
Keep-Alive Caching for Hawkes Processes
(Supplementary Material)

Sushirdeep Narayana1 Ian A. Kash1

snaray25@uic.edu1 iankash@uic.edu1

1Department of Computer Science„ University of Illinois at Chicago„ Chicago, Illinois, USA

This Supplementary Material contains proofs and other material omitted from the main manuscript.

A OMITTED PROOFS

Lemma 1. The expected cost of a cache policy over an inter-arrival is

E[cost(π(·|Hm−1))] = ccs +

∫ ∞

0

π(x|Hm−1) · g(x|Hm−1) dx,

where the instantaneous cost at x units after the most recent arrival at tm−1 is

g(x|Hm−1) = cp ·
(
1− F (x|Hm−1)

)
− ccs · f(x|Hm−1).

Proof. Let L = {L0, L1, L2, · · · , L2k−1} denote the set of points on the sequence of keep-alive windows for policy
π(·|Hm−1) where even indices are the start of the windows and odd indices are the endpoints of the windows. Let
Z(L, j) =

∑j
p=0(L2p+1 − L2p) for j ≥ 0. The function Z(L, j) represents the time accumulated in the cache through the

j-th sequence of the keep-alive window. For j < 0, we have Z(L, j) = 0. Then we have

E[cost(π(·|Hm−1))]

= ccs ·
∫ L0

0

f(x|Hm−1) dx +

k−1∑
j=0

∫ L2j+1

L2j

cp ·
(
Z(L, j − 1) + x− L2j

)
· f(x|Hm−1) dx

+

k−2∑
j=0

∫ L2j+2

L2j+1

(
ccs + cpZ(L, j)

)
f(x|Hm−1) dx +

∫ ∞

L2k−1

(
ccs + cpZ(L, k − 1)

)
f(x|Hm−1) dx (1)

= ccs · F (L0|Hm−1) +

k−1∑
j=0

(
cp ·

(
Z(L, j − 1) + x− L2j

)
· F (x|Hm−1)

∣∣∣L2j+1

L2j

−
∫ L2j+1

L2j

cpF (x|Hm−1) dx

)

+

k−2∑
j=0

(
ccs + cp · Z(L, j)

)
· F (x|Hm−1)

∣∣∣L2j+2

L2j+1

+
(
ccs + cp · Z(L, k − 1)

)
· F (x|Hm−1)

∣∣∣∞
L2k−1

(2)

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

E[cost(π(·|Hm−1))]

= ccsF (L0|Hm−1) +

k−1∑
j=0

cp

(
Z(L, j − 1) + L2j+1 − L2j

)
F (L2j+1|Hm−1)−

k−1∑
j=0

cpZ(L, j − 1)F (L2j |Hm−1)

−
k−1∑
j=0

∫ L2j+1

L2j

cpF (x|Hm−1) dx+

k−2∑
j=0

(
ccs + cp · Z(L, j)

)
· F (L2j+2|Hm−1)

−
k−2∑
j=0

(
ccs + cp · Z(L, j)

)
F (L2j+1|Hm−1) +

(
ccs + cp · Z(L, k − 1)

)
· 1

−
(
ccs + cp · Z(L, k − 1)

)
F (L2k−1|Hm−1) (3)

= ccsF (L0|Hm−1) +

k−1∑
j=0

cpZ(L, j)F (L2j+1|Hm−1)−
k−1∑
j=0

cpZ(L, j − 1)F (L2j |Hm−1)

−
k−1∑
j=0

∫ L2j+1

L2j

cpF (x|Hm−1) dx +

k−2∑
j=0

ccs · F (L2j+2|Hm−1) +

k−2∑
j=0

cp · Z(L, j) · F (L2j+2|Hm−1)

−
k−2∑
j=0

ccs · F (L2j+1|Hm−1) −
k−2∑
j=0

cp · Z(L, j) · F (L2j+1|Hm−1)

+ ccs + cp · Z(L, k − 1) − ccs · F (L2k−1|Hm−1) − cp · Z(L, k − 1) · F (L2k−1|Hm) (4)

We apply integration by parts to the term
∫ L2j+1

L2j
cp ·

(
Z(L, j − 1) + x− L2j

)
· f(x|Hm−1) dx in Equation (1) to get the

terms cp ·
(
Z(L, j−1)+x−L2j

)
·F (x|Hm−1)

∣∣L2j+1

L2j
−
∫ L2j+1

L2j
cpF (x|Hm−1) dx in Equation (2). In Equation (4), we have

substituted Z(L, j) for the terms Z(L, j−1)+(L2j+1−L2j) in Equation (3) since, Z(L, j) = Z(L, j−1)+(L2j+1−L2j).
The remainder of the proof consists of combining and canceling terms to simplify (4), then applying the fundamental
theorem of calculus.

E[cost(π(·|Hm−1))]

= ccsF (L0|Hm−1) +

k−1∑
j=0

cpZ(L, j) · F (L2j+1|Hm−1)−
k−1∑
j=0

cpZ(L, j − 1) · F (L2j |Hm−1)

−
k−1∑
j=0

∫ L2j+1

L2j

cpF (x|Hm−1) dx +

k−2∑
j=0

ccs · F (L2j+2|Hm−1) +

k−2∑
j=0

cp · Z(L, j) · F (L2j+2|Hm−1)

−
k−1∑
j=0

ccs · F (L2j+1|Hm−1) −
k−1∑
j=0

cp · Z(L, j) · F (L2j+1|Hm−1) + ccs + cp · Z(L, k − 1)

= −
k−1∑
j=0

∫ L2j+1

L2j

cpF (x|Hm−1) dx+

k−1∑
j=0

ccsF (L2j |Hm−1)−
k−1∑
j=0

ccsF (L2j+1|Hm−1) + ccs + cpZ(L, k − 1) (5)

= cp · Z(L, k − 1)−
k−1∑
j=0

∫ L2j+1

L2j

cpF (x|Hm−1) dx−
k−1∑
j=0

ccs ·
(
F (L2j+1|Hm−1)− F (L2j |Hm−1)

)
+ ccs

=

∫
I
cp(1− F (x|Hm−1))− ccs · f(x|Hm−1) dx + ccs

where I =

{
1, for x ∈ [L0, L1]

⋃
· · ·
⋃

[L2k−2, L2k−1]

0, otherwise
.

In Equation (5), we combine ccs · F (L0|Hm−1) and
k−2∑
j=0

ccsF (L2j+2|Hm−1) to obtain
k−1∑
j=0

ccsF (L2j |Hm−1).

Theorem 2. The points Li of the sequence of keep-alive windows over an inter-arrival for the optimal policy πopt(·|Hm−1)
are at 0, ∞, or solutions to the equation cp − (ccs · λ(x|Hm−1)) = 0 where the sign changes.

Proof. From Lemma 1 we know that the expected cost is given by E[cost(π(·|Hm−1))] =
∫∞
0

π(x|Hm−1) ·
g(x|Hm−1) dx + ccs. The points of the sequence of keep-alive windows Lk for k = 0, 1, 2, · · · for the optimal pol-

icy are the points where the first order partial derivative of the expected cost is zero, that is,
∂ E[cost(π(·|Hm−1))]

∂x
= 0

at x = Lk ∀k. The first order derivative of the expected cost is
∂ E[cost(π(·|Hm−1))]

∂x
= g(x|Hm−1). We simplify

g(x|Hm−1) as follows,

g(x|Hm−1)

= cp(1− F (x|Hm−1))− ccsf(x|Hm−1)

= cp(1− F (x|Hm−1))− ccsλ(x|Hm−1)(1− F (x|Hm−1))

= (1− F (x|Hm−1)) · (cp − ccsλ(x|Hm−1))

g(x = Lk|Hm−1) = 0

=⇒ 1− F (x = Lk|Hm−1) = 0 or cp − ccsλ(x = Lk|Hm−1) = 0

=⇒ F (x = Lk|Hm−1) = 1 or
cp
ccs

= λ(x = Lk|Hm−1) =
f(x = Lk|Hm−1)

1− F (x = Lk|Hm−1)

Hence, the points where g(x|Hm−1) = 0 are also the points where cp−ccsλ(x|Hm−1) = 0. We know that the instantaneous
cost of the policy over an inter-arrival is given by g(x|Hm−1). Let x = Lk be an arbitrary root of the equation cp −
ccsλ(x|Hm−1) = 0. If g(x|Hm−1) changes sign from positive to negative as it goes through x = Lk, that is, g(x|Hm−1) >
0 for x < Lk and changes sign to g(x|Hm−1) < 0 for x > Lk. It would be optimal for the cache policy to start
the keep-alive window from x = Lk, since the cost of caching the object from x = Lk benefits the policy. Similarly,
if g(x|Hm−1) changes sign from negative to positive as it passes x = Lk, that is, g(x|Hm−1) < 0 for x < Lk and
changes sign to g(x|Hm−1) > 0 for x > Lk. It would be optimal to stop the keep-alive window after x = Lk, since
the cost of caching the object after x = Lk will not benefit the policy. Since 1 − F (x|Hm−1) ≥ 0, ∀x, the sign of
cp − ccs · λ(x|Hm−1) determines the sign of g(x|Hm−1). The sign of cp − ccsλ(x|Hm−1) should change as it passes
through the root of the equation x = Lk for x = Lk to be considered as a point where the keep-alive window of the optimal
policy starts or ends.

This leaves the end cases where there is no solution to the equation cp−ccsλ(x|Hm−1) = 0 or the sign of cp−ccsλ(x|Hm−1)
does not change ∀ x. When g(x|Hm−1) is always non-negative, it is optimal to have a keep-alive window length of 0. This
is because having an active keep-alive window length in this case would be more expensive than a cold start. On the other
hand, when g(x|Hm−1) is always non-positive, it is optimal for the keep-alive window to always be active since keeping the
object in cache is beneficial to the policy.

Corollary 2.1. If the hazard rate is weakly decreasing, the optimal policy πopt(·|Hm−1) is a single keep-alive window
starting at τpw = 0, and is given by

πopt(x|Hm−1) =

{
1 , ∀x ∈ [0, τopt,Hm−1]

0 , otherwise
where,

1. τopt,Hm−1 = ∞, i.e., the optimal policy is to have the keep-alive window always be active when

∀x, cp
ccs

< λ(x|Hm−1),

2. τopt,Hm−1 = 0, i.e., the optimal policy would be to not cache and always have a cold start when
cp
ccs

> λ(x = 0|Hm−1)

3. The optimal policy is a keep-alive window of length τopt,Hm−1
given by the solution to the equation

cp
ccs

=
f(x = τopt,Hm−1

|Hm−1)

1− F (x = τopt,Hm−1
|Hm−1)

, otherwise.

Proof. Assume that the hazard rate of the arrival of function invocations over an inter-arrival λ(x|Hm−1) is (weakly) decreas-
ing. From Lemma 1 we know that the expected cost is given by E[cost(π(·|Hm−1))] =

∫∞
0

π(x|Hm−1) · g(x|Hm−1) dx+
ccs. We prove a single keep-alive window is optimal by showing that g(x|Hm−1) can only change its sign from negative to
positive at most once. Thus g is optimized by single window policy that keeps the object in cache until the transition from
negative to positive occurs. To begin,

g(x|Hm−1) = (1− F (x|Hm−1)) · (cp − ccsλ(x|Hm−1))

Since λ(x|Hm−1) is weakly decreasing, cp− ccsλ(x|Hm−1) is weakly increasing. Also, 1−F (x|Hm−1) is always positive.
If g(x|Hm−1) ≥ 0, then the optimal policy is to have a keep-alive window length of 0. This is because having an active
keep-alive window in this case would be more expensive than a cold start. If g(x|Hm−1) is always negative, then it is always
beneficial for the keep-alive window to be active. Otherwise, g(x|Hm−1) can change its sign at most once and such a change
must be from negative to positive. It is no longer beneficial for the provider to keep things in memory after g(x|Hm−1)
has changed from negative to positive because the cost of keeping in memory outweighs the cost of a cold start. Thus, the
optimal policy is of the form of a single keep-alive window. Now, it only remains to determine the pointτopt,Hm−1

at which
g(x|Hm−1) changes from negative to positive.

g(x = τopt,Hm−1
|Hm−1) = 0

=⇒ F (x = τopt,Hm−1
|Hm−1) = 1 or

cp
ccs

= λ(x = τopt,Hm−1
|Hm−1) =

f(x = τopt,Hm−1 |Hm−1)

1− F (x = τopt,Hm−1 |Hm−1)

Corollary 2.2. If the hazard rate is weakly increasing, the optimal policy πopt(·|Hm−1) is a single keep-alive window with
τka = ∞ and a pre-warming window, and is given by

πopt(x|Hm−1) =

{
1, τpw,Hm−1

≤ x

0, otherwise
where,

1. τpw,Hm−1 = 0, i.e., the optimal policy is to have the keep-alive window always be active when

∀x, cp
ccs

< λ(x|Hm−1),

2. τpw,Hm−1
= ∞, i.e., the optimal policy is to always have a cold start when ∀x, cp

ccs
> λ(x|Hm−1) .

3. τpw,Hm−1
satisfies the equation

cp
ccs

=
f(x = τpw,Hm−1

|Hm−1)

1− F (x = τpw,Hm−1
|Hm−1)

, i.e., an infinite keep-alive window after a pre-warming window of length

τpw,Hm−1
when cp − ccsλ(x = 0|Hm−1) > 0 and changes sign.

Proof. Following the proof of Theorem 2, we know that g(x|Hm−1) = (1−F (x|Hm−1)) · (cp − ccs · λ(x|Hm−1)). Since
λ(x|Hm−1) is weakly increasing, cp − ccsλ(x|Hm−1) is weakly decreasing. Also, 1− F (x|Hm−1) is always positive. If
initially g(x|Hm−1) < 0, then g(x|Hm−1) will always be negative. Hence, it is optimal to have the keep-alive window
always be active. If g(x|Hm−1) > 0, ∀x, that is, g is always positive, then the optimal policy is to encounter a cold start.
If g(x|Hm−1) is initially positive, then changes to a negative sign as λ(x|Hm−1) is weakly increasing, then the optimal
policy will be a pre-warming window of length decided by the position of the change of sign. We obtain τpw,Hm−1 from
solving g(x = τpw,Hm−1

|Hm−1) = 0 as follows.

g(x = τpw,Hm−1
|Hm−1) = 0

=⇒ F (x = τpw,Hm−1 |Hm−1) = 1 or
cp
ccs

= λ(x = τpw,Hm−1 |Hm−1) =
f(x = τpw,Hm−1 |Hm−1)

1− F (x = τpw,Hm−1 |Hm−1)

After the sign changes to negative, the keep-alive window should always be active„ that is, τka,Hm−1
= ∞.

Corollary 2.1 characterizes the optimal policy when the distribution of arrival requests follow the Hawkes process to be one
of the following policies,

• The keep-alive window is to always be active with τopt,Hm−1
= ∞ when, as in the Poisson case, the background

intensity is sufficiently high:
cp
ccs

< λ0.

• Experience a cold start with τopt,Hm−1 = 0 when
cp
ccs

> λ(x|Hm−1)), after the most recent arrival request.

• The keep-alive window is given by the expression

τopt,Hm−1
=

1

β

(
logα+ log

(m−1∑
j=1

eβ(tj−tm−1)
)
− log

(cp
ccs

− λ0

))
otherwise.
To compute τopt,Hm−1

, we know that the length of the optimal keep-alive window is τopt,H = topt,H − tm−1, where
tm−1 is the most recent arrival request. This expression is obtained by substituting the conditional intensity of the
Hawkes process in Corollary 2.1 and solving for topt,Hm−1 .

cp
ccs

= λ0 +
∑

tj∈Hm−1

α · e−β·(topt,Hm−1
−tj)

1

α

(cp
ccs

− λ0

)
=

∑
tj∈Hm−1

e−β·(topt,Hm−1
−tj)

1

α

(cp
ccs

− λ0

)
= e−β·topt,Hm−1 ·

∑
tj∈Hm−1

eβ·tj

log

(
1

α

(cp
ccs

− λ0

))
= −β · topt,Hm−1 + log

 ∑
tj∈Hm−1

eβ·tj


β · topt,Hm−1

= logα+ log

 ∑
tj∈Hm−1

eβ·tj

− log
(cp
ccs

− λ0

)

β · topt,Hm−1
= logα+ log

(eβ·tm−1

)
·
(∑

tj∈Hm−1

eβ·tj−β·tm−1

)− log
(cp
ccs

− λ0

)

β · topt,Hm−1
= logα+ β · tm−1 + log

 ∑
tj∈Hm−1

eβ·(tj−tm−1)

− log
(cp
ccs

− λ0

)

topt,Hm−1
= tm−1 +

1

β

logα+ log

 ∑
tj∈Hm−1

eβ·(tj−tm−1)

− log
(cp
ccs

− λ0

)
τopt,Hm−1

=
1

β
·

logα+ log
(∑
tj∈Hm−1

eβ·(tj−tm−1)
)
− log

(cp
ccs

− λ0

)

Corollary 2.3. When the parameters of the Hawkes process are such that cp − (ccs · λ(x|H)) = 0 has a solution, the
optimal policy has a history independent lower bound, and an upper bound expressed as follows

τopt,H ≥ 1

β
·
(
logα− log

(cp
ccs

− λ0

))
τopt,H ≤ 1

β
·
(
logα+ log δ + 1− log

(cp
ccs

− λ0

))
where δ satisfies

m−1∑
i=m−δ

eβ·(ti−tm−1) ≥ 1

2

m−1∑
i=1

eβ·(ti−tm−1)

Proof. We can rewrite the formula for the optimal policy for a Hawkes process with a given history as:

τopt,H = topt,H − tm

=
1

β
·

logα+ log

∑
tj∈H

eβ·tj

− log
(cp
ccs

− λ0

)− tm

=
1

β
·
(
logα+ log

(
eβ·t1 + eβ·t2 + · · ·+ eβ·tm

)
− log

(cp
ccs

− λ0

))
− tm

=
1

β
·
(
logα+ log

(
eβ·t1 + eβ·t2 + · · ·+ eβ·tm

)
− log

(cp
ccs

− λ0

))
− tm

=
1

β
·
(
logα+ log

(
(eβ·tm) · (eβ·(t1−tm) + eβ·(t2−tm) + · · ·+ eβ·(tm−tm))

)
− log

(cp
ccs

− λ0

))
− tm

=
1

β
·
(
logα+ log

(
eβ·(t1−tm) + eβ·(t2−tm) + · · ·+ eβ·(tm−tm)

)
− log

(cp
ccs

− λ0

))
=

1

β
·
(
logα+ log

(
eβ·(t1−tm) + eβ·(t2−tm) + · · ·+ 1

)
− log

(cp
ccs

− λ0

))

This has three terms, two of which are independent of the history. Thus we can obtain a lower bound on the optimal policy
for any history asτopt,H ≥ 1

β ·
(
logα− log

(
cp
ccs

− λ0

))
. In fact, this is the optimal policy for the empty history.

For the term that depends on history, all exponents are negative so each term is at most 1. This yields a trivial upper bound of
τopt,H ≤ 1

β ·
(
logα+ logm− log

(
cp
ccs

− λ0

))
. While it grows slowly due to the log, this bound is unappealing to apply

directly because it grows with the length of the history. In reality, many of the terms of the sum are close to 0 because
ti − tm is very negative for ti substantially in the past.

To get a better estimate, let δ be such that

m∑
i=m−δ+1

eβ·(ti−tm) ≥ 1

2

m∑
i=1

eβ·(ti−tm)

That is, the most recent δ arrivals provide at least half the total weight. This can be thought of as only having δ arrivals that
are recent enough to matter. Then we have the upper bound of τopt,H ≤ 1

β ·
(
logα+ log δ + 1− log

(
cp
ccs

− λ0

))
.

B OMITTED FIGURES FROM SECTION 5.1

These additional figures demonstrate the robustness of the performance of Optimized-TTL with respect to a range of
parameters. In them, we examine how the average costs behave with respect to the Hawkes process parameters λ0, α, and β

(a) α = 0.8 (b) α = 1.4 (c) α = 2.0

Figure 1: Plots of average costs for policies when α is increased, given λ0 = 0.6, β = 2.4, cp = 1.0, ccs = 1.25

(a) λ0 = 0.5 (b) λ0 = 0.75 (c) λ0 = 1.0

Figure 2: Plots of average costs for policies when λ0 is increased, given α = 1.2, β = 2.4, cp = 1.0, ccs = 1.25

(a) β = 1.8 (b) β = 2.4 (c) β = 3.0

Figure 3: Plots of average costs for policies when β is increased, given λ0 = 0.6, α = 1.2, cp = 1.0, ccs = 1.25

while holding the costs fixed. Figure 1 shows the behavior of the average cost of the policies for different values of α of the
Hawkes process. We see that as α increases, the average length of the optimal keep-alive window increases. This is because for
higher values of α, the intensity of the subsequent arrival will be larger making it larger keep-alive windows more desirable.
This intuition can be made more precise with Corollary 2.1 since g(x|Hm−1) = (1−F (x|Hm−1)) · (cp − ccsλ(x|Hm−1)).
Increasing α, increases λ(x|Hm−1) causing g(x|Hm−1) to be more negative. Therefore, the point τopt where g(x|Hm−1)
changes sign from negative to positive is larger for a larger α. The behavior of the average costs of the policies when
λ0 increases is similar to that of α as shown in Figure 2. From Figure 3 we see that as β increases, the average length
of the optimal keep-alive window decreases. The decay rate of the arrivals’ influence is larger for a larger β which
makes shorter keep-alive windows more optimal. This connects to Corollary 2.1, where a higher value of β causes
g(x|Hm−1) = (1− F (x|Hm−1)) · (cp − ccsλ(x|Hm−1)) to change from negative to positive earlier.

C EXTENSION: WORST-CASE GUARANTEES FOR HAWKES PROCESSES

We know from Theorem 2, that computing the optimal keep-alive policy requires the history Hm−1 of previous m − 1
invocations. As described in Section 4.2, the computational complexity of the optimal policy increases as the history of
invocations increase. Hence, we propose history independent policies that do not require any information regarding past
arrival requests. This problem is similar in spirit to the Ski Rental problem in online algorithms, where the customer can
buy an item for $ B or rent the item for $ R per the unit of time. There, a 2-approximation results from renting until

the cost of buying has been paid in rental fees as if the input ends during the rental period the policy was optimal and
otherwise buying immediately would have been optimal so the policy overpaid by a factor of 2. Similarly, in our setting a
fixed keep-alive policy can achieve a 2-approximation (Theorem 4). This bound does not use any information about the
parameters of the Hawkes process. In Theorem 5, we propose a history independent approximate policy that requires only
the parameters of the Hawkes process (i.e. is independent of the history), and approximates the optimal cost by a factor of

1 +

(
1

cp
ccs

· τopt,H=ϕ + 1

) 1
2

. Both results follow from the following lemma, which bounds the performance of arbitrary

history independent keep-alive policies.

Lemma 3. A policy with keep-alive window τ which does not depend on the history of arrivals of invocations is at least
max

{ cp · τ
cp · τopt,H=ϕ + ccs

+1, 1+
ccs
cp · τ

}
approximation to the cost of the optimal policy τopt,Hm−1

for any history Hm−1.

Proof. Given history of application invocations Hm−1, we denote the length of the optimal keep-alive window by τopt,Hm−1
.

Let τ denote the length of a history independent policy. We examine the upper bound of the ratio of the cost of the history
independent policy to the cost of the optimal policy when the application is invoked at the m-th inter-arrival xm, that is,

cost(xm, τ)

cost(xm, τopt,Hm−1
)
, where xm = tm − tm−1 is the length of the m-th inter-arrival. There are three possibilities when

comparing keep-alive window τ with τopt,Hm−1
. They are,

1. τ = τopt,Hm−1

2. τ < τopt,Hm−1

3. τ > τopt,Hm−1

We examine the upper bound of the ratio of the cost of the history independent policy to the cost of the optimal policy for
each case listed above.

Case 1: When τ = τopt,Hm−1 , both the history independent policy and the optimal policy have the same cost. That is ,

cost(xm, τ) = cost(xm, τopt,Hm−1)

Case 2: When τ < τopt,Hm−1
, the cost of the policies can be compared based on when the application invocation occurs.

• When the application invocation occurs before the end of the history independent keep-alive window, that is, xm ≤ τ ,
then both policies encounter a warm start. Hence, both policies have the same cost. That is,

cost(xm, τ) = cost(xm, τopt,Hm−1
) = cp · xm

• When the application invocation is after the keep-alive window τ , but before the end of the optimal policy, that is,
τ < xm ≤ τopt,Hm−1

, then the history independent policy encounters a cold start whereas the optimal policy
experiences a warm start. The ratio of the cost of the history independent policy to the cost of the optimal policy is
expressed as follows,

cost(xm, τ)

cost(xm, τopt,Hm−1
)
=

cp · τ + ccs
cp · xm

≤ cp · τ + ccs
cp · τ

(6)

= 1 +
ccs
cp · τ

In Equation (6) above we see that the minimum possible cost of the optimal policy in this scenario is when the
application gets invoked just after the fixed keep-alive window, that is, when xm = τ .

• When the application invocation is after the optimal keep-alive policy, that is, τ < τopt,Hm−1 < xm, then both
policies encounter a cold start. Here, the cost of the optimal policy is larger than the cost of the history independent

keep-alive policy because the cost of a policy when a cold start occurs is proportional to the length of the keep-alive
window. That is,

τ ≤ τopt,Hm−1

=⇒ cp · τ + ccs ≤ cp · τopt,Hm−1
+ ccs

=⇒ cost(xm, τ) ≤ cost(xm, τopt,Hm−1
)

Case 3: When τ > τopt,Hm−1 , the cost of the policies can be compared based on the arrival of application invocations.

• When the application is invoked before the end of the optimal keep-alive window, that is, xm ≤ τopt,Hm−1
, then both

the policies encounter a warm start. Hence, both the policies have the same costs. That is,

cost(xm, τ) = cost(xm, τopt,Hm−1
) = cp · xm

• When the application invocation occurs after the optimal keep-alive window, that is, xm > τopt,Hm−1 , then the optimal
policy experiences a cold start. The ratio of the cost of the history independent policy to the cost of the optimal policy
is upper bounded when the history independent policy has a cold start. We compute the upper bound on the ratio of
costs as follows,

cost(xm, τ)

cost(xm, τopt,Hm−1)
≤ cp · τ + ccs

cp · τopt,Hm−1 + ccs

≤ cp · τ
cp · τopt,H=ϕ + ccs

+ 1 (7)

where in Equation (7) we have substituted H = ϕ to compute the upper bound.

We have now established two separate upper bounds for cases 2 and 3. The approximation factor of the history independent
policy with respect to the optimal policy for an arbitrary history is the maximum of the two upper bounds, that is,
max

{ cp · τ
cp · τopt,H=ϕ + ccs

+ 1, 1 +
ccs
cp · τ

}
.

C.1 FIXED KEEP-ALIVE POLICY

We first show our Ski rental style result.

Theorem 4. The cost of the fixed keep-alive policy τfixed = ccs/cp is at most twice the cost of the optimal keep-alive
policy τopt,Hm−1 . That is, when a function is invoked at time tm after previous m− 1 arrivals we have, cost(xm, τfixed) ≤
2 · cost(xm, τopt,Hm−1

), where xm = tm − tm−1 is the length of the m-th inter-arrival, and cp · τfixed = ccs.

While this has a simple direct proof, we illustrate how it follows from Lemma 3.

Proof. From Lemma 3, we know that the approximation factor of the fixed policy with respect to the optimal policy
is max

{ cp · τfixed

cp · τopt,H=ϕ + ccs
+ 1, 1 +

ccs
cp · τfixed

}
. The upper bound of

cp · τfixed

cp · τopt,H=ϕ + ccs
+ 1 can further be reduced to

cp · τfixed

cp · τopt,H=ϕ + ccs
+ 1 ≤ cp · τfixed

ccs
+ 1 by substituting τopt,H=ϕ = 0 because a fixed policy should accommodate for any

history independent policy.

The best length of the keep-alive window for the fixed policy is the length which minimizes the maximum of the two upper
bounds on the ratio of the cost of the fixed policy and the optimal policy. Mathematically, the best length of the fixed policy
is expressed as

argmin
τfixed

max
{cp · τfixed

ccs
+ 1, 1 +

ccs
cp · τfixed

}
We obtain the length of the fixed policy by solving the above expression,

cp · τfixed

ccs
+ 1 = 1 +

ccs
cp · τfixed

cp · τfixed

ccs
=

ccs
cp · τfixed(

cp · τfixed
)2

= (ccs)
2

cp · τfixed = ccs

Substituting this back to the upper bound on the ratio of the cost of the fixed policy to the cost of the optimal policy, we get

cost(xm, τfixed)

cost(xm, τopt,Hm−1)
≤ 1 +

cp · τfixed

ccs

= 1 +
ccs
ccs

= 2

C.2 HISTORY INDEPENDENT KEEP-ALIVE POLICIES

More generally, we can take advantage of Lemma 3 to achieve a tighter bound that makes use of the parameters of the
Hawkes process only through the policy they induce given the empty history.

Theorem 5. There exists a policy with keep-alive window τapprox which does not require the history of arrivals of application

invocations with its cost upper bounded by a factor of 1 +

(
1

cp
ccs

·τopt,H=ϕ+1

) 1
2

with respect to the cost of the optimal

keep-alive policy τopt,Hm−1
. In other words, for a given history of invocations Hm−1, when the application invocation has

an inter-arrival of length xm,
cost(xm, τapprox)

cost(xm, τopt,Hm−1
)

≤ 1 +

(
1

cp
ccs

· τopt,Hm−1=ϕ + 1

) 1
2

≤ 2.

Proof. From Lemma 3, we know that the approximation factor of the approximate policy with respect to the optimal policy
is max

{ cp · τapprox

cp · τopt,H=ϕ + ccs
+ 1, 1 +

ccs
cp · τapprox

}
. The best length of the keep-alive window of the approximate policy

would minimize the maximum of the upper bounds of the ratio of the costs of the approximate policy and the optimal policy.
Mathematically, the best approximate policy keep-alive window is expressed as,

arg min
τapprox

max
{ cp · τapprox

cp · τopt,H=ϕ + ccs
+ 1, 1 +

ccs
cp · τapprox

}
We can obtain the length of the approximate keep-alive window by solving the above expression.

cp · τapprox

cp · τopt,H=ϕ + ccs
+ 1 = 1 +

ccs
cp · τapprox

cp · τapprox

cp · τopt,H=ϕ + ccs
=

ccs
cp · τapprox

(cp · τapprox)
2 = ccs · (cp · τopt,H=ϕ + ccs)

τapprox =

(
ccs
cp

·
(
τopt,H=ϕ +

ccs
cp

)) 1
2

Substituting τapprox in the expression for the upper bound of the ratio of the cost of the approximate policy to the cost of the
optimal policy, we get

cost(xm, τapprox)

cost(xm, τopt,Hm−1
)
= 1 +

cp · τapprox

cp · τopt,H=ϕ + ccs

= 1 +
τapprox

τopt,H=ϕ +
ccs
cp

= 1 +

(
ccs
cp

·
(
τopt,H=ϕ +

ccs
cp

)) 1
2

τopt,H=ϕ +
ccs
cp

= 1 +

(
ccs

cp · τopt,H=ϕ + ccs

) 1
2

= 1 +

 1
cp
ccs

· τopt,H=ϕ + 1


1
2

≤ 1 + 1 = 2

C.3 APPLICATION TO POISSON AND HAWKES PROCESSES

As previously observed, the fixed policy from Theorem 4 is independent of the process and so has a keep alive window of
τfixed = ccs/cp for both Poisson and Hawkes processes. The behavior of τapprox from Theorem 5 is more interesting. For
Poisson processes, we know that τopt,H=ϕ is either 0 or ∞. In the former case, τapprox = τfixed and the approximation ratio of
2 is tight. (Consider any input where xm > cp/ccs.) In the latter case however, τapprox = ∞ = τopt and so the approximation
is 1.

For Hawkes processes, the length of the keep-alive window for the approximate policy is,

τapprox =

(
ccs
cp

·
(
τopt,H=ϕ +

ccs
cp

)) 1
2

From the more general expression for τopt,H for Hawkes processes,

τopt,H=ϕ =
1

β
·
(
logα− log

(cp
ccs

− λ0

))
Combining these, we have

τapprox =

(
ccs
cp

·

(
1

β
·
(
logα− log

(cp
ccs

− λ0

))
+

ccs
cp

)) 1
2

This illustrates how τopt,H=ϕ implicitly brings the parameters of the Hawkes process into τapprox.

C.4 PERFORMANCES ON SIMULATED HAWKES PROCESSES

We present similar simulations from before with two additional policies included (approximate policy and fixed policy of
length ccs). Generally, they demonstrate the conservative approach these policies take to achieve their worst case guarantees.
In general, both perform worse than both the optimal policy (blue) and best fixed policy (red). The relative performance of

(a) λ0 = 0.6, α = 1.2, β = 2.4, cp = 1.0, ccs = 1.25 (b) λ0 = 0.45, α = 0.8, β = 1.2, cp = 1.0, ccs = 3.0

Figure 4: Plots of average cost comparisons between different policies for cases where cp ≤ ccs

(a) λ0 = 0.65, α = 1.4, β = 2.2, cp = 1.0, ccs = 0.5 (b) λ0 = 0.5, α = 0.6, β = 1.5, cp = 1.0, ccs = 0.4

Figure 5: Plots of average cost comparisons between different policies for cases where cp ≥ ccs

the two policies is not consistent, with each better in some cases. The gap between the yellow line and the blue line is what
provided room for the improvement of Optimal-TTL policy over Fixed policy.

As Figures 4 and 5 illustrate, τapprox is always more conservative than τfixed in that it chooses a weakly longer window length
(which is is how it achieves its stronger worst case performance guarantee). Despite this, their average performance is often
quite similar. In some situations, like Figure 4 (a), both policies are excessively conservative and so the extra conservatism
of τapprox causes it to perform worse. This effect is bounded however, because in situations like Figure 5 (b) where τopt,H=ϕ

is close to zero they become essentially the same policy. In contrast, when the optimal window length is long, like Figure 4
(b), τapprox performs better. Again however the effect is small, this time because when optimal window lengths are relatively
long it is typically unlikely that it will actually be a long time until the next arrival.

(a) α = 0.8 (b) α = 1.4 (c) α = 2.0

Figure 6: Plots of average costs for policies when α is increased, given λ0 = 0.6, β = 2.4, cp = 1.0, ccs = 1.25

(a) λ0 = 0.5 (b) λ0 = 0.75 (c) λ0 = 1.0

Figure 7: Plots of average costs for policies when λ0 is increased, given α = 1.2, β = 2.4, cp = 1.0, ccs = 1.25

(a) β = 1.8 (b) β = 2.4 (c) β = 3.0

Figure 8: Plots of average costs for policies when β is increased, given λ0 = 0.6, α = 1.2, cp = 1.0, ccs = 1.25

C.5 AZURE DATATRACE PERFORMANCE RESULTS

Figure 9 plots the trade-off curve between the average number of cold starts per application vs the normalized wasted
memory for optimal, optimized-TTL, approximate and fixed policies. In Figure 9 (a), the trade-off curve is plotted when
including only those applications that follow the Hawkes process during day 9. The trade-off Pareto curve of Figure 9 (b)
plots the average number of cold starts per application vs the normalized memory for all applications invoked during day 9.
The plots in Figure 9 show that the trade-off Pareto curve of the approximate policy is very slightly better than the fixed
policy, but substantially worse than the optimal policy, and thus Optimized-TTL as well.

(a) Evaluation only on Hawkes process applications (b) Evaluation on all applications

Figure 9: Trade-off curve of average number of cold starts vs normalized wasted memory

Procedure Avg. Cold Start Savings (Hawkes) (All) Avg. Memory Savings (Hawkes) (All)
Optimized-TTL (fix) 0.834 0.1393 0.043 0.0085

Optimized-TTL (no-fix) 1.037 0.0574 0.053 0.0035

Table 1: Average performance improvement over fixed policy

D USE OF SEPARATE DATA FOR GOODNESS OF FIT

The goodness of fit test is known to have a few limitations when the same data is used both to estimate the parameters and
to compute the KS- statistic. Reynaud-Bouret et al. [2014] show that the Hawkes process parameters when examined for
goodness of fit on the same dataset which was used for parameter estimation leads to a high bias. The authors propose
sub-sampling as a reasonable solution to this problem. Rather than sub-sampling we took the advantage of additional data
we are not currently using (e.g. day 7). Van Hasselt et al. [2016], Kash et al. [2019] show a similar problem and solution for
training and applying double Deep Q-learning Networks (DQNs).

We report the results for the Optimized-TTL policy. We refer to the procedure where the goodness of fit is based on arrivals of
application invocations on day 7 as "fix", whereas the procedure where the goodness of fit is based on arrivals of applications
invocations on day 8 (same day as parameters estimated) is referred to as "no-fix". To compare the "fix" and "no-fix"
procedures of selecting appropriate Hawkes process applications, we collect the common pool of applications invoked on
day 7, day 8 and day 9. The Hawkes process applications in "fix" refer to applications where the parameters were estimated
on day 8, and the KS test was performed on day 7 of the corresponding applications. The Hawkes process applications in
"no-fix" refer to applications where the parameters were estimated on day 8, and the KS test was performed on the same day
8 of the corresponding applications (these are the common pool of applications present on day 7 and day 8). The number of
common pool applications on day 7, day 8, and day 9 = 14788. Of these 3,694 applications fall into the 25 percentile apps
that were selected as Hawkes process apps for each procedure ("fix", and "no-fix"). The amount of overlap on applications
between the two tests, that is, the overlap of applications that passed the test on day 7 and applications that passed the test on
day 8 = 2754. Overlap percentage = 2754/3694 = 0.745 . We show the plots of the trade-off curve between the fixed policy
and the optimized-TTL policies for the overlapped apps in Figures 10, and 11 for "fix", and "no-fix" procedures. Figures 10
(a), and 11 (a) show the trade-off curves for treated apps, whereas Figures 10 (b), and 11 (b) show the trade-off curves for all
apps. We compute the cold start savings as the area between the optimized-TTL curve and the fixed policy curve divided by
the maximum amount of wasted memory. Similarly, the wasted memory savings is the area between the optimized-TTL
curve and the fixed policy curve divided by the maximum number of average cold-starts. The corresponding versions of the
cold start savings and memory savings for optimized-TTL policy are given in Table 1. The “fix” version shows a slightly
weaker performance on the treated apps, but a noticeably better performance on all apps than either other version. So we
view this as a demonstration that the "fix" does improve the selection of which apps to treat as Hawkes process and proceed
to test the goodness of fit based on the arrivals of application invocations on day 7.

(a) Hawkes process applications (b) All applications

Figure 10: Trade-off curve for optimized-TTL and fixed policies where goodness of fit is evaluated on day 7

(a) Hawkes process applications (b) All applications

Figure 11: Trade-off curve for optimized-TTL and fixed policies where goodness of fit is evaluated on day 8

	Omitted Proofs
	Omitted Figures from Section 5.1
	Extension: worst-case guarantees for Hawkes processes
	Fixed Keep-Alive Policy
	History Independent Keep-Alive Policies
	Application to Poisson and Hawkes Processes
	Performances on Simulated Hawkes Processes
	Azure Datatrace Performance Results

	Use of separate data for goodness of fit

