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Abstract

In this paper, we present Motion-X, a large-scale 3D expressive whole-body motion
dataset. Existing motion datasets predominantly contain body-only poses, lacking
facial expressions, hand gestures, and fine-grained pose descriptions. Moreover,
they are primarily collected from limited laboratory scenes with textual descrip-
tions manually labeled, which greatly limits their scalability. To overcome these
limitations, we develop a whole-body motion and text annotation pipeline, which
can automatically annotate motion from either single- or multi-view videos and
provide comprehensive semantic labels for each video and fine-grained whole-body
pose descriptions for each frame. This pipeline is of high precision, cost-effective,
and scalable for further research. Based on it, we construct Motion-X, which com-
prises 15.6M precise 3D whole-body pose annotations (i.e., SMPL-X) covering
81.1K motion sequences from massive scenes. Besides, Motion-X provides 15.6M
frame-level whole-body pose descriptions and 81.1K sequence-level semantic
labels. Comprehensive experiments demonstrate the accuracy of the annotation
pipeline and the significant benefit of Motion-X in enhancing expressive, diverse,
and natural motion generation, as well as 3D whole-body human mesh recovery.

1 Introduction

Human motion generation aims to automatically synthesize natural human movements. It has wide
applications in robotics, animation, games, and generative creation. Given a text description or audio
command, motion generation can be controllable to obtain the desired human motion sequence.
Text-conditioned motion generation has garnered increasing attention in recent years since it behaves
in a more natural interactive way [1, 2, 3,4, 5,6, 7, 8,9, 10].

Although existing text-motion datasets [4, 11, 6, 8] have greatly facilitated the development of motion
generation [2, 12, 13, 14, 9], their scale, diversity, and expressive capability remain unsatisfactory.
Imagine generating “a man is playing the piano happily", as depicted in Fig. 1(a), the motion
from existing dataset [4] only includes the body movements, without finger movements or facial
expressions. The missing hand gestures and facial expressions severely hinder the high level of
expressiveness and realism of the motion. Additionally, certain specialized motions, such as high-
level skiing, aerial work, and riding are challenging to be captured in indoor scenes. To sum up,
existing datasets suffer from four main limitations: 1) body-only motions without facial expressions
and hand poses; 2) insufficient diversity and quantity, only covering indoor scenes; 3) lacking diverse
and long-term motion sequences; and 4) manual text labels that are unscalable, unprofessional
and labor-intensive. These limitations hinder existing generation methods to synthesize expressive
whole-body motion with diverse action types. Therefore, how fo collect large-scale whole-body
motion and text annotations from multi-scenarios are critical in addressing the data scarcity issue.
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Figure 1: Different from (a) previous motion dataset [4, 8], (b) our dataset captures body, facial expressions,
and hand gestures. We highlight the comparisons of facial expressions and hand gestures.

Compared to indoor marker-based mocap systems, markerless vision-based motion capture meth-
ods [15, 16, 17, 18, 19, 20] become promising to capture large-scale motions from massive videos.
Meanwhile, human motion can be regarded as a sequence of kinematic structures, which can be
automatically translated into pose scripts using rule-based techniques [3]. More importantly, although
markerless capture (e.g., pseudo labels) is not as precise as marker-based methods, collecting massive
and informative motions, especially local motions, could still be beneficial [21, 15, 22, 23, 24]. Be-
sides, text-driven motion generation task requires semantically corresponding motion labels instead of
vertex-corresponding mesh labels, and thus have a higher tolerance of motion capture error. Bearing
these considerations in mind, we design a scalable and systematic pipeline for motion and text annota-
tion in both multi-view and single-view videos. Firstly, we gather and filter massive video recordings
from a variety of scenes with challenging, high-quality, multi-style motions and sequence-level
semantic labels. Subsequently, we estimate and optimize the parameters of the SMPL-X model [25]
for the whole-body motion annotation. Due to the depth ambiguity and various challenges in different
scenes, existing monocular estimation models typically fail to yield satisfactory results. To address
this issue, we systematically design a high-performance framework incorporating several innovative
techniques, including a hierarchical approach for whole-body keypoint estimation, a score-guided
adaptive temporal smoothing and optimization scheme, and a learning-based 3D human model fitting
process. By integrating these techniques, we can accurately and efficiently capture the ultimate 3D
motions. Finally, we design an automatic algorithm to caption frame-level descriptions of whole-body
poses. We obtain the body and hand scripts by calculating spatial relations among body parts and hand
fingers based on the SMPL-X parameters and extract the facial expressions with an emotion classifier.
We then aggregate the low-level pose information and translate it into textual pose descriptions.

Based on the pipeline, we collect a large-scale whole-body expressive motion dataset named Motion-X,
which includes 15.6M frames and 81.1K sequences with precise 3D whole-body motion annotations,
pose descriptions, and semantic labels. To compile this dataset, we collect massive videos from the
Internet, with a particular focus on game and animation motions, professional performance, and
diverse outdoor actions. Additionally, we incorporated data from eight existing action datasets [26,
27,28, 11, 29, 30, 31, 32]. Using Motion-X, we build a benchmark for evaluating several state-of-
the-art (SOTA) motion generation methods. Comprehensive experiments demonstrate the benefits of
Motion-X for diverse, expressive, and realistic motion generation (shown in Fig. 1 (b)). Furthermore,
we validate the versatility and quality of Motion-X on the whole-body mesh recovery task.

Our contributions can be summarized as follows:

* We propose a large-scale expressive motion dataset with precise 3D whole-body motions
and corresponding sequence-level and frame-level text descriptions.

* We elaborately design a automatic motion and text annotation pipeline, enabling efficient
capture of high-quality human text-motion data at scale.

» Comprehensive experiments demonstrate the accuracy of the motion annotation pipeline
and the benefits of Motion-X in 3D whole-body motion generation and mesh recovery tasks.

2 Preliminary and Related Work

In this section, we focus on introducing existing datasets for human motion generation. For more
details about the motion generation methods, please refer to the appendix.



Motion Annotation Text Annotation Scene

Datzscr Clip Hour ‘Whole-body? Source Motion Pose Whole-body? | Indoor Outdoor RGB
KIT-ML'16 [6] 3911 11.2 X Marker-based MoCap 6278 0 X v X X
AMASS’ 19 [11] 11265 40.0 X Marker-based MoCap 0 0 X v X X
BABEL21 [8] 13220 435 X Marker-based MoCap 91408 0 X v X X
Posescript’22 [3] - - X Marker-based MoCap 0 120k X v X X
HumanML3D’22 [4] 14616 28.6 X Marker-based MoCap 44970 0 X v X X
Motion-X (Ours) | 81084 1442 v Pseudo GT & MoCap | ~ 81084 15.6M v | v v v

Table 1: Comparisons between Motion-X and existing text-motion datasets. The first column shows the name
and public year of datasets. Motion-X provides both indoor and outdoor whole-body motion and text annotations.

Benchmarks annotated with sequential human motion and text are mainly collected for three tasks:
action recognition [33, 27, 34, 28, 35, 36], human object interaction [37, 38, 39, 29, 32, 40], and
motion generation [4, 41, 11, 6, 8, 24]. Specifically, KIT Motion-Language Dataset [6] is the
first public dataset with human motion and language descriptions, enabling multi-modality motion
generation [1, 5]. Although several indoor human motion capture (mocap) datasets have been
developed [42, 43, 44, 45], they are scattered. AMASS [11] is noteworthy as it collects and unifies
15 different optical marker-based mocap datasets to build a large-scale motion dataset through a
common framework and parameterization via SMPL [46]. This great milestone benefits motion
modeling and its downstream tasks. Additionally, BABEL [8] and HumanML3D [4] contribute to the
language labels through crowdsourced data collection. BABEL proposes either sequence labels or sub-
sequence labels for a sequential motion, while HumanML3D collects three text descriptions for each
motion clip from different workers. Thanks to these text-motion datasets, various motion generation
methods have rapidly developed and shown advantages in diverse, realistic, and fine-grained motion
generation [2, 14, 47, 48, 9, 10].

However, existing text-motion datasets have several limitations, including the absence of facial
expressions and hand gestures, insufficient data quantity, limited diversity of motions and scenes,
coarse-grained and ambiguous descriptions, and the lack of long sequence motions. To bridge these
gaps, we develop a large-scale whole-body expressive motion dataset with comprehensive sequence-
and frame-level text labels. We aim to address these limitations and open up new possibilities for
future research. We provide quantitative comparisons of Motion-X and existing datasets in Tab. 1.

3 Motion-X Dataset

3.1 Overview

As shown in Tab. 2, we collect Motion-X from eight datasets and online videos and provide the
following motion and text annotations: 15.6M 3D whole-body SMPL-X annotation, 81.1K sequence-
level semantic descriptions (e.g., walking with waving hand and laughing), and frame-level whole-
body pose descriptions. Notably, original sub-datasets lack either whole-body motion or text labels
and we unify them with our annotation pipeline. All annotations are manually checked to guarantee
quality. In Fig. 2, we show the averaged temporal standard deviation of body, hand, and face keypoints
of each sub-dataset, highlighting the diversity of hand movements and facial expressions, which fills
in the gaps of previous body-only motion data.
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Table 2: Statistics of sub-datasets. B, H, F are body, hand,
and face. S and P are semantic and pose texts. P-GT is
pseudo ground truth. * denotes videos are collected by us.

Figure 2: Diversity statistics of the face, hand,
and body motions in each subdatasets.
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Figure 3: Illustration of the overall data collection and annotation pipeline.
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Figure 4: Overview of Motion-X. It includes: (a) diverse facial expressions extracted from BAUM [31], (b)
indoor motion with expressive face and hand motions, (c) outdoor motion with diverse and challenging poses,
and (d) several motion sequences. Purple SMPL-X is the observed frame, and the others are neighboring poses.

3.2 Data Collection

As illustrated in Fig. 3, the overall data collection pipeline involves six key steps: 1) designing
and sourcing motion text prompts via large language model (LLM) [49], 2) collecting videos, 3)
preprocessing candidate videos through human detection and video transition detection, 4) capturing
whole-body motion (Sec. 4.1), 5) captioning sequence-level semantic label and frame-level whole-
body pose description(Sec. 4.2), and 6) performing the manual inspection.

We gather 37K motion sequences from existing datasets using our proposed unified annotation
framework, including the multi-view datasets (AIST [30]), human-scene-interaction datasets (EgoB-
ody [32] and GRAB [29]), single-view action recognition datasets (HAAS00 [27], HuMMan [26]),
and body-only motion capture dataset (AMASS [11]). For these datasets, steps 1 and 2 are skipped.
Notably, only EgoBody and GRAB datasets provide SMPL-X labels with body and hand pose, thus
we annotate the SMPL-X label for the other motions. For AMASS, which contains the body and
roughly static hand motions, we skip step 4 and fill in the facial expression with a data augmentation
mechanism. The facial expressions are collected from a facial datasets BAUM [31] via a face capture
and animation model EMOCA [50]. To enrich the expressive whole-body motions, we record an
dataset IDEA400, which provides 13K motion sequences covering 400 diverse actions. Details about
the processing of each sub-dataset and IDEA400 are available in the appendix.

To improve the appearance and motion diversity, we collect 32.5K monocular videos from online
sources, covering various real-life scenes as depicted in Fig. 4. Since human motions and actions are
context-dependent and vary with the scenario, we design action categories as motion prompts based
on the scenario and function of the action via LLM. To ensure comprehensive coverage of human
actions, our dataset includes both general and domain-specific scenes. The general scenes encompass
daily actions (e.g., brushing hair, wearing glasses, and applying creams), sports activities (e.g., high
knee, kick legs, push-ups), various musical instrument playing, and outdoor scenes (e.g., BMX riding,
CPR, building snowman). The inclusion of general scenes helps bridge the gap between existing
data and real-life scenarios. In addition, we incorporate domain-specific scenes that require high
professional skills, such as dance, Kung Fu, Tai Chi, performing arts, Olympic events, entertainment
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Figure 5: The automatic pipeline for the whole-body motion capture from massive videos, including 2D and
3D whole-body keypoints estimation, local pose optimization, and global translation optimization. This pipeline
supports both single- and multi-view inputs. Dashed lines represent the handling of multi-view data exclusively.

shows, games, and animation motions. Based on the prompts describing the above scenes, we run the
collection pipeline to gather the data from online sources for our dataset.

4 Automatic Annotation Pipeline

4.1 Universal Whole-body Motion Annotation

Overview. To efficiently capture a large volume of potential motions from massive videos, we propose
an annotation pipeline for high-quality whole-body motion capture with three novel techniques: (i)
hierarchical whole-body keypoint estimation; (ii) score-guided adaptive temporal smoothing for jitter
motion refinement; and (iii) learning-based 3D human model fitting for accurate motion capture.

2D Keypoint Estimation. 2D Whole-body keypoint estimation poses a challenge due to the small
size of the hands and face regions. Although recent approaches have utilized separate networks to
decode features of different body parts [51, 52], they often struggle with hand-missing detection and
are prone to errors due to occlusion or interaction. To overcome these limitations, we customize
a novel hierarchical keypoint annotation method, depicted in the blue box of Fig. 5. We train a
ViT-WholeBody based on a ViT-based model [18] on the COCO-Wholebody dataset [S1] to estimate
initial whole-body keypoints K?P € R'33*2 with confidence scores. Leveraging the ViT model’s
ability to model semantic relations between full-body parts, we enhance hand and face detection
robustness even under severe occlusion. Subsequently, we obtain the hand and face bounding boxes
based on the keypoints, and refine the boxes using the BodyHands detector [53] through an IoU
matching operation. Finally, we feed the cropped body, hand, and face regions into three separately
pre-trained ViT networks to estimate body, hand and face keypoints, which are used to update K.

Score-guided Adaptive Smoothing. To address the jitter resulting from per-frame pose estimation
in challenging scenarios such as heavy occlusion, truncation, and motion blur, while preserving
motion details, we introduce a novel score-guided adaptive smoothing technique into the traditional
Savitzky-Golay filter [54]. The filter is applied to a sequence of 2D keypoints of a motion:

2D 2D
K’ = > ¢Ki}j, 1)

j=—w

where K?P is the original keypoints of the iy, frame, K2P is the smoothed keypoints, w corresponds
to half-width of filter window size, and c; are the filter coefficients. Different from existing smoothing
methods with a fixed window size [55, 56, 54], we leverage the confidence scores of the keypoints to
adaptively adjust the window size to balance between smoothness and motion details. Using a larger
window size for keypoints with lower confidence scores can mitigate the impact of outliers.

3D Keypoint Annotation. Precise 3D keypoint can boost the estimation of SMPL-X. We utilize
novel information from large-scale pre-trained models. Accordingly, for single-view videos, we adopt
a pretrained model [57], which is trained on massive 3D datasets, to estimate precise 3D keypoints.
For multi-view videos, we utilize bundle adjustment to calibrate and refine the camera parameters, and



then triangulate the 3D keypoints K3 based on the multi-view 2D keypoints. To enhance stability,
we adopt temporal smoothing and enforce 3D bone length constraints during triangulation.

Local Pose Optimization. After obtaining the keypoints, we perform local pose optimization to
register each frame’s whole-body model SMPL-X [25]. Traditional optimization-based methods [58,
25] are often time-consuming and may yield unsatisfactory results as they ignore image clues and
motion prior. We propose a progressive learning-based human mesh fitting method to address
these limitations. Initially, we predict the SMPL-X parameter © with the SOTA whole-body mesh
recovery method OSX [15] and face reconstruction model EMOCA [50]. And then, through iterative
optimization of the network parameters, we fit the human model parameters O to the target 2D and
3D joint positions by minimizing the following functions, achieving an improved alignment accuracy:

Lioin = |IK?® = K°l1 + |K*™® = K*®||; + |6 - ©]1. )

Here, K3P represents the predicted 3D joint positions obtained by applying a linear regressor to a

3D mesh generated by the SMPL-X model. K2 is derived by performing a perspective projection
of the 3D keypoints. The last term of the loss function provides explicit supervision based on the
initial parameter, serving as a 3D motion prior. To alleviate potential biophysical artifacts, such as
interpenetration and foot skating, we incorporate a set of physical optimization constraints:

L= )‘joinleoint + Asmootthmooth + )\peanen + Aphprhy- (3)

Here, A are weighting factors of each loss function and Ly is a first-order smoothness term:

Lomooth = _ [102: — Orsls + > |K3% — KiD_1]1, )
t t

where ©; and KfD represent the SMPL-X parameters and joints of the i-th frame, respectively. To
alleviate mesh interpenetration, we utilize a collision penalizer [59], denoted as Lpe,. Additionally,
we incorporate the physical loss Lpny based on PhysCap [60] to prevent implausible poses.

Global Motion Optimization. To improve the consistency and realism of the estimated global
trajectory, we perform a global motion optimization based on GLAMR [19] to simultaneously refine
the global motions and camera poses to align with video evidence, such as 2D keypoints:

Ly = XpLlop + )\traj Llraj + Acam Lcam + Areg Lreg, (&)

where Lop represents the 2D keypoint distance loss, L, quantifies the difference between the
optimized global trajectory and the trajectory estimated by Kama [61]. L., enforces regularization
on the global trajectory, and L., applies a smoothness constraint on the camera parameters.

Human Verification. To ensure quality, we manually checked the annotation by removing the
motions that do not align with the video evidence or exhibit obvious biophysical artifacts.

4.2 Obtaining Whole-body Motion Descriptions

Sequence motion labels. The videos in Motion-X were collected from online sources and existing
datasets. For action-related datasets [26, 27, 16, 28, 11, 29], we use the action labels as one of the
sequence semantic labels. Meanwhile, we input the videos into Video-LLaMA [62] and filter the
human action descriptions as supplemental texts. When videos contain semantic subtitles, EasyOCR
automatically extracts semantic information. For online videos, we also use the search queries
generated from LLM [49] as semantic labels. Videos without available semantic information, such
as EgoBody [32], are manually labeled using the VGG Image Annotator (VIA) [63]. For the face
database BAUM [31], we use the facial expression labels provided by the original creator.
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Figure 6: Illustration of (a) annotation of the whole-body pose description, and (b) an example of the text labels.
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v Face: Concentrating

v' Hand: Both hands make a fist; All
fingers are completely bent.
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Whole-body pose descriptions. The generation of fine-grained pose descriptions for each pose
involves three distinct parts: face, body, and hand, as shown in Fig. 6(a). Facial expression labeling
uses the emotion recognition model EMOCA [50] pretrained on AffectNet [64] to classify the
emotion. Body-specific descriptions utilizes the captioning process from PoseScript [3], which
generates synthetic low-level descriptions in natural language based on given 3D keypoints. The unit
of this information is called posecodes, such as ‘the knees are completely bent’. A set of generic
rules based on fine-grained categorical relations of the different body parts are used to select and
aggregate the low-level pose information. The aggregated posecodes are then used to produce textual
descriptions in natural language using linguistic aggregation principles. Hand gesture descriptions
extends the pre-defined posecodes from body parts to fine-grained hand gestures. We define six
elementary finger poses via finger curvature degrees and distances between fingers to generate
descriptions, such as ‘bent’ and ‘spread apart’. We calculate the angle of each finger joint based on
the 3D hand keypoints and determine the corresponding margins. For instance, if the angle between
V(Kwrist, Kifingertip) and V(Kﬁngemp, Kifingeroot) falls between 120 and 160 degrees, the finger posture
is labeled as ‘slightly bent’. We show an example of the annotated text labels in Fig. 6(b).

Summary. Based on the above annotations, we bulid Motion-X, which has 81.1K clips with 15.6M
SMPL-X poses and the corresponding pose and semantic text labels.

S Experiment
In this section, we first validate the accuracy of our motion annotation pipeline on the 2D keypoints

and 3D SMPL-X datasets. Then, we build a text-driven whole-body motion generation benchmark on
Motion-X. Finally, we show the effectiveness of Motion-X in whole-body human mesh recovery.
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Figure 7: Qualitative comparisons of (a) 2D keypoints annotation with widely used methods [65, 66] and (b)
the 3D mesh annotation with the popular fitting method [25] with ours.

— hand 1 face 1 whole-body 1 Method PA-MPJPE| PA-MPVPE| MPVPE |
o AP AR AP AR AP AR Hand4Whole [17] 58.9 50.3 79.2
OpenPose [65] | 38.6 43.3 | 76.5 84.0 442 523 OSX [15] 55.6 487 70.8
HRNet [67] 503 602 | 73.7 809 58.2 67.1 PyMAE-X [69] 52.8 50.2 64.9
ViTPose [18] 474 594|598 707 57.7 69.4 SMPLify-X [25] 62.6 52.9 -
RTMPose-1[68] | 52.3 60.0 | 844 87.6 63.2 69.4 Ours 335 318 447150 10,
Ours 64.9 740 | 91.6 944 | 73.5 116550  80.3 7157y Ours w/GT 3Dkpt 23.9 19.7 30.7 [0

(a) Evaluation result on COCO-Wholebody [51] dataset. (b) Reconstruction error on EHF [25] dataset.
Table 3: Evaluation of motion annotation pipeline on (a) 2D keypoints and (b) 3D SMPL-X datasets.

5.1 Evaluation of the Motion Annotation Pipeline

2D Keypoints Annotation. We evaluate the proposed 2D keypoint annotation method on the COCO-
WholeBody [51] dataset, and compare the evaluation result with four SOTA keypoints estimation
methods [65, 67, 18, 68]. We use the same input image size of 256 x 192 for all the methods to ensure
a fair comparison. From Tab. 3(a), our annotation pipeline significantly surpasses existing methods by
over 15% average precision. Additionally, we provide qualitative comparisons in Fig. 7(a), illustrating
the robust and superior performance of our method, especially in challenging and occluded scenarios.

3D SMPL-X Annotation. We evaluate our learning-based fitting method on the EHF [25] dataset
and compare it with four open-sourced human mesh recovery methods. Following previous works,
we employ mean per-vertex error (MPVPE), Procrusters aligned mean per-vertex error (PA-MPVPE),
and Procrusters aligned mean per-joint error (PA-MPJPE) as evaluation metrics (in mm). Results in
Tab. 3(b) demonstrate the superiority of our progressive fitting method (over 30% error reduction).
Specifically, PA-MPVPE is only 19.71 mm when using ground-truth 3D keypoints as supervision.
Fig. 7(b) shows the annotated mesh from front and side view, indicating reliable 3D SMPL-X
annotations with reduced depth ambiguity. More results are presented in Appendix due to page limits.
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Table 4: Benchmark of text-driven motion generation on Motion-X test set. ‘—’ means results are better if the
metric is closer to the real motions and = indicates the 95% confidence interval. The best results are in bold.

Train Set HumanML3D (Test) Motion-X (Test)

‘ R-Precisiont MModality ‘ R-Precisiont

FID} Diversity— FID} Diversity—  MModality
Real (GT) | 0.749%002 0025001 9.g37+084 | 0.850%095 0001001 13.174%F227
HumanML3D | 0.657+00% 1579050  10098+052 2.701%143 | 0570003 12309+ 127  9.529*%165 2 9G0*066
Motion-X 0.695=09  0.999+042 9871+ 09 2 go7H 138 | 7335003 914+ 13001245  2558+084

Table 5: Cross-dataset comparisons of HumanML3D and Motion-X. We train MLD on the training set of
HumanML3D and Motion-X, respectively, then evaluate it on their test sets.

5.2 Impact on Text-driven Whole-body Motion Generation

Experiment Setup. We randomly split Motion-X into the train (80%), val (5%), and test (15%) sets.
SMPL-X is adopted as the motion representation for expressive motion generation.

Evaluation metrics. We adopt the same evaluation metrics as [4], including Frechet Inception
Distance (FID), Multimodality, Diversity, R-Precision, and Multimodal Distance. Due to the page
limit, we leave more details about experimental setups and evaluation metrics in the appendix.

Benchmarking Motion-X. We train and evaluate four diffusion-based motion generation methods,
including MDM [14], MLD [2], MotionDiffuse [9] and T2M-GPT [48] on our dataset. Since
previous datasets only have sequence-level motion descriptions, we keep similar settings for minimal
model adaptation and take the semantic label as text input. The evaluation is conducted with
20 runs (except for Multimodality with 5 runs) under a 95% confidence interval. From Tab. 4,
MotionDiffuse demonstrates a superior performance across most metrics. However, it scores the
lowest in Multimodality, indicating that it generates less varied motion. Notably, T2M-GPT achieves
comparable performance on our dataset while maintaining high diversity, indicating our large-scale
dataset’s promising prospects to enhance the GPT-based method’s efficacy. MDM gets the highest
Multimodality score with the lowest precision, indicating the generation of noisy and jittery motions.
The highest Top-1 precision is 55.9%, showing the challenges of Motion-X. MLD adopts the latent
space design, making it fast while maintaining competent results. Therefore, we use MLD to
conduct the following experiments to compare Motion-X with the existing largest motion dataset
HumanML3D and ablation studies.

Comparison with HumanML3D. To validate
the richness, expressiveness, and effectiveness
of our dataset, we conduct a comparative analy-
sis between Motion-X and HumanML3D, which
is the largest existing dataset with text-motion
labels. We replace the original vector-format
poses of HumanML3D with the correspond-
ing SMPL-X parameters from AMASS [11],
and randomly extract facial expressions from
BAUM [31] to fill in the face parameters. We
train MLD separately on the training sets of
Motion-X and HumanML3D, then evaluate both
models on the two test sets. The results in Tab. 5
reveal some valuable insights. Firstly, Motion-
X exhibits greater diversity (13.174) than Hu-
manML3D (9.837), as evidenced by the real
(GT) row. This indicates a wider range of mo-
tion types captured by Motion-X. Secondly, the
model pretrained on Motion-X and then fine-
tuned on HumanML3D subset performs well on

A man is performing
ballet happily.

A person is playing gugin
and crying sadly.

A man is practicing kungfu,
smiling interestingly.

Figure 8: Visual comparisons of motions generated by
MLD [2] trained on HumanML3D (in purple) or Motion-
X (in blue). Please zoom in for a detailed comparison.
The model trained with Motion-X can generate more
accurate and semantic-corresponded motions.



Semantic Pose Discription FID,,

EHF [25] AGORA [70]
Label face text body text hand text Method ‘ all hand ifa @ all hand %l;lce
v 0.914%:056 -
v v 0.784:+-032 w/o Motion-X | 79.2 432 25.0 | 1856 73.7 82.0
v v v 0.671+:016 w/ Motion-X 73.0 41.0 22.6 | 1841 733 814
v v v v 0.565%036
- - Table 7: Mesh recovery errors of Hand4Whole [17] using
Table 6: Ablation study of text inputs. different training datasets. MPVPE (mm) is reported.

the HumanML3D test set, even better than the intra-data training. These superior performances stem
from the fact that Motion-X encompasses diverse motion types from massive outdoor and indoor
scenes. For a more intuitive comparison, we provide the visual results of the generated motion in
Fig. 8, where we can clearly see that the model trained on Motion-X excels at synthesizing seman-
tically corresponding motions given text inputs. These results prove the significant advantages of
Motion-X in enhancing expressive, diverse, and natural motion generation.

Ablation study of text labels. In addition to sequence-level semantic labels, the text labels in Motion-
X also include frame-level pose descriptions, which is an important characteristic of our dataset. To
assess the effectiveness of pose description, we conducted an ablation study on the text labels. The
baseline model solely utilizes the semantic label as the text input. Since there is no method to use
these labels, we simply sample a single sentence from the pose descriptions randomly, concatenate it
with the semantic label, and feed the combined input into the CLIP text encoder. Interestingly, from
Tab. 6, adding additional face and body pose texts brings consistent improvements, and combining
whole-body pose descriptions results in a noteworthy 38% reduction in FID. These results validate
that the proposed whole-body pose description contributes to generating more accurate and realistic
human motions. More effective methods to utilize these labels can be explored in the future.

5.3 Impact on Whole-body Human Mesh Recovery

As discovered in this benchmark [21], the performance of mesh recovery methods can be significantly
improved by utilizing high-quality pseudo-SMPL labels. Motion-X provides a large volume of RGB
images and well-annotated SMPL-X labels. To verify its usefulness in the 3D whole-body mesh
recovery task, we take Hand4Whole [17] as an example and evaluate MPVPE on the widely-used
AGORA val [71] and EHF [25] datasets. For the baseline model, we train it on the commonly used
COCO [51], Human3.6M [72], and MPII [73] datasets. We then train another model by incorporating
an additional 10% of the single-view data sampled from Motion-X while keeping the other setting the
same. As shown in Tab. 7, the model trained with Motion-X shows a significant decrease of 7.8% in
MPVPE on EHF and AGORA compared to the baseline model. The gains come from the increase in
diverse appearances and poses in Motion-X, indicating the effectiveness and accuracy of the motion
annotations in Motion-X and its ability to benefit the 3D reconstruction task.

6 Conclusion

In this paper, we present Motion-X, a comprehensive and large-scale 3D expressive whole-body
human motion dataset. It addresses the limitations of existing mocap datasets, which primarily focus
on indoor body-only motions with limited action types. The dataset consists of 144.2 hours of whole-
body motions and corresponding text labels. To build the dataset, we develop a systematic annotation
pipeline to annotate §1.1K 3D whole-body motions, sequence-level motion semantic labels, and
15.6M frame-level whole-body pose descriptions. Comprehensive experiments demonstrate the
accuracy of the motion annotation pipeline and the significant benefit of Motion-X in enhancing
expressive, diverse, and natural motion generation, as well as 3D whole-body human mesh recovery.

Limitation and future work. There are two main limitations of our work. Firstly, the motion quality
of our markless motion annotation pipeline is inevitably inferior to the multi-view marker-based
motion capture system. Secondly, during our experiment, we found out that existing evaluation
metrics are not always consistent with visual results. Thus, there is a need for further development
of the motion generation models and evaluation metrics. As a large-scale dataset with multiple
modalities, e.g., motion, text, video, and audio, Motion-X holds great potential for advancing
downstream tasks, such as motion prior learning, understanding, and multi-modality pre-training.
Besides, our large-scale dataset and scalable annotation pipeline open up possibilities for combining
this task with a large language model (LLM) to achieve an exciting motion generation result in the
future. With Motion-X, we hope to benefit and facilitate further research in relevant fields.
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