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ABSTRACT

High-quality data is essential for training large generative models, yet the vast reser-
voir of real data available online has become nearly depleted. Consequently, models
increasingly generate their own data for further training, forming Self-consuming
Training Loops (STLs). However, the empirical results have been strikingly incon-
sistent: some models degrade or even collapse, while others successfully avoid
these failures, leaving a significant gap in theoretical understanding to explain this
discrepancy. This paper introduces the intriguing notion of recursive stability and
presents the first theoretical generalization analysis, revealing how both model ar-
chitecture and the proportion between real and synthetic data influence the success
of STLs. We further extend this analysis to transformers in in-context learning,
showing that even a constant-sized proportion of real data ensures convergence,
while also providing insights into optimal synthetic data sizing.

1 INTRODUCTION

The quest of high-quality data is paramount in the training of generative artificial intelligence (AI),
such as large language models (LLMs). However, the vast reservoir of publicly available data on the
internet has nearly been exhausted (Villalobos et al., 2022), pushing the research community to seek
innovative yet plausible solutions. One promising approach is to train the next generation of LLMs
using synthetic data generated by earlier generations of the models themselves (Briesch et al., 2023).
Additionally, reliance on synthetic data has become almost unavoidable, as many existing datasets
are already polluted with synthetic content (Schuhmann et al., 2022), which proves difficult to detect
reliably (Sadasivan et al., 2023). This has led to the development of Self-consuming Training Loops
(STLs), as illustrated in Figure 1, where generative models are recursively trained on a mix of real
and synthetic data generated by the models themselves. In theory, these STLs of data creation and
refinement could propel models to new levels of capability, reducing reliance on external datasets.

However, despite their potential, the empirical results of STLs have been highly inconsistent across
studies (Shumailov et al., 2024; Alemohammad et al., 2024a; Xing et al., 2025; Dohmatob et al.,
2024b). Some studies (Shumailov et al., 2024) have encountered significant setbacks—certain models
have shown signs of stagnation, failing to improve or adapt, while others have even regressed, leading
to sharp declines in performance. Conversely, other works (Gerstgrasser et al., 2024; Gillman et al.,
2024; Alemohammad et al., 2024b; Ferbach et al., 2024) have successfully avoided model collapse
by incorporating sufficient real data, augmenting with synthetic data, or introducing guidance during
the generation process. However, these observed phenomena lack thorough theoretical explanations.

When and how do STLs generalize effectively, thereby preventing model collapse from a theoretical
perspective? Even among “refined” LLMs drawing from similar pools of model-generated data, the
results vary significantly (Briesch et al., 2023; Fu et al., 2024a). These inconsistencies highlight the
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Figure 1: Self-consuming Training Loops: The initial model G0 is trained on the real dataset S0. For
generation 1 ≤ j ≤ i, the model Gj is trained on the mixed dataset S̃j .

urgency of establishing theoretical guarantees for STLs by exploring the underlying mechanisms
that determine when synthetic data generation either facilitates or impedes model development.
Initial theoretical explorations have started to address these gaps. For instance, Shumailov et al.
(2024) and Alemohammad et al. (2024a) demonstrated model collapse when models were trained
exclusively on synthetic data, using simplified Gaussian models to illustrate this issue. In a more
detailed theoretical study, Bertrand et al. (2024) derived upper bounds on parameter deviations for
likelihood-based models in STLs, establishing convergence under strict statistical and optimization
assumptions. Meanwhile, Fu et al. (2024b) relaxed these assumptions and provided bounds on the
divergence between synthetic and real data distributions for a simplified diffusion model.

However, existing theoretical research lacks a unified framework and has yet to thoroughly investigate
the generalization error of STLs. Additionally, current studies often overlook the role of model
architectures in preventing model collapse. Moreover, the behavior of transformers within STLs
remains largely unexamined, leaving significant theoretical gaps in the literature. Notably, there is
limited exploration of the theoretical trade-offs introduced by synthetic data augmentation. This
paper aims to address these gaps with the following contributions:

1. Theoretical Generalization Framework: This paper fills a gap in prior research by being the
first to establish generalization error bounds. The key innovation, recursive stability, is introduced to
address the core theoretical challenges, specifically the complex recursive structures and the non-i.i.d.
nature of the data. Moreover, we demonstrate that the generalization error converges under the
following conditions: (1) the generative model satisfies recursive stability, and (2) the proportion of
real data is maintained at a non-negligible constant level, thus preventing model collapse.

2. Application to Transformers in In-Context Learning: This paper is the first to extend the
theoretical framework to transformer models in in-context learning. We prove that transformers in
this setting satisfy recursive stability with a constant-level proportion of real data, controlling output
differences in STLs under small perturbations to the initial dataset. Consequently, we show that the
generalization error is bounded by O(n−1 log2(n) + n−1/2 log(n) + n−1/4).

3. Trade-off Analysis of Synthetic Data Augmentation: We investigate the trade-off in synthetic
data augmentation. By employing decomposition techniques, we demonstrate that while synthetic
data improves the generalization performance of each generation on mixed datasets, it concurrently
exacerbates distribution divergence across successive generations. Our theoretical findings further
show that the optimal size of synthetic augmentation increases as the size of real dataset decreases.

2 RELATED WORK

This section reviews STLs research and algorithmic stability studies.

Self-consuming Training Loops. Recent research has increasingly focused on generative models
trained within STLs (Shumailov et al., 2024), with much of the analysis conducted from an empirical
perspective (Martínez et al., 2023). For example, Shumailov et al. (2024); Briesch et al. (2023)
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observe a decline in diversity in language models when a portion of the model’s outputs is recursively
used as inputs. Additionally, Wyllie et al. (2024) highlights that recursive training on synthetic data
amplifies biases, resulting in significant fairness concerns. To mitigate model collapse, some studies
suggest incorporating real data into the training process (Alemohammad et al., 2024a), expanding
the size of synthetic datasets (Dohmatob et al., 2024c; Gerstgrasser et al., 2024; Dohmatob et al.,
2024a; Feng et al., 2024b), or providing guidance during the generation process (Gillman et al., 2024;
Alemohammad et al., 2024b; Feng et al., 2024a).

While empirical research has extensively explored STLs of generative models, theoretical studies on
this process remain relatively sparse (Kanabar & Gastpar, 2025; Seddik et al., 2024; Marchi et al.,
2024; Gerstgrasser et al., 2024; Zhu et al., 2024; Tao et al., 2024). Notably, Shumailov et al. (2024)
and Alemohammad et al. (2024a) offer initial theoretical insights by analyzing a simplified Gaussian
model. In a more comprehensive analysis, Bertrand et al. (2024) derive upper bounds on parameter
deviations between those obtained within a STL and the optimal values, relying on assumptions
about statistical and optimization error bounds. In contrast, Fu et al. (2024b) propose bounds on the
divergence between synthetic and real-world data distributions, without such assumptions. However,
current research lacks a unified theoretical framework that accounts for the influence of different
model architectures and does not provide generalization error bounds for STLs, thus failing to
rigorously establish the conditions that guarantee the prevention of model collapse. Furthermore, the
behavior of transformers within STLs remains unexplored, leaving substantial theoretical gaps.

Algorithmic stability. Algorithmic stability ensures generalization bounds independent of model
capacity. A key measure, uniform stability, was introduced by Bousquet & Elisseeff (2002) and has
been instrumental in analyzing the generalization behavior of regularization methods. This measure
was later extended to SGD (Hardt et al., 2016), including non-convex and non-smooth settings
(Charles & Papailiopoulos, 2018; Bassily et al., 2020; Lei, 2023). Recent work shows that uniform
stability can also provide near-optimal bounds with high probability (Feldman & Vondrak, 2019;
Bousquet et al., 2020; Klochkov & Zhivotovskiy, 2021; Li & Liu, 2022; Wang et al., 2024).

Building on these foundations, recent research has focused on stability in more complex, non-i.i.d.
settings. A common approach models data from stationary and mixing sequences (Doukhan, 1994;
Yu, 1994), where weakening dependencies allow stability bounds through mixing coefficients (Mohri
& Rostamizadeh, 2010; He et al., 2016; Fu et al., 2023). However, estimating these coefficients
remains challenging. Additionally, some studies (Zheng et al., 2023) address non-i.i.d. data by
leveraging conditional independence properties. Nonetheless, current methodologies struggle with
the complexities of STLs, as the non-i.i.d. nature of mixed datasets, where each generation’s data is
influenced by previous generations, presents unresolved challenges for stability frameworks.

Remark 1. Building on previous challenges, our work advances this area by developing a more
comprehensive theoretical framework for analyzing generative models within STLs. Specifically,
we present the first generalization error bound by addressing the additional complexity arising from
the non-i.i.d. nature of mixed datasets. To address this, we propose the key innovation of recursive
stability, which quantifies error propagation across generations of synthetic data. Moreover, we are
the first to extend this theoretical framework to transformers, explicitly utilizing error decomposition
to illustrate the trade-off introduced by augmenting datasets with synthetic data.

3 PRELIMINARIES

In this section, we begin by formally describing the training process of generative models in STLs,
then introduce algorithmic stability with a focus on uniform stability, and finally define recursive
stability to address the challenges specific to STLs.

3.1 GENERATIVE MODELS WITHIN SELF-CONSUMING TRAINING LOOPS

Generative models have made significant strides in producing highly realistic data, such as images and
text, which are frequently shared online and often indistinguishable from real content. Meanwhile,
the supply of real data has nearly been exhausted. Consequently, deep generative models increasingly
rely on synthetic data, either unintentionally (Schuhmann et al., 2022) or intentionally (Huang et al.,
2022). This reliance creates a recursive cycle where successive generations are trained on mixed
datasets of real and synthetic data, a process known as an STL, as shown in Figure 1.
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More concretely, we explore a stochastic process that evolves through sequential generations. In
an STL, we start with an initial dataset S0, consisting of real data points z ∈ Z , sampled from
the original real distribution D0. The initial generative model G0 is trained on this real dataset S0,
producing the first generation synthetic dataset S1, whose distribution is denoted as D1. Next, the
real dataset S0 is combined with the synthetic dataset S1 in a certain proportion to form a new mixed
dataset S̃1, with distribution D̃1. The next generation generative model G1 is then trained on this
mixed dataset S̃1. Moving forward, for each subsequent generation 1 ≤ j ≤ i, the mixed dataset
S̃j is composed of real data and synthetic data from previous generations. The generative model
Gj is trained on S̃j , producing the synthetic dataset Sj+1. This STL proceeds iteratively until the
maximum generation, denoted as i, is reached.

3.2 ALGORITHMIC STABILITY

Algorithmic stability measures the impact of modifying or removing a small number of examples
from the training set on the resulting model, a key concept in statistical learning theory (Bousquet
& Elisseeff, 2002). Its primary advantage lies in providing generalization bounds independent of
model capacity. Among various stability notions (Shalev-Shwartz et al., 2010), we focus on uniform
stability, the most widely studied form. Let S and S′ be two datasets differing by one point. Then,
we formally define uniform stability as follows:
Definition 1. (Uniform Stability (Bousquet & Elisseeff, 2002)). Algorithm A is uniformly βn-stable
with respect to the loss function ℓ if the following holds

∀S, S′ ∈ Zn, ∀z ∈ Z, sup
z

|ℓ(A(S), z)− ℓ (A (S′) , z)| ≤ βn.

Traditional notions of stability have predominantly been studied in the context of learning algorithms,
such as SGD (Lei & Ying, 2020). More recently, there has been significant progress in extending the
concept of stability to generative models (Farnia & Ozdaglar, 2021; Zheng et al., 2023; Li et al., 2023).
Building on these advancements, we propose recursive stability to specifically address generative
models within STLs. This new stability measure is designed to quantify the differences in a generative
model’s outputs after multiple generations of recursive training when small perturbations are applied
to the initial real dataset. The formal definition of recursive stability is presented below.
Definition 2. (Recursive Stability) Let S0 represent the original real dataset, and S′

0 denote a dataset
differing from S0 by a single example. A generative model G is said to be recursively γi,α

n -stable
with respect to the distance measure d after the i-th generation of STLs, where the ratio of real to
synthetic data is set to α, if the following condition holds:

∀S0, S
′
0 ∈ Zn, d

(
G(i)(S0),G(i)(S′

0)
)
≤ γi,α

n .

where G(i) denotes the output of the generative model at the i-th generation in the STLs. The distance
measure d quantifies the deviation between the outputs generated from inputs S0 and S′

0 across STLs.
Specifically, d can be defined using Total Variation (TV) distance, Kullback-Leibler (KL) divergence,
or various norms (e.g., ℓ2 norm), allowing flexibility in assessing the differences in generated outputs.

4 GENERAL THEORETICAL RESULTS

In this section, we present a general framework for analyzing generalization error. Moving beyond
traditional analyses of parameter changes (Bertrand et al., 2024) and distributional discrepancies
(Fu et al., 2024b), we focus on evaluating the utility of synthetic data after recursive training
(Hittmeir et al., 2019; Xu et al., 2023). Specifically, we examine the behavior of a uniformly stable
learning algorithm A trained on the mixed dataset S̃i in the i-th generation. Our goal is to study the
generalization error of the hypothesis A(S̃i). Formally, we aim to bound |RD0(A(S̃i))−R̂S̃i

(A(S̃i))|,
where RD0(A(S̃i)) = Ez∼D0 [ℓ(A(S̃i), z)] represents the population risk of A(S̃i) under the real
distribution D0, and R̂S̃i

(A(S̃i)) =
1
n

∑
zi∈S̃i

ℓ(A(S̃i), zi) denotes the empirical risk on the mixed
dataset. To derive this bound, we first decompose the generalization error as follows.∣∣∣RD0

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣ ≤ ∣∣∣RD0
(A(S̃i))−RD̃i

(A(S̃i))
∣∣∣︸ ︷︷ ︸

Cumulative distribution shift across generations

+
∣∣∣RD̃i

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣︸ ︷︷ ︸
Generalization error on mixed distributions

.
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The first term captures the accumulation of error and distribution divergence over multiple gener-
ations within the STLs. This heavily depends on the capacity of the generative model to preserve
distributional fidelity across generations, requiring recursive techniques to manage error propagation.
The second term reflects the generalization performance of the learning algorithm on the non-i.i.d.
mixed dataset, where synthetic data points are influenced by the initial real dataset. Drawing on
Zheng et al. (2023), we observe that while S0 satisfies the i.i.d. assumption, the synthetic datasets
Si follow a conditional i.i.d. assumption given S0. Leveraging this, along with moment bounds and
concentration inequalities, we address the challenge of bounding the second term and managing
dependencies within the STLs. We now present the following result.
Theorem 1 (General Generalization Bound). Assume that A is a βn-uniformly stable learning
algorithm and the loss function ℓ is bounded by M . Let n represent the sample size of the mixed
dataset S̃j , defined as S̃j = αS0+(1−α)Sj for 1 ≤ j ≤ i, where 0 < α ≤ 1 denotes the proportion
of real data. Assume further that the generative model G is recursively γi

n-stable, and the TV distance
for each generation TV (D̃j ,Dj+1) is of the same order, denoted by dTV(n). Then, for any δ ∈ (0, 1),
with probability at least 1− δ, the following holds:∣∣∣RD0

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣ ≲ γi
nαM log(nα) log(1/δ) + n−1/2M

√
log 1/δ

+ βn

(
log n log(1/δ) + α

√
(1− α)n log(1/δ)

)
+ dTV(n)M

(
1− (1− α)i

)
α−1, (1)

where γi
n = supj TV (Dn(1−α)

i (S′
0),D

n(1−α)
i (S0)), with S0 and S′

0 representing two real datasets
of size n, differing by only a single data point.
Remark 2. Recursive Stability in STLs. In Theorem 1, the recursive stability parameter is quantified
using the TV distance to measure the divergence between the distributions of the n(1− α) synthetic
data points generated by the model Gi at the i-th generation. Notably, the concept of recursive
stability, introduced in Definition 2, is adaptable to various metrics, making it applicable across
different types of generative models. In Theorem 2, the recursive stability parameter for transformers
is instead defined using the ℓ2 norm between tokens, allowing this concept to be generalized to a
broader range of model architectures.

Moreover, Theorem 1 demonstrates that generative models with higher recursive stability exhibit
better performance after undergoing the STL. Specifically, the results indicate that the convergence
rate of recursive stability parameter is at least faster than O(1/ log n), which is a relatively mild
condition. Furthermore, Theorem 2 shows that, under mild assumptions, the recursive stability
parameter for transformers in in-context learning settings achieves a convergence rate of γi

n = O(1/n)
when measured by the ℓ2 norm between tokens.
Remark 3. Effect of Real Data Proportion on Error Control. Previous experimental results
(Shumailov et al., 2024; Alemohammad et al., 2024a) have demonstrated that incorporating real data
can mitigate model collapse and help control errors. This remark focuses on exploring the effect of
the real data proportion α on the generalization error within the STLs. As shown in Theorem 1, the
real data proportion α plays a significant role in the cumulative distribution shift across generations,
specifically in the term 2M

(
1− (1− α)i

)
α−1dTV(n).

When α → 0, we observe that (1−(1−α)i)
α → i, leading to a linear accumulation of errors due to the

Distribution Shift, making it increasingly challenging to control the overall error. This observation
aligns with the theoretical results reported in Shumailov et al. (2024); Dohmatob et al. (2024a);
Fu et al. (2024b). However, it is important to note that the conditions on α for controlling this
term are not strict. In fact, as long as α remains at a non-negligible constant level, the expression(
1− (1− α)i

)
α−1 remains bounded, effectively controlling the error. This aligns with theoretical

intuition: when α is too small, the mixed dataset contains insufficient real data, resulting in a more
severe distribution shift.

Moreover, the proportion of real data α also impacts the generalization error on mixed distributions,
primarily through its effect on the recursive stability parameter γi

n. As α increases, the generative
model becomes more recursively stable. We will further explore the influence of α on the recursive
stability parameter γi

n for specific generative models, such as transformers, in Theorem 3, particularly
in Remark 8.
Remark 4. Convergence Rate of Uniform Stability Parameter. With respect to the uniform
stability parameter βn, we observe from the third term on the right-hand side of inequality 1 that the
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convergence rate of βn must be at least O(1/
√
n) to adequately control the error. This is a relatively

mild requirement.

For example, in the case of widely used algorithms such as SGD, it has been shown that the uniform
stability parameter βn converges at a rate of O(log(n)/n) under the assumptions of Lipschitz
continuity and smoothness of the loss function (Zhang et al., 2022). Additionally, for regularization-
based algorithms, such as kernel regularization schemes and the Minimum Relative Entropy (MRE)
algorithm, it has been demonstrated that βn can achieve a convergence rate of O(1/n) under certain
conditions (Bousquet & Elisseeff, 2002).

Remark 5. Convergence of the Distribution Shift Term dTV(n). Regarding the convergence of the
term 2M

(
1− (1− α)i

)
α−1dTV(n), as discussed in Remark 3, when α remains a non-negligible

constant, attention turns to the distribution shift term dTV(n). This term critically depends on the
generative model’s capacity and quantifies the divergence between the learned distribution and the
input distribution in each generation.

Theoretical studies have provided various convergence rates for dTV(n) across different generative
models. For instance, in diffusion models, dTV(n) has been shown to converge at a rate of O

(
1/n1/4

)
(Fu et al., 2024b). Similarly, for GANs, the convergence rate is also O

(
1/n1/4

)
(Liang, 2021). More

generally, by applying Pinsker’s inequality to relate KL divergence and TV distance, the convergence
rates for other models, such as Bias potential models and Normalizing flows, have been explored
in previous works (Yang, 2022). Additionally, we will further examine the behavior of transformer
models in Theorem 3, demonstrating the flexibility of our theoretical framework across a wide range
of generative models.

Remark 6. Comparision with Previous Works. In the realm of theoretical research on the STL,
where models are recursively trained on the synthetic data they generate, the foundational work was
introduced by Shumailov et al. (2024) and Alemohammad et al. (2024a). They provided the initial
theoretical definitions and analyzed the behavior of a simplistic multivariate Gaussian toy model in
such loops. However, their analyses were limited to basic theoretical insights and lacked in-depth
exploration of more complex generative models.

Recent advancements in this field have primarily come from Bertrand et al. (2024) and Fu et al.
(2024b). Bertrand et al. (2024) established an upper bound on the deviation of likelihood-based model
output parameters from the optimal ones, denoted as ∥θi − θ∗∥. This was achieved by making direct
assumptions on the upper bounds of both statistical and optimization errors in generative models,
as outlined in their Assumption 3. In contrast, Fu et al. (2024b) derived bounds on the TV distance,
addressing the distribution divergence between the synthetic data distributions produced by future
models and the original real data distribution, with a specific focus on diffusion models. Our work
makes significant theoretical advancements over both Bertrand et al. (2024) and Fu et al. (2024b) in
several key aspects:

1. Innovative Concept of Recursive Stability. A central technical contribution of our work is the
extension of the traditional notion of algorithmic stability. We define recursive stability, a crucial
factor for controlling error propagation across generations. This novel concept tackles the theoretical
challenges posed by non-i.i.d. data and recursive structures within STLs, while also incorporating the
influence of model architectures into the generalization error. Moreover, recursive stability serves as
a new measure for assessing the stability of generative models within STLs. In Theorem 2, we further
establish an upper bound on the recursive stability parameter for transformers under mild conditions,
underscoring the broad applicability and robustness of our framework.

2. Establishing the First Generalization Error Bound for STLs. While Bertrand et al. (2024)
primarily focused on parameter deviations in generative models and Fu et al. (2024b) concentrated
on distribution divergence, our work emphasizes the utility of the generated data produced by STLs.
Specifically, by utilizing recursive stability, we present the first generalization error bound that
quantifies the gap between the population risk on the initial real data distribution D0 and the empirical
risk of the hypothesis A(S̃i), generated by applying learning algorithms to the synthetic data produced
after multiple generations of STLs. This introduces a new layer of complexity compared to prior
work, as it necessitates handling not only the distribution shifts within STLs but also the challenges
arising from the non-i.i.d. nature of the mixed datasets, where each generation’s data is influenced by
all preceding generations.
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3. A More General Framework Accounting for Model Structure. Our proposed theoretical
framework is more comprehensive than previous studies. Bertrand et al. (2024) restricted their
analysis to simplified likelihood-based generative models, while Fu et al. (2024b) focused specifically
on diffusion models. Importantly, neither of their theoretical results accounted for the impact of
different model architectures. In contrast, as discussed in Remark 5, our framework explicitly
incorporates the effects of varying model structures, thereby extending its applicability to a broader
range of generative models. Notably, we are the first to extend the theory of SLTs to transformer
models, further broadening the scope of our approach across diverse generative model architectures.

4. Comprehensive Collapse Prevention Through Recursive Stability. In addition to the existing
theoretical work, which primarily analyzes conditions to avoid model collapse based on the proportion
of real data (e.g., Bertrand et al. (2024); Fu et al. (2024b)), our work extends these analyses by
considering the impact of model architecture. Specifically, Theorem 1 demonstrates that under a
recursive stability condition and a non-negligible constant level of real data, model collapse can be
avoided across a variety of model architectures. This analysis offers broader conditions for preventing
collapse by incorporating recursive stability, deepening the understanding of how model architecture
affects training robustness.
Remark 7. Proof Sketch of Theorem 1. We first decompose the generalization error of STLs into
two distinct terms: (1) the cumulative distribution shift across generations, and (2) the generalization
error on the mixed dataset.

Cumulative Distribution Shift: This term measures the shift between the real dataset D0 and the
mixed distribution Di after the i-th generation. Using the TV distance to quantify the shift introduced
by the generative model, we bound the difference as:∣∣∣RD0(A(S̃i))−RD̃i

(A(S̃i))
∣∣∣ ≤ (1−α)

∣∣∣RD0(A(S̃i))−RD̃i−1
(A(S̃i))

∣∣∣+2(1−α)MTV (D̃i−1,Di).

By leveraging the recursive structure of the generative process, this cumulative distribution shift can
be bounded across all generations as:

|RD0(A(Si))−RDi(A(Si))| ≤ 2M
(
1− (1− α)i

)
α−1dTV(n).

Generalization Error on the Mixed Dataset: The second term quantifies the generalization error
when training on the mixed dataset S̃i, which consists of both real and synthetic data. Our goal is to
establish a moment bound on the generalization error, which can be decomposed as follows:

∥αRD0(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi)∥p + ∥(1− α)RDi
(A(S̃i))−

1

n

∑
zi∈Si,1−α

ℓ(A(S̃i), zi)∥p.

In this context, S0,α represents a proportion α of the n data points in S0, leading to a total of n× α
data points. Similarly, Si,1−α denotes a subset of the synthetic dataset Si, where Si,1−α ⊆ Si and its
size is (1− α)× |Si|. For each term, we leverage the uniform stability βn of the learning algorithm
A and the recursive stability γi

n of the generative model to address the non-i.i.d. nature of the mixed
dataset. The mixed dataset exhibits conditional independence (Zheng et al., 2023), with synthetic data
conditioned on the initial real dataset S0, allowing the application of recursive techniques to derive
the moment bound. Subsequently, Lemma 8 and Lemma 9 are utilized to derive the high-probability
bound for the final result.

5 THEORETICAL ANALYSIS OF TRANSFORMERS IN IN-CONTEXT LEARNING

In this section, we first present the transformer in in-context learning (ICL) and its settings within
SLTs in Section 5.1. In Section 5.2, we prove that it satisfies recursive stability, followed by the
derivation of the generalization error bound for transformers in ICL in Section 5.3. Finally, in Section
5.4, we explore the scenario of synthetic data augmentation and investigate the associated trade-offs.

5.1 SETTINGS OF TRANSFORMER IN IN-CONTEXT LEARNING

In-Context Learning Setting. ICL involves a transformer model processing a sequence of input-
output examples to perform inference without parameter updates. Unlike traditional supervised
learning, where a model is trained on a fixed dataset and then makes predictions, ICL allows the model
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to adapt on-the-fly to new queries based on the provided examples. We denote a prompt, containing n
in-context examples followed by the (n+ 1)-th query input, as S0 = (z1, z2, . . . ,zn,xn+1) , where
(zi)

n
i=1 = (xi,yi)

n
i=1 ∈ Z = X ×Y represents i.i.d. in-context samples, and xn+1 ∈ X is the query

input whose label we want to predict. The transformer model, denoted as TF(·), takes the prompt S0

as input and outputs the predicted label ŷn+1 for the query xn+1: ŷn+1 = TF(S0).

Recursive Data Generation in STLs with ICL. We extend the traditional ICL setting to an STL,
where the transformer recursively generates new data using its own ICL predictions. Starting with
an initial real dataset S0, this serves as the initial real in-context examples for the transformer. The
process begins by sampling the first generation queries {x1,j}nj=1 i.i.d. from the input distribution X .
Each query x1,j is incorporated into the in-context examples from S0 as a new query x0,n+1, and the
transformer predicts the corresponding label ŷ1,j . This produces a synthetic dataset S1, consisting
of inputs {x1,j}nj=1 and their predicted labels {ŷ1,j}nj=1. A mixed dataset S̃j is then formed and
used as the in-context examples for the next generation. This process continues, with each generation
producing a new synthetic dataset Sj+1 based on the updated mixed dataset S̃j .

5.2 RECURSIVE STABILITY OF IN-CONTEXT LEARNING WITH TRANSFORMERS

In this section, we demonstrate that transformers exhibit recursive stability within the ICL framework.
Following the ICL setting from Li et al. (2023), we show that the model effectively controls error
propagation from perturbations in the initial real dataset, ensuring stability across the STLs.
Theorem 2. Let S0, S

′
0 be two initial real datasets that only differ at the inputs zj = (xj ,yj) and

z′
j =

(
x′
j ,y

′
j

)
where 1 ≤ j ≤ n. Assume the inputs and labels lie within the unit Euclidean ball in

Rd. Represent the prompts S0 and S′
0 as matrices Z0,Z

′
0 ∈ R(2n+1)×d. Let TF(·) be an L-layer

transformer. Given Z0 as the initial input, the k-th layer applies MLPs and self-attention, producing
the output:

Zk = Parallel_MLPs(ATTN(Zk−1)) where ATTN(Z) := softmax
(
ZWZ⊤)ZV .

Assume TF is normalized as ∥V ∥ ≤ 1, ∥W ∥ ≤ BW and MLPs obey MLP(z) = ReLU(Mz) with
∥M∥ ≤ 1. Let TF output the last token of the final layer ZL that corresponds to the query xj,n+1.
Let n represent the sample size of the mixed dataset S̃j , where S̃j = αS0 + (1− α)Sj for 1 ≤ j ≤ i.
Then, we obtain: ∥∥∥TF(S̃i)− TF(S̃′

i)
∥∥∥
ℓ2

≲ (1− α)i
B̃

(i+1)L
W

2n+ 1
,

where B̃W = (1 + 2BW ) e2BW and S̃′
i denotes the mixed dataset at the i-th generation in the STL

when the initial real dataset is S′
0. Additionally, if the measure d for the recursive stability parameter

in Definition 2 is taken as the ℓ2 norm, then the recursive stability γi
n ≲ (1− α)i

B̃
(i+1)L
W

2n+1 .
Remark 8. Controlling Exponential Growth with Real Data Proportion. In this remark, we fur-
ther investigate the influence of the proportion of real data α on the recursive stability of transformers.
As outlined in Theorem 2, the upper bound of the recursive stability parameter includes a term that
grows exponentially with the number of generations i in the STL, specifically B̃

(i+1)L
W . However, we

show that even a constant proportion of real data, α, is sufficient to control this growth.

Specifically, setting α = Ω(1− B̃
−((i+1)L)/i
W ), we establish that the recursive stability parameter in

Theorem 2 satisfies γi
n ≲ 1

2n+1 . Additionally, as the number of generations i in the STL approaches
infinity, the proportion α asymptotically converges to 1 − B̃−L

W . Notably, the depth L is typically
small in practical settings. For example, studies on LLM performance in STLs, such as Briesch
et al. (2023), often employ models with L = 6. Furthermore, techniques like layer normalization
effectively constrain the norm of weights BW , ensuring numerical stability during training. Thus,
with a constant real data proportion α independent of the STL generation number i, the exponential
growth term B̃

(i+1)L
W can be effectively controlled, ensuring that γi

n = O(1/n).

5.3 GENERALIZATION BOUND FOR TRANSFORMERS IN IN-CONTEXT LEARNING

In this section, we investigate the behavior of transformers under the ICL framework in STLs. We
select SGD as the learning algorithm A and consider a binary task with Y = {0, 1}. Applying

8
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our general theoretical framework from Theorem 1, we derive the generalization error bound by
addressing the terms βn and dTV(n) using recent results on SGD (Zhang et al., 2022) and ICL (Zhang
et al., 2023). The recursive stability parameter γi

n is obtained from Theorem 2. We assume that the
loss function ℓ(·; z) is κ-smooth and ρ-Lipschitz, which are standard assumptions in related works
(Hardt et al., 2016; Lei & Ying, 2020), with formal definitions provided in Appendix A.1. Examples
include logistic and Huber losses. We now present the generalization error bound:
Theorem 3. Consider an L-layer transformer under the setting described in Theorem 2. Let n
represent the sample size of the mixed dataset S̃j , where S̃j = αS0 + (1 − α)Sj for 1 ≤ j ≤ i.
Suppose that the loss function ℓ(·; z) is κ-smooth, ρ-Lipschitz and bounded by M > 0 for every z.
Let A(S̃i) denote the output after running SGD for T ≳ n iterations with a step size ηt = O( 1

κt ) on
the mixed dataset S̃i. Then, for any δ ∈ (0, 1), with probability at least 1− δ, the following holds:∣∣∣RD0

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣ ≲ n−1/2 log(n)Mρ2α
√
1− α log

1

δ

+ n−1 log2(n)ρ2((1− α)B̃L
W )iα log(

1

δ
) + n−1/4α−1M

(
1− (1− α)i

)
log(

1

δ
). (2)

Remark 9. In this remark, we provide a detailed explanation of the theoretical results of Theorem 3.
As discussed earlier in Remark 8, α is set to 1− B̃−L

W . To enhance clarity and focus on the primary
results, we omit constant terms and the log(1/δ) factor. Consequently, the bound in Theorem 3 can
be expressed as follows:∣∣∣RD0(A(S̃i))− R̂S̃i

(A(S̃i))
∣∣∣ ≲ n−1/2 log(n) + n−1 log2(n) + n−1/4.

In this bound, the terms n−1/2 log(n) + n−1 log2(n) correspond to the generalization error on the
mixed dataset, while the term n−1/4 represents the cumulative distribution shift across generations,
which is primarily governed by the learnability of the generative model.

It is evident from this result that the generative model’s capacity plays a crucial role in the performance
within the STLs. The ability of the generative model to maintain distributional fidelity over multiple
generations directly impacts the generalization error and determines how well the model can control
the propagation of errors across generations.

5.4 SYNTHETIC DATA AUGMENTATION

The previous theorem addresses the scenario where the training dataset is unintentionally contam-
inated by synthetic data, leading to STLs. In contrast, many researchers intentionally incorporate
synthetic data to augment the real dataset, also creating STLs. Next, we explore this synthetic data
augmentation scenario, where each generation’s synthetic data is added to the mixed dataset, i.e.,
S̃i =

∑i
j=0 Sj .

Theorem 4. Consider an L-layer transformer under the setting described in Theorem 2. Let n and
λn represent the sample size of the real dataset S0 and the synthetic dataset Sj , respectively, where
1 ≤ j ≤ i. The mixed dataset S̃i is denoted as

∑i
j=0 Sj . Suppose that the loss function ℓ(·; z)

is κ-smooth, ρ-Lipschitz and bounded by M > 0 for every z. Let A(S̃i) denote the output after
running SGD for T ≳ n iterations with a step size ηt = O( 1

κt ) on the mixed dataset Si. Then, for
any δ ∈ (0, 1), with probability at least 1− δ, the following holds:∣∣∣RD0

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣ ≲ n− 1
4 log((1 + iλ)n)M log

1

δ

+ n−1 ρ2

(1 + iλ)2
log((1 + iλ)n)i!B̃

(i+1)L
W log

1

δ
+ n− 1

2
Mi

1 + iλ

√
log

1

δ
.

Remark 10. Analyzing the Trade-off in Synthetic Data Augmentation for STLs. In this remark,
we examine the trade-off between generalization and distribution shifts from increased synthetic data,
providing insights into optimal synthetic data size. At each generation, λn synthetic data points are
added to the mixed dataset. We analyze how the coefficient λ, representing the scale of synthetic data
augmentation, affects the generalization error in STLs. From the bound in Theorem 4, we observe
that the Cumulative Distribution Shift Across Generations term is expressed as:

n− 1
4 log((1 + iλ)n)M log(1/δ).

9
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As the coefficient λ increases, the cumulative distribution shift correspondingly grows, thereby
amplifying the associated error. This behavior aligns with intuition, as an increase in λ reduces the
proportion of real data within the mixed dataset at each generation. Consequently, this reduction
in real data leads to a greater divergence between the mixed distribution and the true underlying
distribution, exacerbating the deviation and compounding the error across successive generations. In
contrast, for the Generalization Error on Mixed Distributions term:

n−1 ρ2

(1 + iλ)2
log((1 + iλ)n)i!B̃

(i+1)L
W log

1

δ
+ n− 1

2
Mi

1 + iλ

√
log

1

δ
.

We observe that as λ increases, the corresponding error decreases. This outcome is consistent with
theoretical intuition, as augmenting the dataset with synthetic data effectively enlarges the mixed
dataset. A larger dataset provides a more comprehensive representation of the mixed distribution,
which in turn reduces the generalization error associated with this distribution. By incorporating
more synthetic data, the mixed dataset better approximates the underlying mixed distribution, leading
to improved generalization performance.

From the above discussion, we can conclude that the inclusion of synthetic data introduces a trade-off:
on one hand, it increases the error from the cumulative distribution shift, while on the other, it reduces
the generalization error on the mixed distribution. This trade-off has been explored theoretically
in Fu et al. (2024b), though they primarily provided theoretical intuition. In contrast, our work
explicitly decomposes the error into two terms, offering a deeper understanding of this trade-off and
its implications for model performance in STLs. As for the optimal augmentation coefficient λ∗, it
must satisfy the following condition:

λ∗ = inf
λ

{
n− 1

4 log((1 + iλ)n)M log(1/δ)

≲ n−1 ρ2

(1 + iλ)2
log((1 + iλ)n)i!B̃

(i+1)L
W log

1

δ
+ n− 1

2
Mi

1 + iλ

√
log

1

δ

}
.

Unfortunately, obtaining a closed-form solution for λ∗ from this equation proves to be analytically
intractable. However, we can derive the relationship between λ∗, the size of the real dataset n from
the above equation. Specifically, by omitting irrelevant constants and the log(1/δ) term, we obtain
that λ∗ should satisfy the following expression:

i!B̃
(i+1)L
W

n3/4(1 + iλ∗)2
+

i

n1/4(1 + iλ∗) log((1 + iλ∗)n)
= O(1).

We observe an important trend: the value of λ∗ increases as the size of the real dataset n decreases.
This aligns with theoretical intuition, as a smaller real dataset struggles to adequately represent the
underlying distribution, leading to higher generalization error. Consequently, more synthetic data is
required to control the generalization error of each generation on the mixed distribution. Conversely,
when the real dataset is sufficiently large, the need for synthetic data augmentation diminishes.

6 CONCLUSION

As real-world data becomes increasingly scarce and existing datasets are progressively contaminated
with synthetic content, STLs have emerged as a necessary strategy. STLs enable generative models
to recursively train on a mix of real and synthetic data. However, empirical outcomes have varied
significantly, revealing the need for a theoretical foundation to guide their successful application.

In this work, we introduced recursive stability as a key technical innovation and established the first
generalization error bounds for STLs, which consider the impact of different model architectures. Our
analysis demonstrated that preventing model collapse requires two critical conditions: maintaining a
non-negligible proportion of real data and ensuring that models satisfy recursive stability. Furthermore,
we were the first to extend this framework to transformers in in-context learning, showing that they
also satisfy recursive stability and establish their generalization error bounds. Finally, we explored
the trade-off introduced by synthetic data augmentation, balancing generalization improvement with
potential distributional shifts. These contributions provide new insights into enhancing the stability
and performance of generative models in STLs.
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A APPENDIX

A.1 AUXILIARY DEFINITIONS

Below, we present some essential definitions.
Definition 3. (Lipschitz and Smoothness). Let constants κ, ρ > 0. Consider the function ℓ :
W ×Z → R. We define the following properties:

• Lipschitz Continuity: The loss ℓ is said to be ρ-Lipschitz continuous if ∥ℓ(w1, z) −
ℓ(w2, z)∥ ≤ ρ∥w1 −w2∥ for any w1,w2, z.

• Smoothness: The loss ℓ is said to be κ-Smooth if ∥∇wℓ(w1, z)−∇wℓ(w2, z)∥ ≤ κ∥w1−
w2∥ for any w1,w2, z.

A.2 EXPANSION TO GAUSSIAN MIXTURE MODELS

We adopt the setup from prior works Zheng et al. (2023) and consider a binary classification task
where Y = {−1, 1}. Given a vector µ ∈ Rd with ∥µ∥2 = 1 and noise variance σ2 > 0, the data
distribution is specified as follows: y ∼ uniform{−1, 1} and x | y ∼ N (yµ, σ2Id). We define the
conditional generative model using parameters µy and σ2

k, where y ∈ {−1, 1} and k ∈ [d]. For
n data points, let ny represent the number of samples in class y. The parameters of the Gaussian
mixture model are then learned as:

µ̂y =

∑
yi=y xi

ny
, σ̂2

k =
∑
y

ny

n

∑
yi=y(xik − µ̂yk)

2

ny − 1
.

Then we can generate new samples from the distribution: y ∼ uniform{−1, 1} and x | y ∼ N (µ̂y,Σ),
where Σ = diag(σ2

1 , . . . , σ
2
d). Additionally, the learning algorithm functions as a linear classifier,

parameterized by θ ∈ Rd, with predictions given by: ŷ = sign(θ⊤x). The loss function is defined as:

ℓ(θ, (x, y)) =
1

2σ2
(x− yθ)⊤(x− yθ).

Thus, the output is θ̂ = 1
m

∑m
i=1 yixi.

In this setting, we demonstrate recursive stability for the Gaussian mixture model as follows:
Theorem 5. Let S0, S

′
0 denote two initial real datasets differing by a single example. Let n represent

the sample size of the mixed dataset S̃j , where S̃j = αS0 + (1 − α)Sj for 1 ≤ j ≤ i. Choose
m = O(

√
n). Consider the previously described sampling and learning steps, where real data

samples are drawn from the Gaussian Mixture Model distribution D, and the synthetic data for the
i-th generation is generated from the learned Gaussian Mixture distribution of the i-th generation.
Then with probability at least 1− δ, we have:

γi
n ≲ n−1/2α−1(1− (1− α)i) log(nd/δ), (3)

where the measure for the recursive stability parameter is taken as the KL divergence.

As α approaches 0, indicating that no real data is incorporated during each generation of training, we
observe

γi
n ≲ in−1/2 log

nd

δ
,

which suggests a linear accumulation of errors. This finding aligns closely with the theoretical
insights presented in Shumailov et al. (2024); Alemohammad et al. (2024a), where a Gaussian model
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trained without real data demonstrated a linear divergence in variance. Thus, this underscores the
validity of our theoretical results, confirming that the derived bound is meaningful and not vacuous.

Moreover, by leveraging the generalization error bound established in Theorem 1, we derive the
following:
Theorem 6. Consider the Gaussian Mixture Model in the setting outlined above. Let n represent
the sample size of the mixed dataset S̃j , where S̃j = αS0 + (1− α)Sj for 1 ≤ j ≤ i. Suppose the
loss function is defined as ℓ(θ, (x, y)) = 1

2σ2 (x − yθ)⊤(x − yθ). Let A(S̃i) denote the output of
applying the linear classifier described above to the mixed dataset S̃i. Then, for any δ ∈ (0, 1), with
probability at least 1− δ, the following holds:∣∣∣RD0

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣ ≲ n−1/2(d+ log(n/δ)) log n log(1/δ)

+ n−1/4(1− (1− α)i)α−1(d+ log(n/δ))
√

d log(nd/δ). (4)

We observe that when α is set to a constant (e.g., α = 0.1), the generalization error can be effec-
tively controlled, preventing model collapse. This result aligns with the experimental findings in
Alemohammad et al. (2024a) for Gaussian models.

A.3 ADDITIONAL COMPARISON WITH RELATED WORK ON THEOREM 1

Dohmatob et al. (2024a) examined a linear regression setting, focusing solely on statistical approx-
imation error without addressing the functional approximation error described in Shumailov et al.
(2024). They did not consider incorporating real data to prevent collapse and demonstrated a linear
dependency of degradation on the generation number in the case of fully synthetic data. Similarly,
Alemohammad et al. (2024a) and Shumailov et al. (2024) provided theoretical insights using simple
Gaussian models without incorporating real data, proving that the variance diverges linearly with
the generation number. Seddik et al. (2024) explored a linear softmax classifier and, while also
neglecting functional approximation error, demonstrated that adding real data can mitigate model
collapse. Marchi et al. (2024) used asymptotic analysis to study parameter variance, assuming an
infinite number of training generations and considering scenarios where the generative model is
controlled via a “temperature” parameter. They proved that parameter variance is bounded under
these conditions.

In contrast, our work addresses a much more complex and realistic scenario by introducing the novel
concept of recursive stability and providing the first generalization analysis for STLs. Our analysis
accounts for statistical approximation error, functional approximation error, and optimization
error during the training of generative models. Unlike the settings explored in prior theoretical
works, such as linear regression (Dohmatob et al., 2024a; Gerstgrasser et al., 2024), Gaussian
models (Alemohammad et al., 2024a; Shumailov et al., 2024), or asymptotic assumptions (Marchi
et al., 2024), our framework accommodates more complex generative model architectures, such
as transformers. Specifically, we reveal how both model architecture and the ratio of real to
synthetic data influence the success of STLs. For example, in Theorem 3, we demonstrate how our
general generalization bound applies to transformer-based generative models, providing a theoretical
framework that aligns with practical and more sophisticated use cases.

Additionally, while Marchi et al. (2024) assumed an infinite number of training generations for their
asymptotic analysis, we consider finite generations, which is more practical since most experimental
setups limit generations to fewer than 10 (as noted in Shumailov et al. (2024)). Moreover, our results
confirm that when α = 0 (i.e., no real data is used), the last term in our bound, representing the
Cumulative Distribution Shift (dTV(n)M(1− (1−α)i)α−1), grows linearly. This finding aligns with
the theoretical results of Dohmatob et al. (2024a); Alemohammad et al. (2024a); Shumailov et al.
(2024); Fu et al. (2024b). Furthermore, we show that introducing even a constant proportion of real
data significantly mitigates model collapse, aligning with experimental findings by Alemohammad
et al. (2024a) and Bertrand et al. (2024).

A.4 ADDITIONAL COMPARISON WITH RELATED WORK ON THEOREM 4

Gerstgrasser et al. (2024) also explored the use of accumulating data to prevent model collapse.
They considered a simple linear regression setting without accounting for the dynamic process of
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training generative models, focusing solely on statistical approximation error. They demonstrated
that under the assumption of fixed synthetic data quality matching the original real data, statistical
approximation error can be controlled.

By contrast, our work addresses a much more complex and realistic scenario, incorporating the
dynamic behavior of transformer-based generative models, learning algorithms, and both statistical
and functional approximation errors. Additionally, we allow for dynamic regulation of synthetic data
size via a λ coefficient, enabling us to identify the optimal synthetic dataset size for avoiding model
collapse in these more challenging settings.

A.5 AUXILIARY LEMMAS

In this section, we begin by introducing a set of auxiliary theorems that will be utilized in the
subsequent proofs.

Lemma 7 (McDiarmid’s Inequality). Consider independent random variables Z1, · · · , Zn ∈ Z and
a mapping ϕ : Zn → R. If, for all i ∈ {1, · · · , n}, and for all z1, · · · , zn, z′i ∈ Z , the function ϕ
satisfies

|ϕ (z1, · · · , zi−1, zi, zi+1, · · · , zn)− ϕ (z1, · · · , zi−1, z
′
i, zi+1, · · · , zn)| ≤ c,

then,

P (|ϕ (Z1, · · · , Zn)− Eϕ (Z1, . . . , Zn) ≥ t|) ≤ 2 exp

(
−2t2

nc2

)
.

Furthermore, for any p ≥ 2,

∥ϕ (Z1, . . . , Zn)− E [ϕ (Z1, . . . , Zn)]∥p ≤ 2
√
npc.

Lemma 8. ((Bousquet et al., 2020)). Let z = (Z1, . . . , Zn) be a vector of independent random
variables each taking values in Z , and let g1, . . . , gn be some functions gi : Zn → R such that the
following holds for any i ∈ [n] :

• |E [gi(z) | Zi]| ≤ M ,

• E
[
gi(z) | z\i] = 0,

• gi has a bounded difference β with respect to all variables except the i-th variable, that
is, for all j ̸= i, z = (Z1, . . . , Zn) and zj =

(
Z1, . . . , Z

′
j , . . . , Zn

)
∈ Rn, we have∣∣gi(z)− gi

(
zj

)∣∣ ≤ β.

Then, for any p ≥ 2,

∥∥∥∥∥
n∑

i=1

gi(z)

∥∥∥∥∥
p

≤ 12
√
2pnβ log n+ 4M

√
pn.

Lemma 9. If ∥Y ∥p ≤ √
pa + pb for any p ≥ 1, then for any δ ∈ (0, 1), with probability at least

1− δ,

|Y | ≤ e

(
a

√
log

(e
δ

)
+ b log

(e
δ

))
.

In addition, we introduce the definition of the Total Variation (TV) distance as follows:

Definition 4 (Total Variation Distance). Given two probability distributions p and q over a multidi-
mensional space Rd, the Total Variation Distance between p and q is:

TV (p, q) =
1

2

∫
Rd

|p(z)− q(z)| dz.
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A.6 PROOF OF THEOREM 1

In this Section, we prove Theorem 1 by first decomposing the generalization error into two compo-
nents: the Cumulative Distribution Shift Across Generations and the Generalization Error on Mixed
Distributions. We then proceed to bound the Cumulative Distribution Shift Across Generations by
leveraging the properties of the generative model and recursive techniques. For the Generalization
Error on Mixed Distributions, we follow the framework of Zheng et al. (2023), leveraging the fact
that within the mixed dataset S̃i, the set Si satisfies the conditional i.i.d. assumption when S0 is fixed.
Combined with moment bounds, this allows us to effectively bound the generalization error.

The main proof is as follows:

Proof of Theorem 1. We begin by decomposing the generalization error as follows:∣∣∣RD0
(A(S̃i))− R̂S̃i

(A(S̃i))
∣∣∣ ≤ ∣∣∣RD0

(A(S̃i))−RD̃i
(A(S̃i))

∣∣∣︸ ︷︷ ︸
Cumulative distribution shift across generations

+
∣∣∣RD̃i

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣︸ ︷︷ ︸
Generalization error on mixed distributions

.

Upper Bounding Cumulative Distribution Shift Term

For the term
∣∣∣RD0(A(S̃i))−RD̃i

(A(S̃i))
∣∣∣, we first note that D̃i = αD0 + (1 − α)Di. Therefore,

we obtain: ∣∣∣RD0(A(S̃i))−RD̃i
(A(S̃i))

∣∣∣
=

∣∣∣RD0(A(S̃i))− αRD0(A(S̃i)− (1− α)RDi(A(S̃i))
∣∣∣

= (1− α)
∣∣∣RD0(A(S̃i)−RDi(A(S̃i))

∣∣∣ . (5)

Furthermore, we can further decompose it as follows:∣∣∣RD0(A(S̃i)−RDi(A(S̃i))
∣∣∣ ≤ ∣∣∣RD0

(A(S̃i))−RD̃i−1
(A(S̃i))

∣∣∣+ ∣∣∣RD̃i−1
(A(S̃i))−RDi

(A(S̃i))
∣∣∣ .

(6)
By substituting inequality 6 into inequality 5, we obtain:∣∣∣RD0

(A(S̃i))−RD̃i
(A(S̃i))

∣∣∣
≤ (1− α)

∣∣∣RD0
(A(S̃i))−RD̃i−1

(A(S̃i))
∣∣∣+ (1− α)

∣∣∣RD̃i−1
(A(S̃i))−RDi

(A(S̃i))
∣∣∣ . (7)

Then, for the term |RD̃i−1
(A(S̃i))−RDi

(A(S̃i))|, we have:∣∣∣RD̃i−1
(A(S̃i))−RDi

(A(S̃i))
∣∣∣ = ∣∣∣∣∣

∫
z

ℓ(A(S̃i), z)
(
PD̃i−1

(z)− PDi
(z)

)
dz

∣∣∣∣∣
≤

∫
z

∣∣∣∣ℓ(A(S̃), z)
(
PD̃i−1

(z)− PDi(z)
)∣∣∣∣dz

≤ M

∫
z

∣∣∣PD̃i−1
(z)− PDi(z)

∣∣∣dz
= 2MTV

(
D̃i−1,Di

)
. (8)

Incorporating inequality 8 into inequality 7, we arrive at:

|RD0(A(S̃i))−RD̃i
(A(S̃i))|

≤ (1− α)|RD0
(A(S̃i))−RD̃i−1

(A(S̃i))|+ 2(1− α)MTV
(
D̃i−1,Di

)
. (9)

Next, we apply recursive techniques to address the problem further. First, we obtain

|RD0
(A(S̃i))−RD̃i−1

(A(S̃i))|

≤ (1− α)|RD0
(A(S̃i))−RD̃i−2

(A(S̃i))|+ 2(1− α)MTV
(
D̃i−2,Di−1

)
. (10)
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Plugging inequality 10 into inequality 9into the inequality, we obtain that:

|RD0
(A(S̃i))−RD̃i

(A(S̃i))|

≤ (1− α)2|RD0(A(S̃i))−RD̃i−2
(A(S̃i))|+ 2(1− α)2MTV

(
D̃i−2,Di−1

)
+ 2(1− α)MTV

(
D̃i−1,Di

)
.

By recursion, we obtain:

|RD0(A(S̃i))−RD̃i
(A(S̃i))|

≤ (1− α)i−1|RD0
(A(S̃i))−RD̃1

(A(S̃i))|+ 2(1− α)i−1MTV
(
D̃1,D2

)
+ ...+ 2(1− α)MTV

(
D̃i−1,Di

)
≤ 2(1− α)iMTV (D0,D1) + 2(1− α)i−1MTV

(
D̃1,D2

)
+ ...+ 2(1− α)MTV

(
D̃i−1,Di

)
.

Let n0 represent the sample size of the real dataset S0, and let ni denote the sample size of the mixed
dataset S̃i in the i-th generation. Thus, TV

(
D̃j ,Dj+1

)
can be written as a function of nj . Assuming

that the sample size for each generation’s dataset is identical, i.e., n0 = n1 = · · · = ni = n, and
that the TV distance for each generation is of the same order, denoted by dTV(n), we can derive the
following result:

|RD0(A(S̃i))−RD̃i
(A(S̃i))| ≤ 2MdTV(n)

[
(1− α)i + (1− α)i−1 + ...+ (1− α)

]
= 2M

(
1− (1− α)i

)
α−1dTV(n). (11)

Then we obtain:

|RD0(A(S̃i))− R̂S̃i
(A(S̃i))| ≤ |RD0(A(S̃i))−RD̃i

(A(S̃i))|+ |RD̃i
(A(S̃i))− R̂S̃i

(A(S̃i))|

≤ 2M
(
1− (1− α)i

)
α−1dTV(n) + |RD̃i

(A(S̃i))− R̂S̃i
(A(S̃i))|. (12)

Upper Bounding Generalization Error on Mixed Distributions Term

Next, we turn our attention to the term |RD̃i
(A(S̃i)) − R̂S̃i

(A(S̃i))|. Our primary objective is to
establish a moment bound for this expression.

∥∥∥RD̃i
(A(S̃i))− R̂S̃i

(A(S̃i))
∥∥∥
p

=

∥∥∥∥∥∥αRD0(A(S̃i)) + (1− α)RDi(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi)−
1

n

∑
zi∈Si,1−α

ℓ(A(S̃i), zi)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥αRD0(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi)

∥∥∥∥∥∥
p︸ ︷︷ ︸

Term 1

+

∥∥∥∥∥∥(1− α)RDi(A(S̃i))−
1

n

∑
zi∈Si,1−α

ℓ(A(S̃i), zi)

∥∥∥∥∥∥
p︸ ︷︷ ︸

Term 2

.

(13)

The newly sampled dataset, denoted as S0,α, is a subset of the original dataset S0, where S0,α ⊆ S0

and its size is α× |S0|. Specifically, S0,α contains a proportion α of the n data points in S0, resulting
in a total of n × α data points. Similarly, Si,1−α is a subset of the synthetic dataset Si, where
Si,1−α ⊆ Si, and its size is (1− α)× |Si|. Specifically, Si,1−α contains a proportion 1− α of the n
data points in Si, resulting in n× (1− α) data points.

We observe that for any function f(S), if there exists a bound ∥f∥p (Sj) ≤ C for some subset
Sj ⊆ S, then we have the following:

∥f∥p = (EE [|f |p | Sj ])
1/p ≤ (E [Cp])

1/p ≤ C.

Fix S0, then data in Si are independent. We use this property and Lemma 8 to bound the Term 2. We
introduce functions fj(Si,1−α) which play the same role as gj’s in Lemma 8 as

fj(Si,1−α) = Ez′
i,j∼Di

[
Ez∼Di

ℓ(A(S0,α ∪ Sj
i,1−α), z)− ℓ(A(S0,α ∪ Sj

i,1−α), zi,j)
]
,
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where zi,j is the j-th data in Si,1−α, and Sj
i,1−α obtained by replacing zi,j by z′

i,j . Next, we prove
that fj satisfies the three conditions outlined in Lemma 8. First, we demonstrate condition |fj | ≤ M .

|fj | =
∣∣∣Ez′

i,j∼Di

[
Ez∼Di

ℓ(A(S0,α ∪ Sj
i,1−α), z)− ℓ(A(S0,α ∪ Sj

i,1−α), zi,j)
]∣∣∣

≤ Ez′
i,j∼Di

Ez∼Di

∣∣∣ℓ(A(S0,α ∪ Sj
i,1−α), z)− ℓ(A(S0,α ∪ Sj

i,1−α), zi,j)
∣∣∣ .

≤ M

We then continue by proving conditions E[fj |S\j
i,1−α] = 0:

E
[
fj | S\j

i,1−α

]
= Ezi,j∼Di

[
Ez′

i,j∼Di

[
Ez∼Diℓ(A(S0,α ∪ Sj

i,1−α), z)− ℓ(A(S0,α ∪ Sj
i,1−α), zi,j)

]
| S\j

i,1−α

]
= Ez′

i,j∼Di

[[
Ez∼Diℓ

(
A
(
S0,α ∪ Sj

i,1−α

)
, z

)
− Ezi,j∼Diℓ

(
A
(
S0,α ∪ Sj

i,1−α

)
, zi,j

)]
| S\j

i,1−α

]
= Ez′

i,j∼Di

[
0 | S\j

i,1−α

]
= 0.

Finally, we prove that fj has a bounded difference 2βn with respect to all variables except the j-th
variable. Let t ̸= j, then we obtain:

|fj (Si,1−α)−fj
(
St
i,1−α

)
|

=|Ez′
i,j∼Di

[
Ez∼Di

ℓ(A(S0,α ∪ Sj
i,1−α), z)− ℓ(A(S0,α ∪ Sj

i,1−α), zi,j)
]

− Ez′
i,j∼Di

[
Ez∼Di

ℓ(A(S0,α ∪ (St
i,1−α)

j), z)− ℓ(A(S0,α ∪ (St
i,1−α)

j), zi,j)
]
|

≤
∣∣∣Ez′

i,j∼Di
Ez∼Di

[
ℓ(A(S0,α ∪ Sj

i,1−α), z)− ℓ(A(S0,α ∪ (St
i,1−α)

j), z)
]∣∣∣

+
∣∣∣Ez′

i,j∼Di

[
ℓ(A(S0,α ∪ Sj

i,1−α), zi,j)− ℓ(A(S0,α ∪ (St
i,1−α)

j), zi,j)
]∣∣∣

≤βn + βn = 2βn.

Therefore, for any fixed S0, by Lemma 8, for any p ≥ 2, we have

∥∥∥∥∥∥
n(1−α)∑
j=1

fj (Si,1−α)

∥∥∥∥∥∥
p

≲ pn(1− α)βn log(n(1− α)) +M
√

pn(1− α). (14)
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We note that the difference between Term 2 and
∑n(1−α)

j=1 fj is minimal. Consequently, for any fixed
S0, we can bound Term 2 using inequality 14 as follows.∥∥∥∥∥∥(1− α)RDi

(A(S̃i))−
1

n

∑
zi∈Si,1−α

ℓ(A(S̃i), zi)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥(1− α)RDi
(A(S0,α ∪ Si,1−α))−

1

n

n(1−α)∑
j=1

ℓ(A(S0,α ∪ Si,1−α), zi,j)

∥∥∥∥∥∥
p

Fix S0,α

=

∥∥∥∥∥∥ 1n
n(1−α)∑
j=1

(Ez∼Di
ℓ (A (S0,α ∪ Si,1−α) , z)− ℓ (A (S0,α ∪ Si,1−α) , zi,j))

∥∥∥∥∥∥
p

≤ 1

n

∥∥∥∥∥∥
n(1−α)∑
j=1

(
Ez′

i,j∼Di

[
Ez∼Di

ℓ(A(S0,α ∪ Sj
i,1−α), z)− ℓ(A(S0,α ∪ Sj

i,1−α), zi,j)
])∥∥∥∥∥∥

p

+ (1− α) ∥2βn∥p

=
1

n

∥∥∥∥∥∥
n(1−α)∑
j=1

fj (Si,1−α)

∥∥∥∥∥∥
p

+ (1− α) ∥2βn∥p

≲ p(1− α)βn log(n(1− α)) +M

√
p(1− α)

n
+ 2(1− α)βn

≲ p(1− α)βn log(n(1− α)) +M

√
p(1− α)

n
.

Next, for Term 2, we derive the following result:∥∥∥∥∥∥(1− α)RDi(A(S̃i))−
1

n

∑
zi∈Si,1−α

ℓ(A(S̃i), zi)

∥∥∥∥∥∥
p

≲ p(1− α)βn log(n(1− α)) +M

√
p(1− α)

n
.

(15)

Now, we use a similar idea to bound Term 1
∥∥∥αRD0(A(S̃i))− 1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi)
∥∥∥
p
. We

decompose it as the following.

∥∥∥∥∥∥αRD0(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥(αRD0(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi))− E
Si,1−α∼Dn(1−α)

i
(αRD0

(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi))

∥∥∥∥∥∥
p︸ ︷︷ ︸

Term 3

+

∥∥∥∥∥∥ESi,1−α∼Dn(1−α)
i

(αRD0(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi))

∥∥∥∥∥∥︸ ︷︷ ︸
Term 4

. (16)

We proceed by bounding each term. Specifically, Term 3 can be bounded using McDiarmid’s
inequality, as outlined in Lemma 7, and Term 4 can be bounded by applying Lemma 8.

To bound Term 3, we begin by fixing S0,α and utilizing the conditional independence property of Si

once again. In order to apply Lemma 8, we must show that αRD0
(A(S̃i))− 1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi)

exhibits a bounded difference with respect to Si,1−α when S0,α is fixed. This expression can be
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formulated as follows.∣∣∣∣∣∣αRD0(A(S0,α ∪ Si,1−α))−
1

n

∑
zi∈S0,α

ℓ(A(S0,α ∪ Si,1−α), zi)

−αRD0(A(S0,α ∪ Sj
i,1−α)) +

1

n

∑
zi∈S0,α

ℓ(A(S0,α ∪ Sj
i,1−α), zi)

∣∣∣∣∣∣
≤ α

∣∣∣RD0
(A(S0,α ∪ Si,1−α))−RD0

(A(S0,α ∪ Sj
i,1−α))

∣∣∣
+

1

n

∣∣∣∣∣∣
∑

zi∈S0,α

ℓ(A(S0,α ∪ Si,1−α), zi)−
∑

zi∈S0,α

ℓ
(
A
(
S0,α ∪ Sj

i,1−α

)
, zi

)∣∣∣∣∣∣
≤ αβn + αβn = 2αβn.

Thus, by Mcdiarmid Inequality, we have

∥∥∥∥∥∥(αRD0
(A(S̃i))−

1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi))− E
Si,1−α∼Dn(1−α)

i
(αRD0

(A(S̃i))−
1

n

∑
zi∈S0,α

ℓ(A(S̃i), zi))

∥∥∥∥∥∥
p

≤ 4
√
n(1− α)pαβn ≲

√
n(1− α)pαβn. (17)

We now introduce a set of functions and apply Lemma 8 once more to bound Term 4. Specifically,
we define hj(S), which serves a similar role to the gi ’s in Lemma 8, as follows:

hj(S0,α)

=Ez′
0,j∼D0

E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0ℓ

(
A
(
Sj
0,α ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
Sj
0,α ∪ Si,1−α

)
, z0,j

)]
(18)

where z0,j denote the j-th data point in S0,α, and Sj
0,α represent the dataset obtained by replacing

z0,j with z′
0,j . Additionally, it is important to note that Si,1−α ∼ Dn(1−α)

i

(
Sj
0,α

)
indicates that

Si,1−α is the synthetic dataset generated after the self-consuming loop, following i-generations, and
obtained by modifying a single data point from the initial real dataset S0. This complex scenario can
be addressed using the recursive stability we have defined for the self-consuming loop in Definition
2. Moreover, similar to the process above, we observe that |hj | ≤ M and E

[
hj | S\j

0,α

]
= 0. More

intricately, we will now prove that hj exhibits a bounded difference. This will be demonstrated as
follows.

|hj(S0,α)− hj

(
St
0,α

)
|

= | Ez′
0,j∼D0

E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0

ℓ
(
A
(
Sj
0,α ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
Sj
0,α ∪ Si,1−α

)
, z0,j

)]
−Ez′

0,j∼D0
E
Si,1−α∼Dn(1−α)

i ((St
0,α)j)

[
Ez∼D0

ℓ
(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
≤ | Ez′

0,j∼D0
E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0

ℓ
(
A
(
Sj
0,α ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
Sj
0,α ∪ Si,1−α

)
, z0,j

)]
−Ez′

0,j∼D0
E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0

ℓ
(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
|

(19)

+|Ez′
0,j∼D0

E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0

ℓ
(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
−Ez′

0,j∼D0
E
Si,1−α∼Dn(1−α)

i ((St
0,α)j)

[
Ez∼D0

ℓ
(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
|.

(20)
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We can bound equation 19 by applying the concept of uniform stability, resulting in an upper bound
of 2βn. Regarding equation 20, for ease of notation, let us represent ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
−

ℓ
(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)
as Q. Consequently, we obtain the following:

|Ez′
0,j∼D0

E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0

ℓ
(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
− Ez′

0,j∼D0
E
Si,1−α∼Dn(1−α)

i ((St
0,α)j)

[
Ez∼D0

ℓ
(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
|

=
∣∣∣Ez′

0,j∼D0
Ez∼D0

[
E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

Q− E
Si,1−α∼Dn(1−α)

i ((St
0,α)j)Q

]∣∣∣
= Ez′

0,j∼D0
Ez∼D0

∣∣∣∣∣
∫
Si,1−α

(
P
(
Si,1−α | Sj

0,α

)
− P

(
Si,1−α |

(
St
0,α

)j))
QdSi,1−α

∣∣∣∣∣
≤ Ez′

0,j∼D0
Ez∼D0

[∫
Si,1−α

∣∣∣(P(
Si,1−α | Sj

0,α

)
− P

(
Si,1−α |

(
St
0,α

)j))
Q
∣∣∣ dSi,1−α

]

≤ MEz′
0,j∼D0

Ez∼D0

[∫
Si,1−α

∣∣∣(P(
Si,1−α | Sj

0,α

)
− P

(
Si,1−α |

(
St
0,α

)j))∣∣∣ dSi,1−α

]
≤ 2M sup

j
TV

(
Dn(1−α)

i (Sj
0),D

n(1−α)
i (S0)

)
= 2Mγi

n. (21)

Thus, hj exhibits a bounded difference of 2βn + 2Mγi
n with respect to all variables except the j-th

variable. By applying Lemma 8, we obtain the following:

∥∥∥∥∥∥
nα∑
j=1

hj(S0,α)

∥∥∥∥∥∥
p

≤ 12
√
2pnα

(
2βn + 2Mγi

n

)
log(nα) + 4M

√
pnα

≲ pnα
(
βn +Mγi

n

)
log(nα) +M

√
pnα.

We observe that the difference between Term 4 and
∥∥∥∑nα

j=1 hj (S0,α)
∥∥∥
p

is negligible. Thus, we can

bound Term 4 as follows:

∥∥∥∥∥∥ESi,1−α∼Dn(1−α)
i

αRD0
(A(S̃i))−

1

n

∑
zi∈S0,α

ℓ
(
A
(
S̃i

)
, zi

)∥∥∥∥∥∥
p

=

∥∥∥∥∥∥ 1n
∑

zi∈S0,α

E
Si,1−α∼Dn(1−α)

i

[
RD0

(A(S̃i))− ℓ
(
A(S̃i), zi

)]∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥ 1n
nα∑
j=1

(
Ez′

0,j∼D0
E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0

ℓ
(
A
(
Sj
0,α ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
Sj
0,α ∪ Si,1−α

)
, z0,j

)])∥∥∥∥∥∥
p

+
∥∥2αβn + 2αMγi

n

∥∥
p

=

∥∥∥∥∥∥ 1n
nα∑
j=1

hj(S0,α)

∥∥∥∥∥∥
p

+
∥∥2αβn + 2αMγi

n

∥∥
p

≲ pα
(
βn +Mγi

n

)
log(nα) +M

√
pαn−1 + αβn + αMγi

n

≲ pα
(
βn +Mγi

n

)
log(nα) +M

√
pαn−1.
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By substituting the above inequality and inequality 17 into the decomposition 16, we obtain:∥∥∥∥∥∥αRD0

(
A
(
S̃i

))
− 1

n

∑
zi∈S0,α

ℓ
(
A
(
S̃i

)
, zi

)∥∥∥∥∥∥
p

≲
√
n(1− α)pαβn + pα

(
βn +Mγi

n

)
log(nα) +M

√
pαn−1

≲
√
p(
√
(1− α)nαβn +M

√
αn−1) + pα

(
βn +Mγi

n

)
log(nα). (22)

Plug inequalities 22 and 15 into the inequality 57, then we obtain:

∥RD̃i
(A(S̃i))− R̂S̃i

(A(S̃i))∥p
≲p(1− α)βn log(n(1− α)) +M

√
p(1− α)n−1 +

√
p(
√
(1− α)nαβn +M

√
αn−1)

+ pα
(
βn +Mγi

n

)
log(nα)

=
√
p
(√

(1− α)nαβn +Mn−1/2(
√
1− α+

√
α)

)
+ p

(
(1− α)βn log(n(1− α)) + α

(
βn +Mγi

n

)
log(nα)

)
. (23)

By applying Lemma 8, we can derive a bound on the generalization error with respect to the mixed
distribution.

∣∣∣RD̃i

(
A
(
S̃i

))
− R̂S̃i

(
A
(
S̃i

))∣∣∣ as follows.∣∣∣RD̃i

(
A
(
S̃i

))
− R̂S̃i

(
A
(
S̃i

))∣∣∣
≲

(√
(1− α)nαβn +Mn−1/2(

√
1− α+

√
α)

)√
log

(
1

δ

)
+
(
(1− α)βn log(n(1− α)) + α

(
βn +Mγi

n

)
log(nα)

)
log

(
1

δ

)
.

Finally, we conclude that:∣∣∣RD0

(
A
(
S̃i

))
− R̂S̃i

(
A
(
S̃i

))∣∣∣
≤

∣∣∣RD0

(
A
(
S̃i

))
−RD̃i

(
A
(
S̃i

))∣∣∣+ ∣∣∣RD̃i

(
A
(
S̃i

))
− R̂S̃i

(
A
(
S̃i

))∣∣∣
≤ 2M

(
1− (1− α)i

)
α−1dTV(n)

+
(
(1− α)βn log(n(1− α)) + α

(
βn +Mγi

n

)
log(nα)

)
log

(
1

δ

)
+
(√

(1− α)nαβn +Mn−1/2(
√
1− α+

√
α)

)√
log

(
1

δ

)
. (24)

A.7 PROOF OF THEOREM 2

In this section, we prove that transformers in in-context learning exhibit recursive stability. Specifi-
cally, we utilize the framework and lemmas from Li et al. (2023), combined with recursive techniques,
to establish the proof.

Lemma 10 (Li et al. (2023)). Let z, ε ∈ Rn be vectors obeying ∥z∥ℓ∞ , ∥z + ε∥ℓ∞ ≤ c. Then, there
exists a constant C = C(c), such that

∥ softmax(z)∥ℓ∞ ≤ e2c/n and ∥ softmax(z)− softmax(z + ε)∥ℓ1 ≤ e2c∥ε∥ℓ1/n.

Proof of Theorem 2. . Let Z = [z1, . . . ,zn]
⊤ and E = [ε1, . . . , εn]

⊤ be the input and perturbation
matrices respectively. Given that the tokens zi lie in the unit ball, and assuming zi + εi also
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lies in the unit ball, we can proceed with the following. For a matrix, let ∥ · ∥2,p denote the ℓp-
norm of the vector formed by the ℓ2-norms of its rows. Therefore, we obtain ∥Z∥2,∞ ≤ 1 and
∥Z̄∥2,∞ = ∥Z +E∥2,∞ ≤ 1. Let the attention outputs be defined as A = softmax

(
ZWZ⊤)ZV

and Ā = softmax
(
Z̄WZ̄⊤) Z̄V . Define the perturbation as Ē = Ā−A := [ε̄1, . . . ε̄n]

⊤.

Let us examine the attention output difference Ē = Ā−A, which can be further decomposed as
follows:

Ē = softmax
(
Z̄WZ̄⊤) Z̄V − softmax

(
ZWZ⊤)ZV

=
[
softmax

(
Z̄WZ̄⊤)− softmax

(
ZWZ⊤)]ZV︸ ︷︷ ︸

Ē1

+softmax
(
Z̄WZ̄⊤)EV︸ ︷︷ ︸
Ē2

. (25)

We first observe that V preserves the norm, meaning that ZV satisfies ∥ZV ∥2,∞ ≤ ∥Z∥2,∞ ≤ 1
and ∥EV ∥2,1 ≤ ∥E∥2,1. Moreover, for any pair of tokens, it holds that

∣∣z⊤
i Wzj

∣∣ ≤ BW . Applying
Lemma 10, we can therefore derive the following:∥∥Ē2

∥∥
2,1

=
∥∥softmax

(
Z̄WZ̄⊤)EV

∥∥
2,1

≤ e2BW ∥E∥2,1. (26)

Subsequently, for Ē1, we establish the following expression∥∥Ē1

∥∥
2,1

=
∥∥[softmax

(
Z̄WZ̄⊤)− softmax

(
ZWZ⊤)]ZV

∥∥
2,1

≤
∥∥softmax

(
Z̄WZ̄⊤)− softmax

(
ZWZ⊤)∥∥

ℓ1
∥ZV ∥2,∞

≤
∥∥softmax

(
Z̄WZ̄⊤)− softmax

(
ZWZ⊤)∥∥

ℓ1
.

To advance the analysis, we introduce the δ-scaled perturbation E′ = δE = Z̄ ′ − Z, where δ is
constrained within 0 ≤ δ ≤ 1. Our approach involves first bounding the derivative as δ → 0, and
then integrating this bound along the path of E, effectively covering the interval from δ = 0 to δ = 1.
Notably, as δ → 0, the quadratic terms proportional to δ2E diminish, simplifying the analysis at this
limit.∥∥softmax

(
Z̄ ′WZ̄ ′⊤)− softmax

(
ZWZ⊤)∥∥

ℓ1

≤
∥∥softmax(Z̄ ′WZ⊤)− softmax(ZWZ⊤)

∥∥
ℓ1
+

∥∥softmax(ZWZ̄ ′⊤)− softmax(ZWZ⊤)
∥∥
ℓ1
.

To bound the latter, we focus on each row separately. Consider a row from Z and its perturbed
version Z + E′, represented by the pair (z, z + ε′). It follows that for any cross product, we
have the guarantees

∣∣∣(z + ε′)
⊤
Wzi

∣∣∣ ≤ BW and
∣∣z⊤Wzi

∣∣ ≤ BW . Additionally, the bounds∥∥ε′⊤WZ
∥∥
ℓ1

≤ BWn ∥ε′∥ℓ2 and
∥∥z⊤WE′⊤

∥∥
ℓ1

≤ BW ∥E′∥2,1 hold. Applying the perturbation
bounds provided by Lemma 10, we obtain the desired result∥∥∥softmax

(
(z + ε′)

⊤
WZ⊤

)
− softmax

(
z⊤WZ⊤)∥∥∥

ℓ1
≤ BW e2BW ∥ε′∥ℓ2∥∥∥softmax

(
z⊤W (Z +E′)

⊤
)
− softmax

(
z⊤WZ⊤)∥∥∥

ℓ1
≤ BW e2BW ∥E′∥2,1 /n.

Summing across all n rows, we obtain the following:

lim
δ→0

∥∥softmax
(
(Z + δE)WZ̄⊤)− softmax

(
ZWZ⊤)∥∥

ℓ1
/δ ≤ 2BW e2BW ∥E∥2,1.

By integrating the derivative over the interval δ = 0 to δ = 1, we obtain the final expression,∥∥softmax
(
Z̄WZ̄⊤)− softmax

(
ZWZ⊤)∥∥

ℓ1
≤ 2BW e2BW ∥E∥2,1. (27)

By substituting inequality 27 and inequality 26 into the decomposition 25, we derive the following
result:

∥Ā−A∥2,1 = ∥Ē∥2,1 ≤ (2BW + 1)e2BW ∥E∥2,1. (28)

To continue, we aim to control the output for a specific index j where the input perturbation remains
small, specifically ∥εj∥ℓ2 ≤ ∥E∥2,1

n . To address this, we will apply the same argument, focusing
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on the j-th token. For the j-th token (omitting subscripts for clarity), let the inputs be denoted
as z, z̄, ε = z̄ − z, and the corresponding outputs as a, ā, ε̄ = ā − a. Similar to the previous
decomposition, we can derive the following:

ε̄ = V ⊤Z⊤ [
softmax

(
Z̄W⊤Z̄

)
− softmax

(
ZW⊤Z

)]︸ ︷︷ ︸
ε̄1

+V ⊤E⊤ softmax
(
Z̄W⊤Z̄

)︸ ︷︷ ︸
ε̄2

. (29)

By leveraging the fact that
∣∣z⊤

i Wzj
∣∣ ≤ BW for all i, j, and applying Lemma 10, we can establish a

bound similar to that in equation 26. Specifically, we can constrain the terms involved as follows:

∥ε̄2∥ℓ2 ≤
∥∥E⊤ softmax

(
Z̄W⊤z̄

)∥∥
ℓ2

≤ e2BW

n
∥E∥2,1. (30)

Similarly, for ε̄1, we can derive the following:

∥ε̄1∥ℓ2 ≤
∥∥Z⊤ [

softmax
(
Z̄W⊤z̄

)
− softmax

(
ZW⊤z

)]∥∥
ℓ2

≤ ∥Z∥2,∞
∥∥softmax

(
Z̄W⊤z̄

)
− softmax

(
ZW⊤z

)∥∥
ℓ1

≤
∥∥softmax

(
Z̄W⊤z̄

)
− softmax

(
ZW⊤z

)∥∥
ℓ1
.

Now, considering the perturbation E′ = δE, and letting δ → 0, we apply the triangle inequality to
obtain the following result:

lim
δ→0

δ−1
∥∥softmax

(
(Z + δE)W⊤(z + δε)

)
− softmax

(
ZW⊤z

)∥∥
ℓ1

≤ lim
δ→0

δ−1
∥∥softmax

(
(Z + δE)W⊤z

)
− softmax

(
ZW⊤z

)∥∥
ℓ1

+ δ−1
∥∥softmax

(
ZW⊤(z + δε)

)
− softmax

(
ZW⊤z

)∥∥
ℓ1

≤BW e2BW ∥E∥2,1/n+BW e2BW ∥ε∥ℓ2
≤2BW e2BW ∥E∥2,1/n. (31)

In a similar manner to the previous steps, we can derive the following:

∥ε̄∥ℓ2 ≤ 1

n
(2BW + 1)e2BW ∥E∥2,1. (32)

Next, we examine the effect of the MLP layer on the model’s behavior. Let (Mi)
n
i=1 ∈ Rd×d

represent the weights of the parallel MLPs that follow the self-attention mechanism. Given that
∥Mi∥ ≤ 1, we denote the MLP outputs corresponding to the self-attention results A and Ā as U
and Ū , respectively. From this, we can derive the following relationship.

Let ϕ denote the ReLU function, which is a 1-Lipschitz continuous activation function with ϕ(0) = 0.
First, observe that each row of U is given by ui = ϕ (Miai), where Mi ∈ Rd×d represents the
weights of the MLPs. Given the properties of the ReLU function, we can derive the following bound:

∥ui∥ℓ2 ≤ ∥ϕ (Miai)∥ℓ2 ≤ ∥Miai∥ℓ2 ≤ ∥ai∥ℓ2 ≤ 1.

Next, we consider the difference between the perturbed and original outputs. We can express the
difference as ∥ui − ūi∥ℓ2 ≤ ∥ϕ (Miai)− ϕ (Miāi)∥ℓ2 , which, due to the 1-Lipschitz property of
ϕ, is further bounded by ∥Mi (ai − āi)∥ℓ2 ≤ ∥ai − āi∥ℓ2 . Finally, we obtain:

∥ui − ūi∥ℓ2 ≤ ∥ai − āi∥ℓ2 . (33)

Thus, we conclude that the perturbations in the rows of U are controlled by the corresponding
perturbations in A. Consequently, we establish the bound

∥U − Ū∥2,1 ≤ ∥A− Ā∥2,1.
Thus, from inequality 28, we derive the following result:

∥U − Ū∥2,1 ≤ (2BW + 1) e2BW ∥E∥2,1. (34)

Furthermore, for any i ∈ [n] such that ∥εi∥ℓ2 ≤ ∥E∥2,1

n , it holds that

∥ui − ūi∥ℓ2 ≤ 1

n
(2BW + 1)e2BW ∥E∥2,1,
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where ui represents the i-th row of U . With this, we have addressed the stability of the single-layer
transformer. Moving forward, we will extend our analysis and focus on the stability of L-layer
transformer. First, we can derive the following:∥∥Z(k) − Z̄(k)

∥∥
2,1

≤ (1 + 2BW )e2BW
∥∥Z(k−1) − Z̄(k−1)

∥∥
2,1

,

where 1 ≤ k ≤ L represents the number of layers in the transformer. Then, for L-layer transformer,
we have the following:∥∥Z(L) − Z̄(L)

∥∥
2,1

≤ ((1 + 2BW )e2BW )L
∥∥Z(0) − Z̄(0)

∥∥
2,1

What remains is to perform induction on the difference between the last tokens z(i)
n − z

′(i)
n . We claim

that, for all layers, ∥∥∥z(i)
n − z′(i)

n

∥∥∥
ℓ2

≤ 1

n
((1 + 2BW )e2BW )i

∥∥Z(0) − Z̄(0)

∥∥
2,1

.

This claim holds at i = 0 because the change in the last token is at most
∥∥Z(0) − Z̄(0)

∥∥
2,1

/n. By
induction, the claim holds for all layers, and we conclude the proof by setting i = L, covering the
entire depth of the L-layer transformer. Finally, we obtain:∥∥∥z(L)

n − z′(L)
n

∥∥∥
ℓ2

≤ 1

n
((1 + 2BW )e2BW )L

∥∥Z(0) − Z̄(0)

∥∥
2,1

. (35)

Next, we further analyze the self-consuming process. Let S0 = [z0,1, ...,z0,j , ...,z0,n]
⊤ and S′

0 =
[z0,1, ...,z

′
0,j , ...,z0,n]

⊤ represent two initial real datasets that differ only in their inputs, specifically
z0,j = (x0,j ,y0,j) and z′

0,j =
(
x′
0,j ,y

′
0,j

)
, where j ≤ n. Since ∥S0 − S′

0∥2,1 ≤ 2, then, we have
the following:

∥TF (S0)− TF (S′
0)∥ℓ2 ≤ 1

2n+ 1

(
(1 + 2BW )e2BW

)L ∥S0 − S′
0∥2,1 (36)

≤ 2

2n+ 1

(
(1 + 2BW )e2BW

)L
.

Then, S0 and S′
0 are used as in-context examples, and i.i.d. queries {x1,j}nj=1 are sampled from X .

These queries, along with the in-context examples S0 and S′
0, are processed through the transformer

model to predict their respective labels. As a result, the first generation of synthetic datasets,
S1 = [z1,1, ...,z1,j , ...,z1,n]

⊤ and S′
1 = [z′

1,1, ...,z
′
1,j , ...,z

′
1,n]

⊤, is produced. Then we obtain:

∥S1 − S′
1∥2,1 ≤ 2n

2n+ 1

(
(1 + 2BW )e2BW

)L
. (37)

Given the mixed dataset S̃j , where S̃j = αS0+(1−α)Sj for 1 ≤ j ≤ i, we can proceed with further
analysis based on the specified combination of the original dataset S0 and the synthetic dataset Sj .

∥S̃1 − S̃′
1∥2,1 ≤ α∥S0 − S′

0∥2,1 + (1− α)∥S1 − S′
1∥2,1

≤ 2α+ (1− α)
2n

2n+ 1

(
(1 + 2BW )e2BW

)L
. (38)

By reintroducing the mixed datasets S̃1 and S̃′
1 as in-context examples into the transformer model,

and considering the query set {x2,j}nj=1 as i.i.d. samples from the distribution X , we can derive the
transformer’s output according to Equation 36:∥∥∥TF(

S̃1

)
− TF

(
S̃′
1

)∥∥∥
ℓ2

≤ 1

2n+ 1

(
(1 + 2BW )e2BW

)L ∥S̃1 − S̃′
1∥2,1

≤ 1

2n+ 1

(
(1 + 2BW )e2BW

)L (
2α+ (1− α)

2n

2n+ 1

(
(1 + 2BW )e2BW

)L)
≤ (1− α)

2n

(2n+ 1)2
(
(1 + 2BW )e2BW

)2L
+ α

2

2n+ 1

(
(1 + 2BW ) e2BW

)L
. (39)
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From the above expression, we can further derive that

∥S2 − S′
2∥2,1 ≤ (1− α)

2n2

(2n+ 1)2
(
(1 + 2BW )e2BW

)2L
+ α

2n

2n+ 1

(
(1 + 2BW ) e2BW

)L
.

Thus,

∥S̃2 − S̃′
2∥2,1

≤ α∥S0 − S′
0∥2,1 + (1− α)∥S2 − S′

2∥2,1

≤ 2α+ (1− α)2
2n2

(2n+ 1)2
(
(1 + 2BW )e2BW

)2L
+ α(1− α)

2n

2n+ 1

(
(1 + 2BW ) e2BW

)L
.

Similarly, for the 2-th generation, following analogous steps, we can derive that∥∥∥TF(
S̃2

)
− TF

(
S̃′
2

)∥∥∥
ℓ2

≤ 1

2n+ 1

(
(1 + 2BW )e2BW

)L ∥S̃2 − S̃′
2∥2,1

≤ (1− α)2
2n2

(2n+ 1)3
(
(1 + 2BW ) e2BW

)3L
+ α(1− α)

2n

(2n+ 1)2
(
(1 + 2BW ) e2BW

)2L
+ α

2

2n+ 1

(
(1 + 2BW ) e2BW

)L
. (40)

Building on the above expression, we can further deduce that

∥S3 − S′
3∥2,1

≤ (1− α)2
2n3

(2n+ 1)3
(
(1 + 2BW ) e2BW

)3L
+ α(1− α)

2n2

(2n+ 1)2
(
(1 + 2BW ) e2BW

)2L
+ α

2n

2n+ 1

(
(1 + 2BW ) e2BW

)L
. (41)

The discrepancy between the mixed datasets is as follows:

∥S̃3 − S̃′
3∥2,1

≤ α∥S0 − S′
0∥2,1 + (1− α)∥S3 − S′

3∥2,1

≤ (1− α)3
2n3

(2n+ 1)3
(
(1 + 2BW ) e2BW

)3L
+ α(1− α)2

2n2

(2n+ 1)2
(
(1 + 2BW ) e2BW

)2L
+ α(1− α)

2n

2n+ 1

(
(1 + 2BW ) e2BW

)L
+ 2α. (42)

Utilizing recursive techniques, we can obtain the following:

∥S̃i − S̃′
i∥2,1

≤ (1− α)i
2ni

(2n+ 1)i
(
(1 + 2BW ) e2BW

)iL
+ α(1− α)i−1 2ni−1

(2n+ 1)i−1

(
(1 + 2BW ) e2BW

)(i−1)L

+ ...+ α(1− α)2
2n2

(2n+ 1)2
(
(1 + 2BW ) e2BW

)2L
+ α(1− α)

2n

2n+ 1

(
(1 + 2BW ) e2BW

)L
+ 2α

≤ 2(1− α)i
ni

(2n+ 1)i
(
(1 + 2BW ) e2BW

)iL
+ 2α

[
1− (1− α)

n

2n+ 1

(
(1 + 2BW ) e2BW

)L]−1 [
1− (1− α)i

ni

(2n+ 1)i
(
(1 + 2BW ) e2BW

)iL]
.

(43)
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Ultimately, the discrepancy between the transformer outputs after i generations of the self-consuming
loop for S0 and S′

0 can be obtained as follows:∥∥∥TF(
S̃i

)
− TF

(
S̃′
i

)∥∥∥
ℓ2

≤ 1

2n+ 1

(
(1 + 2BW )e2BW

)L ∥S̃i − S̃′
i∥2,1

≤ (1− α)i
2ni

(2n+ 1)i+1

(
(1 + 2BW ) e2BW

)(i+1)L
+ α(1− α)i−1 2ni−1

(2n+ 1)i
(
(1 + 2BW ) e2BW

)iL
+ ...+ α(1− α)2

2n2

(2n+ 1)3
(
(1 + 2BW ) e2BW

)3L
+ α(1− α)

2n

(2n+ 1)2
(
(1 + 2BW ) e2BW

)2L
+ 2α

1

2n+ 1

(
(1 + 2BW )e2BW

)L
≤ 2(1− α)i

ni

(2n+ 1)i+1

(
(1 + 2BW ) e2BW

)(i+1)L
+ 2α

[
1

2n+ 1

(
(1 + 2BW )e2BW

)L]
×
[
1− (1− α)

n

2n+ 1

(
(1 + 2BW ) e2BW

)L]−1 [
1− (1− α)i

ni

(2n+ 1)i
(
(1 + 2BW ) e2BW

)iL]
.

Subsequently, given that B̃W = (1+2BW )e2BW , we define the measure d as the ℓ2-norm to quantify
the output discrepancy of the generative transformer model after i iterations of the self-consuming
loop, starting from the initial real datasets S0 and S′

0. In this context, the recursive stability parameter
γi
n, as described in Definition 2, can be bounded by the following expression, providing a formal

measure of the model’s stability across iterations:∥∥∥TF(S̃i)− TF(S̃′
i)
∥∥∥
ℓ2

≲ (1− α)i
B̃

(i+1)L
W

2n+ 1
.

The proof is complete.

A.8 PROOF OF THEOREM 3

In this section, building on the general theoretical framework established in Theorem 1, we provide
the proof of Theorem 3 by analyzing the terms βn and dTV(n), leveraging recent advancements
in SGD (Zhang et al., 2022) and ICL (Zhang et al., 2023). The recursive stability parameter γi

n is
derived from Theorem 2.

Lemma 11. (Uniform stability of SGD in the non-convex case (Zhang et al., 2022)). Assume f is
κ-smooth and ρ-Lipschitz. Running T ≳ n iterations of SGD with step size ηt =

1
βt . Choose the

stability of SGD satisfies

βn ≲
16ρ2 log n

n
.

Lemma 12. (Zhang et al., 2023) Let Pθ represent the probability distribution induced by the
transformer with parameter θ. Additionally, the model Pθ̂ is pretrained by the algorithm:

θ̂ = argmin
θ∈Θ

− 1

n

n−1∑
t=1

logPθ

(
xn
t+1 | Sn

t

)
,

where Sn
t = (x1,y1, . . .xt,yt). Furthermore, we consider the realizable setting, where ground

truth probability distribution P(· | S) and Pθ∗(· | S) are consistent for some θ∗ ∈ Θ. Then, with
probability at least 1− δ, the following inequality holds:

TV
(
P(· | S),Pθ̂(· | S)

)
≲

1

n1/2
log(1 + n) +

1

n1/4
log(1/δ), (44)

where ≲ denotes that we omit constants that are independent of n and δ.
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Proof of Theorem 3. First, we note that in the setting where the transformer generates data through
in-context learning, the generalization error of the self-consuming loop is given by:

∣∣∣RD0
(A(S̃i))− R̂S̃i

(A(S̃i))
∣∣∣ =

∣∣∣∣∣∣Ez∼P(·|S0)ℓ(A(S̃i), z)−
1

n

∑
zi∈S̃i

ℓ(A(S̃i), zi)

∣∣∣∣∣∣ . (45)

Now, we are ready to prove Theorem 3. The main idea is to bound the uniform stability parameter
βn, the recursive stability parameter γi

n, and the learnability of the generative model through the
total variation distance dTV(n) as stated in Theorem 1. First, as for the bound for the total variation
distance dTV (n) in Theorem 1. For Equation 8 in the proof of Theorem 1, we can rewrite it in the
setting of in-context learning as follows:∣∣∣RD̃i−1

(A(S̃i))−RDi
(A(S̃i))

∣∣∣ = ∣∣∣Ez∼P(·|S̃i−1)
ℓ(A(S̃i), z)− Ez∼P(·|Si)ℓ(A(S̃i), z)

∣∣∣
=

∣∣∣Ez∼P(·|S̃i−1)
ℓ(A(S̃i), z)− Ez∼Pθ̂(·|S̃i−1)

ℓ(A(S̃i), z)
∣∣∣

=

∣∣∣∣∣
∫
z

ℓ(A(S̃i), z)
(
P
(
z | S̃i−1

)
− Pθ̂

(
z | S̃i−1

))
dz

∣∣∣∣∣
≤

∫
z

∣∣∣∣ℓ(A(S̃), z)
(
P
(
z | S̃i−1

)
− Pθ̂

(
z | S̃i−1

))∣∣∣∣dz
≤ M

∫
z

∣∣∣P(
z | S̃i−1

)
− Pθ̂

(
z | S̃i−1

)∣∣∣dz
= 2MTV

(
P(· | S̃i−1),Pθ̂(· | S̃i−1)

)
. (46)

Where, the second equality holds because, in the (i− 1)-th generation of the self-consuming loop, the
mixed data distribution from the (i− 1)-th generation is reintroduced as the ground truth distribution
to train the transformer. As a result, the transformer outputs the synthetic data distribution for the
i-th generation. Thus, TV

(
P(· | S̃j),Pθ̂(· | S̃j)

)
corresponds to dTV(n) in Theorem 1. Finally, the

bound for the total variation distance dTV (n) follows from Lemma 12.

dTV (n) ≲
1

n1/2
log(1 + n) +

1

n1/4
log(1/δ). (47)

Similarly, for the recursive stability parameter in the self-consuming loop, we rederive Equation 21
from the proof of Theorem 1 under the in-context learning setting:

|Ez′
0,j∼D0

E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

[
Ez∼D0ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
− Ez′

0,j∼D0
E
Si,1−α∼Dn(1−α)

i ((St
0,α)j)

[
Ez∼D0ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z

)
− ℓ

(
A
(
(St

0,α)
j ∪ Si,1−α

)
, z0,j

)]
|

=
∣∣∣Ez′

0,j∼D0
Ez∼D0

[
E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

ℓ
(
A
((

St
0,α

)j ∪ Si,1−α

)
, z

)
−E

Si,1−α∼Dn(1−α)
i ((St

0,α)j)ℓ
(
A
((

St
0,α

)j ∪ Si,1−α

)
, z

)]∣∣∣
+
∣∣∣Ez′

0,j∼D0
Ez∼D0

[
E
Si,1−α∼Dn(1−α)

i (Sj
0,α)

ℓ
(
A
((

St
0,α

)j ∪ Si,1−α

)
, z0,j

)
−E

Si,1−α∼Dn(1−α)
i ((St

0,α)j)ℓ
(
A
((

St
0,α

)j ∪ Si,1−α

)
, z0,j

)]∣∣∣
≤ 2n(1− α)βn

∥∥∥TF((
St
0,α

)j ∪ Si−1,1−α

)
− TF

((
St
0,α

)j ∪ S′
i−1,1−α

)∥∥∥
ℓ2

≲ 2n(1− α)βn
2B̃L

W

2n+ 1

[
((1− α)B̃L

W )i−1 + α
1− ((1− α)B̃L

W )i−1

1− (1− α)B̃L
W

]
= 2n(1− α)βnγ

i−1
n . (48)
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For the uniform stability parameter βn of SGD algorithm, we can derive the bound from Lemma 11.
Substituting above results into Theorem 3, we obtain the following conclusion:∣∣∣RD0

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣
≤

(
(1− α)βn log(n(1− α)) + α

(
βn + (1− α)ρ2γi−1

n

)
log(nα)

)
log(

1

δ
)

+
(√

(1− α)nαβn +Mn−1/2(
√
1− α+

√
α)

)√
log(

1

δ
) + 2M

(
1− (1− α)i

)
α−1dTV(n)

≤ βn

[
(1− α) log(n(1− α)) log(

1

δ
) + α log(nα) log(

1

δ
) + α

√
(1− α)n log

1

δ

]

+ γi−1
n α(1− α)ρ2 log(nα) log(

1

δ
) + n−1/2M(

√
1− α+

√
α)

√
log(

1

δ
) + 2dTV(n)M

(
1− (1− α)i

)
α−1

≲ n−1/2 log(n)Mρ2α
√
1− α log

1

δ
+ n−1ρ2((1− α)B̃L

W )iα log2(n) log

(
1

δ

)
+ n−1/4α−1M

(
1− (1− α)i

)
log(

1

δ
). (49)

A.9 PROOF OF THEOREM 4

In this section, we prove Theorem 4. The proof follows a similar approach to that of Theorem 3;
however, it is more intricate due to the fact that the mixed dataset in Theorem 4 contains synthetic
data from all previous generations. Each generation’s synthetic dataset depends on the synthetic
datasets of previous generations, leading to a more complex non-i.i.d. setting. Similar to Theorem 3,
we begin by decomposing the generalization error into two components: the Cumulative Distribution
Shift Across Generations and the Generalization Error on Mixed Distributions.

The main proof is as follows:

Proof of Theorem 4. We begin by decomposing the generalization error as follows:∣∣∣RD0
(A(S̃i))− R̂S̃i

(A(S̃i))
∣∣∣ ≤ ∣∣∣RD0

(A(S̃i))−RD̃i
(A(S̃i))

∣∣∣︸ ︷︷ ︸
Cumulative distribution shift across generations

+
∣∣∣RD̃i

(A(S̃i))− R̂S̃i
(A(S̃i))

∣∣∣︸ ︷︷ ︸
Generalization error on mixed distributions

.

Upper Bounding Cumulative Distribution Shift Term

For the term
∣∣∣RD0(A(S̃i))−RD̃i

(A(S̃i))
∣∣∣, we first note that D̃i =

1
1+iλD0 +

λ
1+iλD1 +

λ
1+iλD2 +

...+ λ
1+iλDi. Therefore, we obtain:∣∣∣RD0

(A(S̃i))−RD̃i
(A(S̃i))

∣∣∣
=

∣∣∣∣RD0(A(S̃i))−
1

1 + iλ
RD0(A(S̃i)−

λ

1 + iλ
RD1(A(S̃1))− ...− λ

1 + iλ
RDi(A(S̃i))

∣∣∣∣
=

∣∣∣∣ iλ

1 + iλ
RD0

(A(S̃i)−
λ

1 + iλ
RD1

(A(S̃1))− ...− λ

1 + iλ
RDi

(A(S̃i))

∣∣∣∣
≤ λ

1 + iλ

∣∣∣RD0
(A(S̃i)−RD1

(A(S̃i))
∣∣∣+ ...+

λ

1 + iλ

∣∣∣RD0
(A(S̃i)−RDi

(A(S̃i))
∣∣∣

≤ λ

1 + iλ

i∑
j=1

∣∣∣RD0(A(S̃i)−RDj (A(S̃i))
∣∣∣ . (50)

Furthermore, we can further decompose it as follows:∣∣∣RD0(A(S̃i)−RDj (A(S̃i))
∣∣∣ ≤ ∣∣∣RD0(A(S̃i))−RD̃j−1

(A(S̃i))
∣∣∣+ ∣∣∣RD̃j−1

(A(S̃i))−RDj (A(S̃i))
∣∣∣ .

(51)

30



Published as a conference paper at ICLR 2025

By substituting inequality 51 into inequality 50, we obtain:∣∣∣RD0
(A(S̃i))−RD̃i

(A(S̃i))
∣∣∣

≤ λ

1 + iλ

i∑
j=1

(∣∣∣RD0
(A(S̃i))−RD̃j−1

(A(S̃i))
∣∣∣+ ∣∣∣RD̃j−1

(A(S̃i))−RDj
(A(S̃i))

∣∣∣) . (52)

Thus, from equation 46 in the proof of Theorem 3 and lemma 12, we obtain:∣∣∣RD̃j−1
(A(S̃i))−RDj

(A(S̃i))
∣∣∣ ≤ 2MTV

(
P
(
· | S̃j−1

)
,Pθ̂

(
· | S̃j−1

))
≲ Mn

−1/4
j−1 log nj−1 log(1/δ). (53)

Incorporating inequality 53 into inequality 52, we arrive at:

|RD0
(A(S̃i))−RD̃i

(A(S̃i))|

≲
λ

1 + iλ

i∑
j=1

∣∣∣RD0
(A(S̃i))−RD̃j−1

(A(S̃i))
∣∣∣+ λ

1 + iλ

i−1∑
j=0

Mn
−1/4
j log nj log(1/δ). (54)

Let f(i) =
∑i−1

j=0 Mn
−1/4
j log nj log(1/δ), Then, we obtain:

|RD0
(A(S̃i))−RD̃i

(A(S̃i))|

≲
λ

1 + iλ

∣∣∣RD0(A(S̃i))−RD̃i−1
(A(S̃i))

∣∣∣+ ...+
λ

1 + iλ

∣∣∣RD0(A(S̃i))−RD̃1
(A(S̃i))

∣∣∣+ λ

1 + iλ
f(i).

Similarly, we get:

|RD0(A(S̃i))−RD̃i−1
(A(S̃i))|

≲
λ

1 + (i− 1)λ

∣∣∣RD0(A(S̃i))−RD̃i−2
(A(S̃i))

∣∣∣+ ...+
λ

1 + (i− 1)λ

∣∣∣RD0(A(S̃i))−RD̃1
(A(S̃i))

∣∣∣
+

λ

1 + (i− 1)λ
f(i− 1).

Then, we have

|RD0(A(S̃i))−RD̃i
(A(S̃i))| ≲

λ

1 + iλ
f(i) +

λ

1 + iλ

λ

1 + (i− 1)λ
f(i− 1)+

(
λ

1 + iλ
+

λ

1 + iλ

λ

1 + (i− 1)λ
)(
∣∣∣RD0

(A(S̃i))−RD̃i−2
(A(S̃i))

∣∣∣+ ...+
∣∣∣RD0

(A(S̃i))−RD̃1
(A(S̃i))

∣∣∣).
(55)

Thus, by applying recursive techniques, we obtain the following result:

|RD0
(A(S̃i))−RD̃i

(A(S̃i))|

≲
λ

1 + iλ
f(i) +

λ

1 + iλ

λ

1 + (i− 1)λ
f(i− 1) + (

λ

1 + iλ

λ

1 + (i− 2)λ
+O(

1

(1 + iλ)2
))f(i− 2)

+ ...+ (
λ

1 + iλ

λ

1 + λ
+O(

1

(1 + iλ)
))f(1)

≲
λ

1 + iλ

[
f(i) +

λ

1 + (i− 1)λ
f(i− 1) +

λ

1 + (i− 2)λ
f (i− 2) + ...+

λ

1 + λ
f(1)

]
≲ M log

1

δ

λ

1 + iλ

[
n
− 1

4
i−1 log(ni−1) + (1 +

λ

1 + (i− 1)λ
)n

− 1
4

i−2 log(ni−2)+

(1 +
λ

1 + (i− 1)λ
+

λ

1 + (i− 2)λ
)n

− 1
4

i−3 log(ni−3) + ...+ (1 + ...+
λ

1 + λ
)n

− 1
4

0 log(n0)
]

≲ n− 1
4 log((1 + iλ)n)M log

1

δ
. (56)
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Upper Bounding Generalization Error on Mixed Distributions Term

Next, we turn our attention to the term |RD̃i
(A(S̃i)) − R̂S̃i

(A(S̃i))|. Our primary objective is to
establish a moment bound for this expression.

∥∥∥RD̃i
(A(S̃i))− R̂S̃i

(A(S̃i))
∥∥∥
p

=
∥∥∥ 1

1 + iλ
RD0

(A(S̃i)) +
λ

1 + iλ
RD1

(A(S̃i)) +
λ

1 + iλ
RD2

(A(S̃i))...+
λ

1 + iλ
RDi

(A(S̃i))

− 1

(1 + iλ)n

∑
zi∈S0

ℓ(A(S̃i), zi)−
1

(1 + iλ)n

∑
zi∈S1

ℓ(A(S̃i), zi)− ...− 1

(1 + iλ)n

∑
zi∈Si

ℓ(A(S̃i), zi)
∥∥∥
p

≤

∥∥∥∥∥ 1

1 + iλ
RD0(A(S̃i))−

1

(1 + iλ)n

∑
zi∈S0

ℓ(A(S̃i), zi)

∥∥∥∥∥
p︸ ︷︷ ︸

Term 0

+

∥∥∥∥∥ λ

1 + iλ
RD1(A(S̃i))−

1

(1 + iλ)n

∑
zi∈S1

ℓ(A(S̃i), zi)

∥∥∥∥∥
p︸ ︷︷ ︸

Term 1

+ ..+

∥∥∥∥∥ λ

1 + iλ
RDi

(A(S̃i))−
1

(1 + iλ)n

∑
zi∈Si

ℓ(A(S̃i), zi)

∥∥∥∥∥
p︸ ︷︷ ︸

Term i

. (57)

Fixing S0, S1, . . . , Si−1, the data in Si are independent. Following a similar approach to the proof
of Theorem 1, we utilize this property along with Lemma 8 to bound Term i. Consequently, from
Equation 15 in the proof of Theorem 1, we obtain:∥∥∥∥∥ λ

1 + iλ
RDi(A(S̃i))−

1

(1 + iλ)n

∑
zi∈Si

ℓ(A(S̃i), zi)

∥∥∥∥∥
p

≲ p
λ

1 + iλ
β(1+iλ)n log(λn) +

M

1 + iλ

√
pλ

n
.

(58)
Next, we consider Term 0. Similar to Proof of Theorem 3, we first introduce a set of functions and
apply Lemma 8 to bound Term 0. Specifically, we define hj(S), which serves a similar role to the gi
’s in Lemma 8, as follows:

hj(S0)

= Ez′
0,j∼D0

[
Ez∼D0

ℓ
(
A
(
Sj
0 ∪ S1 ∪ ... ∪ Si

)
, z

)
− ℓ

(
A
(
Sj
0 ∪ S1 ∪ ... ∪ Si

)
, z0,j

)]
, (59)

where z0,j denote the j-th data point in S0, and Sj
0 represent the dataset obtained by replacing z0,j

with z′
0,j . Moreover, following the procedure above, we observe that |hj | ≤ M and E

[
hj | S\j

0,α

]
= 0

. More intricately, we will now prove that hj exhibits a bounded difference. However, it is important to
note that S1, . . . , Si all depend on S0, so when a single data point in S0 is changed, the corresponding
datasets will also change. We denote these modified datasets as S′

1, . . . , S
′
i and consequently, we

have the following:
|hj(S0)− hj(S

t
0)|

= |Ez′
0,j∼D0

[
Ez∼D0

ℓ
(
A
(
Sj
0 ∪ S1 ∪ ... ∪ Si

)
, z

)
− ℓ

(
A
(
Sj
0 ∪ S1 ∪ ... ∪ Si

)
, z0,j

)]
|

− Ez′
0,j∼D0

[
Ez∼D0

ℓ
(
A
(
(St

0)
j ∪ S′

1 ∪ ... ∪ S′
i

)
, z

)
− ℓ

(
A
(
(St

0)
j ∪ S′

1 ∪ ... ∪ S′
i

)
, z0,j

)]
≤ 2β(1+iλ)n

(
∥Sj

0 − (St
0)

j∥ℓ2 + ∥S1 − S′
1∥ℓ2 + ...+ ∥Si − S′

i∥ℓ2
)
. (60)

Thus, by applying the recursive stability established in Theorem 2, it is important to first note that
in Theorem 2, the mixed dataset is defined as S̃j = αS0 + (1 − α)Sj , whereas in this theorem,
the mixed dataset is defined as S̃i =

∑i
j=0 Sj . Therefore, by following the proof steps outlined in

Theorem 2, we can derive the following:

|hj(S0)− hj(S
t
0)| ≲ 2β(1+iλ)n

(
i!B̃iL

W

)
.
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Thus, we apply lemma 8:∥∥∥∥∥∥
n∑

j=1

hj(S0)

∥∥∥∥∥∥
p

≤ 12
√
2pn2β(1+iλ)n

(
i!B̃iL

W

)
log(n) + 4M

√
pn

≲ p
ρ2

1 + iλ

(
i!B̃iL

W

)
log(n(1 + iλ)) +M

√
pn.

We observe that the difference between Term 0 and 1
(1+iλ)n

∥∥∥∑n
j=1 hj(S0)

∥∥∥
p

is negligible. Thus,

we can bound Term 0 as follows:∥∥∥∥∥ 1

1 + iλ
RD0(A(S̃i))−

1

(1 + iλ)n

∑
zi∈S0

ℓ(A(S̃i), zi)

∥∥∥∥∥
p

≲ p
ρ2

(1 + iλ)2n

(
i!B̃iL

W

)
log(n(1 + iλ)) +

1

1 + iλ
M

√
p/n. (61)

Using the same method, for Term j, where 1 ≤ j ≤ i− 1, we can derive the following:∥∥∥∥∥ λ

1 + iλ
RDj

(A(S̃i))−
1

(1 + iλ)n

∑
zi∈S1

ℓ(A(S̃j), zi)

∥∥∥∥∥
p

≲ p
ρ2

(1 + iλ)2n

(
j!B̃jL

W

)
log(n(1 + iλ)) +

1

1 + iλ
M

√
p/n. (62)

In summary, we can finally bound the Generalization Error on the Mixed Distributions term as
follows: ∥∥∥RD̃i

(A(S̃i))− R̂S̃i
(A(S̃i))

∥∥∥
p

≲ p
ρ2

(1 + iλ)2n
log((1 + iλ)n)i!B̃

(i+1)L
W +

Mi

1 + iλ

√
p

n
.

Then, according to Lemma 9, we obtain, with probability at least 1− δ:∥∥∥RD̃i
(A(S̃i))− R̂S̃i

(A(S̃i))
∥∥∥
p

≲
ρ2

(1 + iλ)2n
log((1 + iλ)n)i!B̃

(i+1)L
W log

1

δ
+

Mi

1 + iλ

√
1

n
log

1

δ
.

Then, combine the above inequality with inequality 56, we obtain:∣∣∣RD0
(A(S̃i))− R̂S̃i

(A(S̃i))
∣∣∣

≲ n− 1
4 log((1 + iλ)n)M log

1

δ
+

ρ2

(1 + iλ)2n
log((1 + iλ)n)i!B̃

(i+1)L
W log

1

δ
+

Mi

1 + iλ

√
1

n
log

1

δ

≲ n− 1
2

Mi

1 + iλ

√
log

1

δ
+ n−1 ρ2

(1 + iλ)2
log((1 + iλ)n)i!B̃

(i+1)L
W log

1

δ

+ n− 1
4 log((1 + iλ)n)M log

1

δ
.

The proof is complete.

B EXPERIMENTS

In this section, we present some experimental results. Specifically, we trained transformer models to
in-context learn linear functions within STLs.
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In these experiments, we considered the class of linear functions:

F =
{
f | f(x) = w⊤x,w ∈ Rd

}
,

in d = 5 dimensions. We sampled x1, . . . ,xk,xquery, and w independently from the isotropic
Gaussian distribution N (0, Id). For each xi, we computed yi = w⊤xi and constructed the prompt
as:

P = (x1, y1,x2, y2, . . . ,xk, yk,xquery).

We employed a 12-layer, 8-head GPT-2 model with a hidden size of 256, trained on an R5 linear
regression task with 40 in-context examples. Two cases were considered:

• Mixed Case: Fresh data and generated data were mixed in a 0.5 ratio.
• Full Synthetic Case: No fresh data was used.

The results of these experiments are summarized below:

Loop 1 2 3 4 5 6
Full Synthetic 0.3817 1.4975 1.5396 2.0836 2.3912 2.8764

Mixed 0.3817 0.4208 0.4391 0.4503 0.4641 0.4702

As observed, the error accumulates progressively with more self-consuming loops, particularly in the
full synthetic case, where the error grows rapidly. In contrast, maintaining a constant-sized proportion
of real data effectively reduces the loss, which is consistent with our theoretical findings.
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