
A Environment Details500

In this section we provide further details on the different environments used in our experiments.501

A.1 MT-Coarse Manipulation502

For coarse manipulation tasks we focus on a variety of objects including blocks, mugs, cups, and503

shoes (both men and women shoes). As noted in the main paper, for these set of objects we focus504

on pick-and-place skills. However, we note that we did experiment with more complex contact-rich505

skills (e.g. pushing, stacking). However, we found the physics to be unstable with more complex506

objects (e.g. cups). For instance, pushing cups would almost always topple them and roll over. For507

future work, we hope to make our skills more robust.508

Specifically, we use fixed size blocks with different semantic colors, 4 mugs, 4 cups and 4 shoes.509

We use google scanned objects [64] to collect non-block objects and use mujoco [65] to simulate510

our environment. We use the latest mujoco environments to import meshes into the simulator. Each511

environment in this set of tasks is created by first selecting a target object-type and then selecting a512

target object from the set of objects. We then select 3-5 distractor objects to fill the scene. These513

objects are uniformly selected from the remaining objects.514

A.2 MT-Precise Manipulation515

As noted in the main paper for precise manipulation tasks we use the spatial precision set of tasks516

from RLBench [57]. Overall, we use 4 tasks (see Figure 3 (Left)) – square block insertion, pick517

up small objects, shape sorting, and unplug usb from computer. We avoid using the motion-planner518

augmented approach for solving these tasks and instead opt for learning reactive closed-loop control519

policies. We use the delta end-effector actions for our tasks. Additionally, we use standard front and520

wrist mounted camera. along with proprioceptive and force-torque feedback as policy input.521

However, directly using end-effector actions increases the policy horizon significantly. Moreover,522

naively using the original input distribution for each task also requires learning full 6-DOF policies.523

Both of these can significantly increase the data requirements to learn the manipulation policy. To524

avoid this we restrict the starting distributions for each task such that the objects are spawned in a525

slightly narrow region infront of the robot. We further make other task-specific changes, detailed526

below, such that the robot can perform each task without changing hand orientations.527

Insert Onto Square Peg: For this task we restrict the orientations of the square ring (blue object)528

and the peg on which to insert. This allows the robot to perform the task without changing gripper529

orientations. Further, we use a region of 40cm ⇥ 30cm infront of the robot to spawn both the base530

and ring. Finally, the default task configuration provides 20 different peg colors, of which we use531

the first 10 colors for training and remaining 10 colors for robustness experiments.532

Pick and Lift Small: For this task, we again use a region of 40cm ⇥ 30cm infront of the robot to533

spawn both all objects. We also restrict the orientation of each object such that it can be grasped534

directly without requireing gripper orientation changes.535

Shape-Sorting: The default configuration for the shape-sorting task considers 4 different shaped536

objects (see Figure 3 Bottom-Left) – square, cylinder, triangle, star, moon. In the default RLBench537

configuration most objects directly stick to the robot finger and are simply dropped into the hole for538

task completion. However, with closed loop control we find that non-symmetric objects (star, trian-539

gle, and moon) can have significant post-grasp displacement such that it is impossible to insert these540

objects without changing gripper orientation. Hence, we exclude these two objects from evaluation541

and only use symmetric square and cylinder objects.542

Take USB Out: This task requires the robot to unplug a USB inserted into the computer. However,543

the default configuration for this task requires 6-dof control. To avoid this, we create smaller com-544

puter and USB assets and mount them vertically on the table such that the USB can be unplugged545

without changing hand orientation. See Figure 3 (Bottom-Right) for visualization.546

14



Train set Test set

(A) Real-world setup for pickup and insertion tasks. (B) Examples objects for 
real-world pickup task

(C) Example objects for
coarse manipulation task

Figure 6: Left: Real World env setup with third-person (red) and first-person (blue) camera views.
Middle: Example objects set used for real-world pickup task. Right: Example objects used for MT-
coarse.

A.3 MT-Dynamic Manipulation547

This task involves using the CMU Ballbot in simulation (PyBullet [66]) to perform a dynamic pick548

up task. The task involves picking up a block that is placed on a table in front of the ballbot. We use549

two blocks (red and blue) in this task and use language instructions to specify which object to pick550

up. The initial conditions are set such that the table and objects are always out of the reach of the551

ballbot arms and the ballbot has to roll forward to pick up the objects. We use a statically mounted552

camera looking at the table and the ballbot as the third-person camera and the camera located on553

the turret of the ballbot as the first-person camera. The turret tilt is adjusted such that the objects on554

the table are initially out of the view of the turret camera and only when the ballbot starts moving555

towards the table, the objects come into view. The third person camera is always able to view both556

the objects and the ballbot. We use task space control to control the ballbot end-effector while a557

center of mass balancing controller is always running in a high-frequency feedback loop to balance558

the ballbot.559

B Architecture Details560

Section 3 discusses the overall architecture used in our work. To recall, our proposed architecture561

uses a multi-resolution approach with multiple-sensors, each with different fidelity. We process562

each sensor with a separate network which is conditionally initialized using a pre-trained vision-563

language model. The output of each vision model is flattened to create a set of patches. For DETR564

[50, 51] based model we use a ResNet-101 backbone and flatten the output layer into 49 patches and565

add positional embedding to it. For CLIP [4] we use a ViT-B model and use hierarchical features566

from the 5’th, 8’th and 11’th layer. Since MDETR already does vision-language fusion using a567

transformer we directly use its output. However, since CLIP only weakly associates vision and568

language at the last layer, we additionally use FiLM layers to condition the output. Our use of569

FiLM is similar to previous models [67]. For each camera modality we use a small transformer570

with multi-head attention. Each transformer uses an embedding size of 256 and 8 heads. We use571

post layer-norm in each transformer layer. Further, in each transformer layer we use cross-attention572

with the other camera. Overall we use 3 transformer layers for each camera modality. Our force-573

torque and proprioceptive input is concatenated together and mapped into 256 dimensions using a574

linear layer. We concatenate the readout tokens from each camera transformer and the force-torque575

embedding. This 256 ⇥ 3 size embedding is then processed by 2 linear layers of size 512 which576

output the robot action.577

Input: For each of our camera sensor we use an image of size 224⇥ 224. For proprioceptive input578

we use the end-effector position of the arm. While for force-torque input we use the 6 dimensional579

force-torque data. We use cropping augmentation for both camera sensors. Specifically, we first580

resize the image to 226 and then do random crop with shift = 8. For, more aggressive pixel level581

15



Key Value

batch size 16
proprio and force torque embedding 256
camera-transformer embedding Dim. 256
camera-transformer feedForward Dim. 768
Number of transformer layers 3
learning rate 0.0001
warmup epochs 5
total epochs 60
optimizer AdamW
weight decay 0.01
scheduler cosine

Table 6: Hyperparameters used for our architecture and model training.

augmentations we stochastically apply grayscale and use color jitter with brightness 2 (0.4, 0.8),582

contrast 2 (0.4, 0.8), saturation 2 (0.4, 0.6) and hue 2 (0.0, 0.5). These augmentations significantly583

change the underlying visual semantics of the task.584

B.1 Training Details585

In this section we provide details on the demonstrations (for each environment type) used to train586

our approach. Further, we also provide details on the train and heldout configurations used for587

robustness evaluation.588

MT-Coarse: As noted above in Appendix A.1, we use multiple different objects to train and evaluate589

our policy. Each environment is created by first sampling a target object and then a set of distractor590

objects. For each environment and skill combination we collect 20 demonstrations. Overall, this591

gives us ⇡ 1000 demonstrations across all tasks. We then learn one policy across all tasks.592

MT-Precise: For spatial precision tasks from tasks from RLBench [57] we use 4 different tasks.593

As discussed in Section A.2, each task has it’s own set of variations. For training our multi-task594

policy we use try to balance the number of demonstrations from each task. For square peg insertion595

(insert onto square peg) task we use first 10 variations for training and gather 25 trajectories per596

variation. Each other task has less than 4 variations hence for each task we use 100 demonstrations597

each for training. To test visual-semantic robustness for these tasks Section 5.2 we use the insert-598

onto-square-peg task since only this task has any semantic variations. We use the remaining 10 peg599

colors (i.e. 10 heldout variations) to test each approach.600

MT-Dynamic: To collect expert demonstrations, we sample the locations of the objects on the table601

in a 70cm*20cm region and sample the initial ballbot location in a 50cm*50cm region. We collect602

50 demonstrations for each task setting (each block). As noted earlier, the third-person camera is603

used at a frequency of 5Hz, the turret camera is used at 20Hz and proprioception and force-torque604

feedback is used at 75Hz.605

Real-World: For real-world tasks we collect data using teleoperation with a leap-motion device606

which can track hand movements upto a 100Hz. We map these movements to robot movements607

and collect proprioceptive and force-torque data at 75Hz, while both cameras are recorded at 30Hz.608

To collect data for pickup tasks we use two blocks with different shapes and different colors. The609

green and pink blocks in Figure 6 (Right) were used to collect all training data. While evaluation610

happened on 8 other blocks, each with a different shape and color. For training our policies we611

collect 60 demonstrations for each pickup variation and 50 demos for the insertion task. We note612

that the initial state distribution for insertion was narrower than pickup and hence it required fewer613

demonstrations.614

Metrics: We use task success as the evaluation metric. Since we use a multi-task setting we report615

mean success over all tasks. During training, we evaluate the policy every 4 epochs on all train616

tasks. We report the average over top-5 mean success rates across all evaluation epochs. For task617

generalization results (Q3) we use the trained policy and evaluate it on novel visual-semantic tasks618

16



Figure 7: Example failure case for MT-Dynamic (Ballbot) task. As can be seen in the figure, if the
robot approaches the object but does not react fast enough to the object contact, the block can topple
resulting, in task failure.

which were never seen during training. Hence, for Q3 we report task success on novel unseen tasks.619

For all evaluations we use 20 rollouts per task. Further training details are provided in Appendix B.1.620

C Additional Ablations621

We further ablation on the different components of our proposed approach. For these set of results622

instead of using all 3 environment suites for evaluation, we choose the most appropriate environment623

suite for each component of our approach and evaluate on it.624

Pixel-Level Augmentations: We evaluate the effect of pixel-level augmentations (color jitter, gray-625

scale) on the training and generalization of our MT-policies on MT-Coarse. Figure 5 reports results626

on both training and heldout (novel) evaluation configurations. We see that while there is very627

little difference in training performance, extensive pixel-level augmentations helps generalization628

by close to ⇡ 15%. While pixel-level augmentations change the semantics of the task, our multi-629

modal approach is still able to complete the task because of visual-language grounded provided from630

pretraining.631

Multi-Modal Fusion using Cross-Attention: We compare use of early fusion using cross-attention632

with late fusion using concatenation. Figure 5 shows that using cross-attention improves the per-633

formance by around ⇡ 8% on both train and heldout configuration. Thus, using cross-attention634

for multi-modal fusion is more effective than concatenation. However, we note that cross-attention635

requires more parameters and has slower inference.636

Effect of Pretrained-VLMs: We also evaluate the effects of using pretrained-VLMs. Figure 5637

shows the training and heldout performance using ImageNet initialization which only has visual638

pretraining and no vision-language pretraining. We see that while training performance matches our639

approach the heldout performance decreases tremendously. This large decrease is due to missing640

visual-language grounding since we use separately trained visual and language models.641

17


	Introduction
	Related work
	Proposed Approach
	Multi-Resolution Architecture

	Experimental Setup
	Environments
	Baselines

	Experimental Results
	Comparison to Multi-Task Baselines
	Additional Baseline Comparisons
	Ablations

	Conclusion and Limitations
	Environment Details
	MT-Coarse Manipulation
	MT-Precise Manipulation
	MT-Dynamic Manipulation

	Architecture Details
	Training Details

	Additional Ablations

