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A Experimental settings

A.1 Dataset statistics
We consider eight real-world graph datasets including citation networks Cora [19], Citeseer [19],

Pubmed [12], Coauthor CS [20], Coauthor Physics [20], and CoraFull [1]] together with Amazon
co-purchase networks Computers [20] and Photo [20]]. Table summarizes their statistics.

Table 1: Benchmark dataset statistics.

Cora Citeseer Pubmed Computers Photo CS Physics  CoraFull
Nodes 2,708 3,327 19,717 13,752 7,650 18,333 34,493 19,793
Edges 10,556 9,104 88,648 491,722 238,162 163,788 495,924 126,842
Features 1,433 3,703 500 767 745 6,805 8,415 8,710
Classes 7 6 3 10 8 15 5 70

Homophily  82.52%  70.62%  79.24% 78.53% 83.65% 83.20% 91.53%  58.61%

We report the homophily index proposed by Pei et al. [16], which provides a global view of the
neighborhood similarity for a graph. Given a graph G = (V, £), the homophily is defined as

Number of node ¢’s neighbors who have the same label as ¢

1
H(G) = m ;} Number of i’s neighbors

(D

A.2 Details of model training setup

We follow the setting of Shchur et al. [20] to define GCN [7] and GAT [22]] models. Both models
consist of 2 layers and the hidden dimension is fixed to 64. For the multi-head layer in GAT, the
number of attention heads is fixed to 8 with 8 hidden units per head. We implement the models and
training pipelines in PyTorch [15] and PyTorch Geometric [3]. All models are trained for a maximum
of 2000 epochs, using early stopping with a patience of 100 epochs. We choose Adam [6] as the
optimizer with initial learning rate 0.01. We add a weight decay of 5e-4 for Cora, Citeseer, and
Pubmed, and O for the rest.

We use stratified sampling to randomly select 15% of the nodes as observed set, mask out the output
labels of the rest 85% of the nodes for test prediction, and ensure that the nodes with the same label
are split proportionally. Following Kull et al. [10, 9], we further divide the labeled set with three-fold
cross-validation. The bigger portions (10%) are used as training sets and the rest (5%) are used as
validation sets. The GNN models (GCN and GAT) are trained on the training set, then used to predict
the masked-out test set. Figure|[I]illustrates the aforementioned data partition in our experiments. In
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total, we use 5 random data splits, three-fold cross-validation for each split, and 5 random model
initializations per data partition, resulting in 75 total runs for each experiment.

5 splits, 5 initialization
| 15% | 85% |
Labeled Unlabeled

3-fold cross-validation
|23 [13] 85% |
Train Val Test

Figure 1: Data partition schema for graph datasets.

A.3 Details of model calibration setup

We compare GATS with four scaling-based calibrators: temperature scaling (TS) [4], vector scaling
(VS) [4]], ensemble temperature scaling (ETS) [24] , CaGCN [23]]. The calibrators are trained on
the validation set using the negative log-likelihood (NLL) loss and validated on the training set for
early stopping and hyperparameter search. The optimizer configuration and the training schedule
are the same as Section[A.2] We observe TS and VS using Adam with weight decay O achieves
better performance than using L-BFGS [11] in the original implementatiorﬂ For ETS, we follow the
official implementation that uses Sequential Least SQuares Programming (SLSQP) [8]. For CaGCN,
we use a two-layer GCN with 16 hidden units and choose the hyperparameters following the original
paper. For GATS, we utilize one message passing layer and initialize Tg, 7¢, and 7, to 1 and w to 0.
We find the best hyperparameter using cross-validation. Table[2] shows the search space for GATS
hyperparameters.

Table 2: Hyperparameter search space for GATS.

Hyperparameter Search space
Weight decay 0, 1e-3, 5e-3, 1e-2, 5e-2, le-1, 2e-1, 3e-1
Initial T 1,1.5

B Additional plots

Here we include additional plots which shows the corresponding factors influencing the calibration
of GAT models (c.f. Section[d). Overall, we reach the same conclusions as the GCN case.

B.1 General under-confident tendency for GAT

Figure 2]summarizes the GAT results. We see a general tendency of under-confident predictions (plots
above the diagonal) except for the Physics dataset, which differs from the overconfident behavior of
multiclass image classification using CNNss.

https://github.com/gpleiss/temperature_scaling
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Figure 2: Reliability diagrams of GAT models trained on various graph datasets.

B.2 Diversity of node distributions for GAT

Figure 3] shows the GAT results. Compared to the standard classification case, predictions of GAT
also tend to be more spread out.
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Figure 3: Entropy distributions of GAT predictions on graph datasets.

B.3 Effect of distance to training nodes for GAT

GAT result are shown in Figure ] We also see that training nodes and their neighbors tend to be
better calibrated.
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Figure 4: Nodewise calibration error of GAT results w.r.t the minimum distance to training nodes.

B.4 Relative confidence level for GAT

The plots for the GAT case are shown in Figure|§| Similar to the GCN case, we observe that nodes
which are less confident than their neighbors tend to be poorly calibrated and it is in general desirable
to have a comparable confidence level w.r.t. the neighbors.
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Figure 5: Nodewise calibration error of GAT results depending on the relative confidence level.

B.5 Neighborhood similarity for GAT

Figure [6] shows tha GAT results. Analogue to the GCN case, nodes with strongly agreeing neighbors
tend to have lower calibration errors.
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Figure 6: Nodewise calibration error of GCN results depending on the node homophily.

C Additional calibration results

This section includes supplementary results with additional metrics and calibration methods.

C.1 Results using additional metrics

Variants of ECE Even though ECE [14} 4] is the most commonly used metric for measuring
calibration, it has some limitations: (1) ECE only considers top-1 probabilistic output but can not
reflect classwise calibration. (2) The binning-based estimator [14]] is dependent on the choice of
binning scheme. To alleviate these disadvantages, we evaluate the trained calibrators using the
classwise-ECE [10] and the kernel density estimation (KDE) based KDE-ECE [24] which is a

binning-free metric:

* Classwise-ECE measures the gap between the classwise average prediction conf(B,, 1)
and the actual frequency of that class freq( B,y ) in M equally spaced bins across all classes

keK:
| KoM |
Classwise-ECE = T zk: ; |'/T/|k |freq( By, 1) — conf(By, 1) 2
1
freq(Bn i) = —| 51 > Wwi=h 3)
i€ Bm K
conf(By, 1) = Z Di,k “4)
7€an k

where p; ;, denotes the probability of predicting class k for sample ¢ in bin B,, . We
compute classwise-ECE using M = 15 bins in our implementation.

* Instead of using a binning-based estimator, KDE-ECE uses a kernel function K}, to estimate
the accuracy 7(c) given confidence prediction ¢ and the marginal density function f(c) of



the predictive confidence:

KDE-ECE — / 17(c) — | F(c)de )
g\[ Ly = 9i)Kn(c— &)
7(c) = S K= 4) (6)
iEN
- h1L
T =75 > Kn(c—é) (7
1EN

where i € N C V denotes the evaluated node, and h is the bandwidth of the kernel
function. We follow the official implementatiorEi of KDE-ECE, where the the Triweight
Kernel K, (u) = (1/h)32(1 — (u/h)?)® [2] on [—1, 1] is chosen as the kernel function and
bandwidth is calculated as b = 1.060|N|~*/5 [18] with o being the standard deviation of
the confidence.

The classwise-ECEs are summarized in Table [3 and the KDE-ECEs are collected in Table d In
general, we observe similar conclusions as in the confidence ECE case (c.f. Section [6.1)): Overall
GATS achieves the state-of-the-art calibration results.

Table 3: GNN calibration results in terms of classwise-ECE (in percentage, lower is better).

Dataset Model Uncal TS VS ETS CaGCN GATS

GCN 4344141 2.06£0.27 2.11+£030 2.07+0.26 2.23+0.29 2.03£0.24
GAT  7.24+046 2.354+0.23 2.03£0.23 2.34+0.24 2.2440.26 2.3440.28

GCN  451£1.86 2.85£0.40 2.77£039 2.82+0.42 3.16+047 2.74£0.39

Cora

Citeseer GAT 8344102 3124052 2.864048 3.09+051 3224053 3.1040.58
piomed  GON 4964009 1382026 153030 1393026 135£033 126+026
GAT 8544049 1944031 1964027 1944031 1.89+037 2.00+0.32
Comouters GON 0974016 093011 091+0.12 0954011 0.84:0.10 089008
P GAT  083+0.13 0814009 0.80+0.10 0824010 084+0.11 0.80+0.08
Phot GCN 0894022 0784012 0814015 0.78+0.15 080008 0.76:0.10
oto GAT 0924026 0844015 0821015 0844017 089+0.12 0.83+0.15
s GCN 0394011 0294002 0324003 0291002 0424010 0.29-0.03
GAT 0394015 0344004 0341003 0341004 0474009 0.330.04
Phvsics GCN 0394011 036+006 0.3540.05 036:006 047+0.15 0.36+0.05
y GAT 0394006 0394005 03710.04 0391005 055+0.14 039006
GCN 0354003 0344001 0342001 0342002 0341004 033002

CoraFull

GAT  0.33+0.03 0.324+0.01 0.32£0.02 0.32+0.01 0.34+0.06  0.31+0.02

*https://github.com/zhang64-11nl/Mix-n-Match-Calibration
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Table 4: GNN calibration results in terms of KDE-ECE (in percentage, lower is better).

Dataset Model Uncal TS VS ETS CaGCN GATS
GCN 13.35+£5.07 3.21+1.18 3.56%£1.25 3.26+1.23 4.174+1.48 3.11+£1.19

Cora GAT 23334179 3.0040.80 2.79+0.81 2.97+0.85 3.17+0.87 2.93+0.95
Cit GCN  10.72+5.86 4.804+1.40 4.56+145 4.66+1.46 6.09+130 4.17+1.31
teseer GAT  22.8643.54 4424146 3794153 4324142 5174123 3.66+-1.58
Pubmed GCN  7.33+1.48 1324027 1574038 1354029 1.294+0.48 1.07+0.26
ubme GAT 12324080 1204029 1.124029 1204029 1.08+0.30 1.1640.30
Comouters  GCN 3.05+0.97 2604071 2.68+075 2.73+0.76  1.65+0.62  2.16::0.61
Ompulers — GAT  1.8941.00 1.6240.63 1.7040.69 1.674+0.72 1.75+0.62 1.47+0.52
Phot GCN 2594129  1.824+0.87 1.9440.92 1904095 1.65+0.45 1.6740.70
oto GAT  225+1.16 1.74+0.67 1814075 1.8140.74 1.75+0.60 1.73+0.65
s GCN 2144098  1.1040.11 1.1140.17 1.0940.11 1.954+0.90 1.06+0.12
GAT 1744130 1124025 1.104026 1.14+0.26 2.10+0.88 1.0740.21
Physics GCN 0944027 0.834+0.09 0.8240.07 0.83+0.09 0.96+0.24 0.85+0.09
y GAT  0.84+0.10  0.84+0.08 0.85+0.09 0.8440.08 1.07+0.24 0.8340.08
GCN 6464130 5454043 5664041 5434045 5734254 3.7840.90

CoraFull

GAT 476£1.44  3.98+0.51 4.14£0.45 3.96+0.53 5.90+3.11 3.56+0.66

Non calibration metrics Although not calibration metrics, we also report the results in terms of
negative log-likelihood (Table[5)) and Brier score (Table[6) for reference.

Table 5: GNN calibration results in terms of negative log-likelihood (x10~2).

Dataset Model Uncal TS VS ETS CaGCN GATS
Cora GCN  62.9045.68 56.37+3.12 57.664+4.37 56.0143.00 66.884+7.78 55.91+3.17
GAT 75.6742.37 57.514£2.87 55914+4.02 57.1542.70 60.79+4.66  57.0242.33
Citescer  GCN 90.13+£6.00 86.99+2.74 87.01+233 86.61+2.56 92.95+4.88  86.18+2.35
GAT 100.90+6.33 86.57+3.30 86.01+1.87 86.1842.79 89.07+3.40 86.2043.22
pubmed  OCN 3931147 3675+0.68 36.79+0.69 3653+0.67 3597+1.16 36.39+0.62
GAT 46.8740.98 40.06+0.76 40.06+0.74 40.07+0.75 39.7840.77  40.0540.75
Computers GCN 42965121 4293117 42874115 41.08+131 43314347 42494125
PUIS  GAT 37264153 37.1841.48 37.07+138 36.54+1.60 40.38+4.06 37.11+1.54
Photo GCN  28.924120 29.024+1.18 29.254+1.31 27.1941.24 37.594+7.72 28.81+1.23
GAT 26.83+1.78 26.82+1.61 26.79+1.61 2640+1.76 32754537 26.9341.77
s GCN 21.854+0.74 21384048 21.65+0.45 21364046 27.38+5.57 21.2840.49
GAT 24.76+1.46 24574087 24.5940.72 24.49+0.85 29.79+3.86 24.4940.83
Phusi GCN  11.954+0.41 11.8840.34 11.90+0.33 11.8940.34 13.00+1.27 11.8740.32
YSICS GAT  12.8840.41 12.8840.39 12.8440.38 12.88+0.39 13.5240.67 12.8740.39
Coraful  GCN  143.0742.02 142.711.80 142.85+1.98 141.74£1.61 146.55+£12.81 140.10:1.92

GAT 139.77£2.16 139.57£1.89 139.72+£1.91 138.97£1.86 150.70£17.93 139.06+1.84

C.2 Results for additional baselines

While in the main paper we focus on “temperature scaling style” methods which directly rescale
the output logits, here we compare with the following additional calibration methods which have
different principles. These methods are all designed for multi-class classification and do not consider
the structural information of the graph.

* Multi-class isotonic regression (IRM) [24] is a multi-class generalization of the non-
parametric isotonic regression method;



Table 6: GNN calibration results in terms of Brier score (x1072).

Dataset Model Uncal TS VS ETS CaGCN GATS
GCN 28.68+2.54 25.62+0.98 25.654+1.05 25.624+0.97 26.19+1.05 25.59+1.07

Cora GAT 34474121 26.674+1.05 25314+1.03 26.67+1.03 26.71+1.17 26.71+1.00
Cit GCN  42.56+2.82 40.76+0.76 40.9440.93 40.7140.78 41.574+1.06 40.6340.74
teseer GAT 47.424326 40.6240.90 40.4440.62 40.554+0.90 40.994+0.97 40.6140.95
pubmed  GCN 21314071 20.20:£0.36 20.24:£0.38 20.20+£0.36 20.05+041 20.17+0.36
u GAT 25.3340.56 22.68+0.41 22.64+041 22.6840.41 22584043 22.67+0.41
Comouters  OCN  18.5740.80 18.50:£0.68 1842+0.64 18.51:£0.68 18.13+0.70 18.42:£0.65
OMPUIErS  GAT  16.7940.80 16.76+0.75 16.61+0.64 16.76+0.75 16.84+0.73 16.75+0.73
Photo GCN  11.7240.66 11.6040.59 11.6240.65 11.60+0.60 11.67+0.51 11.56+0.56

GAT 11.5240.88 11.454+0.77 11.3540.69 11.45+0.77 11.59+0.70 11.46+0.76
s GCN 10284027 10.1640.20 10.2040.19 10.1640.20 10.604+0.42 10.1440.21

GAT 11.3640.58 11.2740.35 11.2540.30 11.2740.35 11.65+0.39 11.27+0.34
Phusi GCN  6.134£020 6.134£0.19 6.1340.19  6.134£0.19 6254022 6.1240.19
ysics GAT  6.5440.18 6.5440.18 6.5340.17 6.54+0.18 6.6440.18 6.53+0.18

GCN  52.3240.68 52.0940.51 52.0140.49 52.0840.51 52.20+1.20 51.61+0.54
CoraFull

GAT 51.73£0.77 51.60£0.60 51.55+0.59 51.59£0.60 52.53+1.71 51.54+0.59

* Calibration using spline (Spline) [3] fits the calibration function with splines;

¢ Dirichlet calibration (DIR) [[10] uses the Dirichlet distribution to model the distribution of
probabilistic outputs. It also employs an off-diagonal and intercept regularization (ODIR);

* Order invariant calibration (OI) [17] is the order-invariant intra order-preserving model.
It uses sorted output logits as calibration input and builds up a neural network with special
structures to preserve the accuracy and the intra order of the predicted logits.

The authors of spline calibration specify how to calibrate a specific class or a chosen top-r class, and
in their implementatimﬂ they focus on calibrating the top-1 class. However, it is not clear how to
adjust the rest of the predictions to ensure valid probabilistic predictions after calibration. We adopt
a heuristic which proportionally rescales the non top-1 output probabilities so that the calibrated
probabilistic output sums up to one. Also, the authors wrongly claimed that calibrating the top-1
score “does not alter the classification accuracy” []]. In practice, the score after calibration might no
longer remain top-1 and the predictions could be altered.

For Dirichlet calibration, we find out that the scaling factors A, ;x of ODIR affect the performance and
need to be tuned depending on the dataset. Thus we do a hyperparameter search for each dataset with
search space (0.01,0.1, 1,10, 100, 1000, 10000, 100000).

Table [7] summarizes the calibration results in terms of ECE. Note that we do not include the results
for Dirichlet calibration on CoraFull because it fails to calibrate the GNN backbones and significantly
deteriorates the predictive accuracies (< 10% v.s. > 60% before calibration).

Overall we observe that GATS still achieves the state-of-the-art performance compared to the
additional baselines for GNN calibration.

C.3 Accuracies of calibration methods

Since many baseline calibration methods are not accuracy-preserving, in Table [§] we additionally
report their test accuracies. Accuracy preserving methods (GATS, TS, ETS, CaGCN, OI) have the
same accuracies as the uncalibrated case, which is also reported for reference.

*https://github.com/kartikgupta-at-anu/spline-calibration
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Table 7: GNN calibration results (ECE, in percentage) with additional baselines.

Dataset Model Uncal IRM Spline DIR Ol GATS

GCN  13.044£5.22 3.69+1.17 4.89£1.27 3.93+1.26 4.83+1.50 3.64+1.34
GAT  2331+1.81 3.45+£091 4.71£1.76 3.42+0.72 4.24+139 3.18+0.90

Cit GCN  10.6645.92 5.08+1.34 6704142 5404152 6364148 4.43+1.30
teseer GAT 22.8843.53 4.15£1.50 6.07+1.77 4.874+136 6.08+1.30 3.86+-1.56

GCN  7.18+1.51 1.64+0.58 1.72+0.46 1.424+0.33 1.23+0.44 0.98+0.30

Cora

Pubmed GAT  12.3240.80 1.6340.60 1.69+0.60 0.93+0.26 1364047 1.03+0.32
Computers  GCN  3:00+£0.80  198+£048 1.56:+0.44 3314063 1.86:+0.55 223:+0.49
OMpUIers  GAT  1.8840.82 1.3240.35 1.5640.53 2.23+0.73 2.1740.72  1.3940.39
Phot GCN  224+1.03 1534047 1.6840.57 1.6140.60 1.7540.49 1.5140.52
oto GAT  2.0241.11 1534051 1.5940.66 1.3940.62 1.854+0.66 1.48-+0.61
s GCN  1.65+0.92 1294032 1.0840.38 0.90+0.19 1.55+0.50 0.88+0.30

GAT 1404125 1.094035 1.1640.39 0.96+0.39 1.80+0.80 0.8140.30
Phusi GCN 0524029 0.5940.17 0.544+0.23 0.44+0.15 0.64+029 0.46+0.16
ysies GAT  0.45+021 056+0.16 0.454+0.18 0.42+0.14 0.60+£0.32 0.42+0.14

GCN 6504126 4334077 2.92+0.79 N/A 10.614£1.40 3.76+0.74
CoraFull

GAT  4.73£139 3.18+0.56 2.68+0.89 N/A 8.33+2.18  3.5440.63

Table 8: Test accuracies of uncalibrated results (identical to those from accuracy-preserving methods)
and calibrated predictions from non accuracy-preserving methods.

Dataset Model Uncal A IRM Spline DIR

GCN  82.78+0.79 82.90+0.89 82.56+0.87 82.78+0.80 83.16+0.87
GAT  81.98+0.92 82.98+0.77 81.74+1.04 81.98+0.92 82.7740.85

GCN  72.194+0.82 72.06+£0.90 72.04+0.79 72.16£0.82 72.31£0.99

Cora

Citeseer GAT 72374068 72.254+0.64 72.1840.73 72.34+0.73  72.53+0.59
Pubmed GCN  86.40+027 86394029 86314029 86.39+0.26 86.4340.25
€ GAT  84.46+0.34 84554038 84.25+038 84.44+034 84.62+0.35
Computers  GCN 88.1310.56  88.19+0.56  88.20+0.54  88.12+0.55  87.78+0.65
p GAT  89.05+0.60 89.1640.52 89.03+0.60 89.04+0.60 89.00+0.63
Photo GCN  92.65+0.38 92.69+0.43 92.614042 92.65+0.38  92.6940.49
GAT  92.654+0.54 92.76+0.45 92.58+0.57 92.64-+0.54 92.92+0.44
cs GCN  9333+0.15 93.2940.15 93.2940.16 93.324+0.15 93.3340.15
GAT 92574025 92574022 92544024 92.56+0.24 92.60+0.22
Phusics GCN  95.99+0.14 95.98+0.14 95.98+0.15 95.98+0.14 96.00+0.14
y GAT  95.7040.13  95.7140.12  95.67+0.14 95.69+0.14 95.72+0.11
CoraFull GCN  63.07+0.50 63244045 62.944048 63.0740.50 N/A
u GAT  63.0040.59 63.1040.52 62.85+0.59  63.00+0.58 N/A

D Data efficiency and expressiveness of GATS: GAT results

Figure[7]shows the results for the GAT case. We see that GATS is also data efficient and expressive
when calibrating GAT models.

E CaGCN results discussion

While the ECEs of CaGCN in its original paper are promising [23[], we observe that the ECEs of
CaGCN are often unstable and sometimes even worse than that of the uncalibrated model in our
experiments. One possible reason is that we use a different splitting from the CaGCN paper, where
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Figure 7: ECEs (in percentage) on CoraFull with GAT backbone for ETS, CaGCN, and GATS using
various amounts of calibration data. Again, We observe that GATS is data-efficient and expressive.
Here CaGCN fails to calibrate the GAT model on CoraFull.

they follow a fixed splitting from Kipf and Welling [7]]. A significant difference is that the splitting
from Kipf and Welling [7] has more validation nodes than the training nodes. This differs from
typical real-world applications, where the larger fold would often be used to train a good classifier
[13], and only the smaller fold is available for fitting the calibrator.

In our splitting, the validation sets of Cora and Citeseer are substantially smaller than those in Kipf
and Welling [7]. We observe that CaGCN yields suboptimal calibration results (see Section [6.1])
and predictions with higher confidence tend to be over-confident in the reliability diagram in Figure
[8] By contrast, the validation set in Pubmed is relatively large since it has more nodes. We notice
that CaGCN achieves competitive results in Pubmed and the confidence-accuracy curve almost lies
on the diagonal. We observe that CaGCN also produces suboptimal calibration results in CoraFull,
even though the validation set is large. We suspect that this is caused by the class imbalance of the
CoraFull data. Class imbalance is known to be a challenge for many calibration methods [21]].
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Figure 8: Top row: Reliability diagram of CaGCN for GCN trained on Cora, Citeseer, and Pubmed.
Botom row: Reliability diagram of GATS for GCN trained on Cora, Citeseer, and Pubmed as a
reference. We observe that CaGCN is noticeably over-confident in the high confidence region when
the size of the validation set is relatively small (e.g., Cora and Citeseer).



F GATS weight visualization

GATS learns 7 from sorted logits. We discover that the absolute value of the learned weights in
the linear layer generally follows the ranking of the logits across the class. That is to say, logits with
higher value have stronger influence to 7/*. In Figure 9| we visualize the weights § = (6',...,6H) of
the linear layers ¢" in GATS. Here, it is interesting to see that the weights 6" from different heads h
have slight variations. Combining multiple heads in the attention with sorting could be considered as
a form of ensemble without the model being overly parameterized.
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Figure 9: Visualization of the GATS weight 6 on Cora (7 classes) and CoraFull (70 classes).

G Analysis of correlations between the factors

In this section we visualize the correlation between the local-view factors: the distance to training
nodes, the relative confidence level, and the neighborhood similarity. Each plot shows how the
factor on the y-axis varies when the factor on the x-axis is fixed to a given value. Two factors are
independent when we observe a horizontal line in the plot. As the relative confidence level is a model
dependent factor, GCN and GAT will have different correlation plots when it is involved.

G.1 Distance to training nodes — relative confidence level

Figures [T0} [TT] [T2] and [I3]show the correlation plots between the distance to training nodes and the
relative confidence level. In Figure [I0]and [I2] we see that regardless of the distance to the training
nodes, the averaged relative confidence level stays around zero.
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Figure 10: Relative confidence level of GCN results depending on the minimum distance to training
nodes.
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Figure 12: Relative confidence level of GAT results depending on the minimum distance to training
nodes.
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Figure 13: Minimum distance to training nodes depending on the relative confidence level of GAT
predictions.

G.2 Relative confidence level — neighborhood similarity

Figures [I4] [T5] [I6] and [I7] show the correlations between the relative confidence level and the
neighborhood similarity. We observe some partial correlation between these two factors, especially
in the negative region of the node homophily.
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Figure 14: Relative confidence level of GCN predictions depending on the node homophily.
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Figure 15: Node homophily depending on the relative confidence level of GCN predictions.
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Figure 16: Relative confidence level of GAT predictions depending on the node homophily.
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Figure 17: Node homophily depending on the relative confidence level of GAT predictions.
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G.3 Distance to training nodes — neighborhood similarity

Figures[I8]and [I9] show the correlation between the distance to training nodes and neighborhood
similarity. Note that these two factors are not model-dependent and thus GCN and GAT share the
same results. We observe that these two factors have a less significant correlation.
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Figure 18: Node homophily depending on the minimum distance to training nodes.
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Figure 19: Minimum distance to training nodes depending on the node homophily.

H Factor node count analysis

In this section we plot the number of test nodes depending on the three local view factors: distance to
training nodes, relative confidence level, and neighborhood similarity.

H.1 Node count for distance to training nodes

Figure 20] summarizes the node count results of the distance to training nodes. We see the majority of
nodes can be connected to the training nodes by one or two hops.
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Figure 20: Number of nodes for the minimum distance to training nodes.

H.2 Node count for relative confidence level

Figure 21] and [22] are the node count results of the relative confidence level for GCN and GAT
respectively. We observe that most of the nodes are concentrated around the zero relative confidence
level.
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Figure 21: Number of nodes for the relative confidence level of GCN predictions.
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Figure 22: Number of nodes for the relative confidence level of GAT predictions.
H.3 Node count for neighborhood similarity
Figure 23] shows that the majority of nodes lie in the positive homophily region.
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Figure 23: Number of nodes for the node homophily.
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