpe‘ ‘ fq “ hpfq for all f P F . As h is481

surjective, we have that hpF q “ M , so hpe‘q ˚ m “ m ˚ hpe‘q “ m for all m P M , and482

hpe‘q “ e˚.483

pÐq Suppose h is a left inverse of g and a surjective monoid homomorphism from xgpMqy to M .484

Then485

h

˜

à

xPX

gpxq

¸

“ h

˜

n
à

i“1

gpxiq

¸

“ h

˜

fpx1q ‘

n
à

i“2

gpxiq

¸

“ hpgpx1qq ˚ h

˜

n
à

i“2

gpxiq

¸

“ x1 ˚ h

˜

n
à

i“2

gpxiq

¸

“ ...

“
n
˚
i“1

xi

“ ˚
xPX

x

as desired.486

487

B Motivating the conditions for permutation-invariance in RNNs488

An alternative way to motivate the regularisation loss of Cohen-Karlik et al. [2020], through the lens489

of monoids, is to frame the recurrent aggregator as a monoid, and identify the conditions required for490

this monoid to be commutative.491
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Keeping in mind that ‘RNNs are just learnable folds’, we notice that endofunctions form a monoid492

under composition:493

instance Monoid (a -> a) where
e = id
<> = (.)

and observing that, for instance,494

fold f z [x1, x2, x3]
= f x1 (f x2 (f x3 z))
= (f x1 . f x2 . f x3) z
= ($ z) (f x1 . f x2 . f x3)
= ($ z) (reduce (map f [x1; x2; x3]))

we can rewrite fold as an aggregation over the composition monoid:495

fold :: (a -> b -> b) -> b -> [a] -> b
fold f z = dec . reduce . map enc

where
enc x = f x
dec f = f z

Now, applying this to our recurrent aggregator, we have496

rnn :: Learnable ([Vec R h1] -> Vec R h2)
rnn = dec . reduce . map enc

where
enc x = rnnCell x
dec f = f initialState

Observe that, for rnn, the carrier set of the composition (sub)monoid consists of functions rnnCell497

x for inputs x to the aggregation function. So, in order to enforce that this monoid is commutative,498

we must simply ensure that499

f <> g = g <> f
=> (rnnCell x1) . (rnnCell x2) = (rnnCell x2) . (rnnCell x1)
=> rnnCell x1 (rnnCell x2 h) = rnnCell x2 (rnnCell x1 h)

for all inputs x1, x2 and all hidden states h.500

C Architecture used for 2nd-minimum benchmark501

h = 128

ofMlp :: Learnable (Vec R h -> Vec R h)
ofMlp = do

dense <- new ofLinearLayer (In h) (Out h)
return gelu . dense

intEmbedding :: Learnable (Vec Bool 8 -> Vec R h)
intEmbedding = toLearnable $ \int -> do

one_vecs <- newList (Length 8) (Of (learnableParameter (Dim h)))
zero_vecs <- newList (Length 8) (Of (learnableParameter (Dim h)))
return

[ one*i + zero*(1-i)
| (i, one, zero) <- zip3 int oneVecs zeroVecs]

enc :: Learnable (Vec Bool 8 -> Vec R h)
enc = do

mlp <- new ofMlp

13
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return mlp . intEmbedding

agg :: Learnable ([Vec R h] -> Vec R h)
-- Implementation-dependent

dec :: Learnable (Vec R h -> Vec R 8)
dec = do

mlp <- new ofMlp
dense <- new ofLinearLayer (In h) (Out h)
return sigmoid . dense . mlp

net :: Learnable ([Vec Bool 8] -> Vec R 8)
net = dec . agg . map enc

D Implementing binary tree aggregation for learnable commutative monoids502

More precisely, given a learnable commutative monoid operator <> and a function toBalancedTree503

which takes a list of elements and returns a balanced Tree whose leaves contain these elements, we504

aggregate in the following way:505

data Tree a = Lf a | Nd Tree Tree
toBalancedTree :: [a] -> Tree a

fold :: (a -> a -> a) -> Tree a -> a
fold f = \case

Nd l r -> f (fold f l) (fold f r)
Lf m -> m

aggregate :: Learnable ([LearnableMonoid] -> LearnableMonoid)
aggregate = fold (<>) . toBalancedTree

E Implementing regularisation losses for learnable commutative monoids506

Observe that, for any learnable binary operator507

(<>) :: Learnable (Vec R h -> Vec R h -> Vec R h)

aggregating over a tree of messages (of type Tree (Vec R h)), we can construct regularisation508

losses that penalise the operator for violating commutativity and associativity each time it is applied:509

-- Computes getLossesAtNode at every node in the tree,
-- returning a list of the results.
accumLosses :: ((Tree (Vec R h)) -> [R]) -> (Tree (Vec R h)) -> [R]
accumLosses getLossesAtNode = \case

Nd a b ->
getLossesAtNode (Nd a b) :

(accumLosses getLossesAtNode a ++ accumLosses getLossesAtNode b)
Lf -> _

commLoss :: (Tree (Vec R h)) -> R
commLoss = mean . accumLosses getLossesAtNode

where getLossesAtNode = \case
Nd a b -> [|(a <> b) - (b <> a)|**2]
Lf -> []

assocLoss :: (Tree (Vec R h)) -> R
assocLoss = mean . accumLosses getLossesAtNode

where
loss a b c = |((a <> b) <> c) - (a <> (b <> c))|**2
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getLossesAtNode = \case
Nd (Nd a b) (Nd c d) ->

[loss (aggregate a) (aggregate b) (aggregate c),
loss (aggregate b) (aggregate c) (aggregate d)]

Nd (Nd a b) (Lf c) ->
[loss (aggregate a) (aggregate b) c]

_ -> []

aggregateWithLoss :: Learnable ([LearnableMonoid] -> LearnableMonoid)
aggregateWithLoss xs = aggregate tree

with extraLosses = [commLoss tree, assocLoss tree]
where tree = toBalancedTree xs

F Training details for experiments510

On every experiment, for each model, we performed 3 training runs with different seeds; for each run511

we used a validation set to choose the highest-performing checkpoint for evaluation.512

2nd-minimum. We trained each aggregator with the Adam optimiser for 1,000 epochs, with batch513

size 32 and learning rate 1e´ 4.514

PNA synthetic benchmark. We trained each aggregator for 1,000 epochs. To ensure convergence,515

16-dimensional models were trained with a learning rate of 10´3 as in Corso et al. [2020], and516

128-dimensional models were trained with a learning rate of 10´4. All other hyperparameters were517

as in Corso et al. [2020].518

PNA real-world benchmark. All hyperparameters (including training time) are as in [Corso et al.,519

2020].520

G Detailed results for the 2nd-minimum benchmark521

We present more detailed results for the 2nd-minimum benchmark below:522

• Table 2 contains in-distribution and out-of-distribution results for all aggregators tested.523

• Figure 3 presents network efficiency against set size for all aggregators tested.524

• Figure 4 presents the full results of the regularisation parameter sweep for Binary-GRU-Assoc.525

As a side note, when training the non-regularised Binary-GRU aggregators, we observed that while526

associativity regularisation loss increased initially, it started decreasing as the GNN’s training accuracy527

began to plateau. This potentially hints at the model’s learning trajectory: one might hypothesise528

that the point at which the loss decreases is the point at which the model shifts from memorisation to529

learning a parsimonious algorithm that generalises.530

Type Aggregator
ID accuracy OOD accuracy

n P r1, 16s n “ 32 n “ 200

Recurrent GRU 0.996 ˘ 0.001 0.998 ˘ 0.001 0.912 ˘ 0.017
LCM Binary-GRU-Assoc 0.997 ˘ 0.002 0.997 ˘ 0.002 0.822 ˘ 0.064
LCM Binary-GRU 0.997 ˘ 0.001 0.992 ˘ 0.005 0.443 ˘ 0.122
Fixed PNA 0.961 ˘ 0.003 0.794 ˘ 0.012 0.110 ˘ 0.027
Fixed Max 0.901 ˘ 0.007 0.723 ˘ 0.025 0.069 ˘ 0.039
Fixed Sum 0.845 ˘ 0.010 0.261 ˘ 0.020 0.045 ˘ 0.011

Table 2: Accuracy (the fraction of multisets at each size for which the 2nd-minimum is correctly
identified) for fixed, recurrent and LCM aggregators, along with the best-performing regularised
LCM aggregator (Binary-GRU-Assoc with λ “ 100).
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Figure 3: Efficiency (mean time per epoch on a GPU, over 5 epochs) for fixed (max, sum, PNA),
recurrent (GRU), LCM (Binary-GRU) and regularised LCM (Binary-GRU-Assoc) aggregators. The
shaded region is bounded above and below by the maximum and minimum values across all runs.

Figure 4: Mean generalisation performance for fixed, recurrent and LCM aggregators, sweeping
across regularisation rate λ for Binary-GRU-Assoc.

H Detailed results and discussion for the PNA synthetic benchmark531

Figure 5: Mean generalisation performance (multi-task log10 of the ratio between the MSE loss for
the GNN and the MSE loss for the baseline) for fixed, recurrent and LCM aggregators on the PNA
multi-task benchmark.

Out-of-distribution performance. We present the out-of-distribution performance of our aggrega-532

tors in Figure 5. Note that the MPNN (max) curve corresponds to the second-best aggregator tested533

out-of-distribution in [Corso et al., 2020], after PNA – this curve stops at graphs of sizes between 45534

and 50 as this is the maximum graph size on which the aggregator was tested in the paper.535
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Observe that all learnable aggregators generalise as well as, or better than, the max-aggregator.536

Notably, while the Binary-GRU-Assoc aggregator underperforms in-distribution compared to Binary-537

GRU, it beats Binary-GRU out-of-distribution and performs competitively with GRU: indeed, the538

regularisation towards associativity has improved performance out-of-distribution at the cost of a539

slight decrease in performance in-distribution.540

Notice also that all learnable aggregators are more stable than PNA for very large graphs – in fact,541

the 128-dimensional PNA explodes for graph sizes above 75.542

Dimensionality and overfitting. Finally, we take a look at the effects of high dimensionality on the543

performance of various aggregators.544

For learnable aggregators, increasing dimensionality seems to help performance. We demonstrated545

that, if learnable aggregators operate over a latent space with a high enough dimension, they can beat546

individual fixed aggregators on tasks the fixed aggregators should be aligned to, and can even be547

competitive with PNA. Informal testing showed that the performance of learnable aggregators drops548

substantially if the dimensionality of these aggregators is reduced.549

By contrast, for fixed aggregators, increasing dimensionality seems to harm performance: Corso550

et al. [2020] found that “even when [models with fixed aggregators] are given 30% more parameters551

than the [model using] PNA, they are qualitatively less capable of capturing the graph structure”.552

(And for this reason, we did not test models with fixed aggregators in the 128-dimensional setting.)553

For PNA, the story is slightly more complex: while the 16-dimensional PNA performs well in-554

distribution (and, to some extent, out-of-distribution), this improvement in performance is small,555

especially when compared to PNA’s standard deviation. And notably, unlike the 16-dimensional556

PNA, the 128-dimensional PNA explodes out-of-distribution.557

So it seems that, when increasing the dimensionality of the aggregator, fixed aggregators may have558

more of a tendency to overfit.559

One possible hypothesis for this phenomenon comes from observing that, by Section 2.2,560

• in cases where the problem we’re attempting to solve aligns with the fixed aggregator we want561

to use, we can often learn a simple homomorphism from the fixed aggregator to our latent space,562

and563

• while homomorphisms from fixed aggregators are expressive enough in principle to model564

any commutative monoid, the required homomorphism is complex and doesn’t generalise565

out-of-distribution.566

Note that, even for choices of fixed aggregator where some tasks align with the underlying monoid,567

the aggregator still doesn’t align perfectly with the combined ‘multitask benchmark monoid’ that568

we would need to learn to imitate in order to perform all tasks simultaneously. So, if we have the569

dimensionality to do so, our fixed aggregator may try to combine the existing monoids to approximate570

this multitask monoid in-distribution, in a way that does not generalise. In other words, it may be571

easier to get better performance by learning a very complex homomorphism from our fixed aggregator572

that works well in-distribution but struggles to extrapolate, than by learning a simple homomorphism573

from the fixed aggregator that ‘mostly works’.574

Under this hypothesis, low-dimensional feature spaces provide an inductive bias towards learning575

simple homomorphisms that generalise out-of-distribution.576
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I Reference table for code snippets577

Throughout this work, we present code snippets in Haskell [Marlow et al., 2010], a statically typed,578

purely functional programming language.579

As the fundamental idea behind this work – using algebraic structures as a means of abstraction in580

software development – was popularised by Haskell and its surrounding community, we observe that581

the ideas presented in this paper are most concisely stated through the lens of Haskell.582

Furthermore, in the spirit of Olah [2015], we observe that there is a very close correspondence583

between the construction of neural networks and the construction of purely functional programs:584

indeed, we believe that strongly typed, purely functional languages like Haskell offer great potential585

for safe, succinct specification and training of neural networks.586

For those unfamiliar with Haskell, we present the Haskell snippets featured in the main body of this587

work, alongside roughly equivalent implementations in Python.588

Haskell Python

class CommutativeMonoid a =
e :: a
<> :: a -> a -> a

{-
where commutative monoids M satisfy

x <> e == e
x <> y == y <> x
x <> (y <> z) == (x <> y) <> z

-}

class CommutativeMonoid(Protocol, Generic[A]):
@staticmethod
def id() -> A:

...

@staticmethod
def plus(a: A, b: A) -> A:

...

@classmethod
def reduce(cls, xs: List[A]) -> A:

accumulator = cls.id()
for x in xs:

accumulator = cls.plus(accumulator, x)
return accumulator

"""
where commutative monoids M satisfy

M.plus(x, M.id()) == x
M.plus(x, y) == M.plus(y, x)
M.plus(x, M.plus(y, z)) == M.plus(M.plus(x, y), z)

"""

Snippet 1: Defining the interface for commutative monoids. In Haskell, we do this by specifying
a typeclass, such that a commutative monoid over some type T is defined by giving an instance of
the typeclass for type T. In Python, we do this by defining an abstract class, such that a commutative
monoid over some type T is defined by specifying a child class of CommutativeMonoid[T].
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Haskell Python

type M = (Int, Int)
instance CommutativeMonoid M where

e = (infinity, infinity)
(a1, a2) <> (b1, b2) = (c1, c2)

where c1:c2:_ =
sort [a1, a2, b1, b2]

secondMinimum :: [Int] -> Int
secondMinimum = dec . agg . map enc

where
enc x = (x, infinity)
agg = reduce (<>)
dec (_, x2) = x2

class SecondMinCM(CommutativeMonoid[Tuple[int, int]]):
@staticmethod
def plus(

a: Tuple[int, int], b: Tuple[int, int]
) -> Tuple[int, int]:

c1, c2 = sorted([*a, *b])[:2]
return (c1, c2)

@staticmethod
def id() -> Tuple[int, int]:

return (INFINITY, INFINITY)

def secondMinimum(xs: List[int]) -> int:
encoded = [(x, INFINITY) for x in xs]
(_, x2) = SecondMinimumCM.reduce(encoded)
return x2

Snippet 2: Defining the 2nd-minimum commutative monoid.

Haskell Python

fold :: (a -> b -> b) -> b -> [a] -> b
fold f z [] = z
fold f z (x:xs) = f x (fold f z xs)

def fold(f: Callable[[B, A], B], z: B, xs: List[A]):
accumulator = z
for x in xs:

accumulator = f(accumulator, x)
return accumulator

Snippet 3: Implementing a polymorphic fold over lists. Note that, for idiomatic reasons, the Haskell
implementation presents a right fold, whereas the Python implementation presents a left fold – i.e.
when folding f over a list ra, b, cs, the Haskell implementation would return fpa, fpb, fpc, zqqq

whereas the Python implementation would return fpfpfpz, aq, bq, cq.

Haskell Python

rnnCell :: Learnable
(Vec R h1 -> Vec R h2 -> Vec R h2)

initialState :: Learnable (Vec R h2)

rnn :: Learnable
([Vec R h1] -> Vec R h2)

rnn = fold rnnCell initialState

rnnCell: Callable[
[HiddenState, InputState], HiddenState

]
initialState: HiddenState

def rnn(inputs: List[InputState]) -> HiddenState:
return fold(rnnCell, initialState, inputs)

Snippet 4: Implementing an RNN as a fold over lists. Note that, as mentioned in Snippet 3, the RNN
as implemented in Haskell will consume its list of input states ‘in reverse’.
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Haskell Python

binOp :: Learnable
(Vec R h -> Vec R h -> Vec R h)

identity :: Learnable (Vec R h)

type HiddenState = Vec R h
instance (CommutativeMonoid

HiddenState) where
e = identity; <> = binOp

aggregate :: Learnable
([HiddenState] -> HiddenState)

aggregate = reduce (<>)

binOp: Callable[[HiddenState, HiddenState], HiddenState]
identity: HiddenState

class LearnableCommutativeMonoid(
CommutativeMonoid[HiddenState]

):
@staticmethod
def plus(

a: HiddenState, b: HiddenState
) -> HiddenState:

return binOp(a, b)

@staticmethod
def id() -> HiddenState:

return identity

def aggregate(xs: List[HiddenState]) -> HiddenState:
return LearnableCommutativeMonoid.reduce(xs)

Snippet 5: Defining a learnable commutative monoid over hidden states. We assume we have access
to a learnable binary operation binOp P pRh ˆ Rhq Ñ Rh and a learnable vector identity P Rh.

Haskell Python

binaryGRU :: Learnable
(Vec R h -> Vec R h -> Vec R h)

binaryGRU v1 v2 = do
g <- new (gruCell

(InputDim h) (HiddenDim h))
return (g v1 v2 + g v2 v1) / 2

class BinaryGRU:
def __init__(self, h):

self.gruCell: Callable[
[HiddenState, HiddenState], HiddenState

] = GRUCell()

def __call__(self, x: HiddenState, y: HiddenState):
return (

(self.gruCell(x, y) + self.gruCell(y, x)) / 2
)

Snippet 6: Defining the Binary-GRU operator. In Haskell, we present this via a (hypothetical)
monadic API for defining neural networks; in Python, we define a class in the style of TensorFlow /
PyTorch modules.
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