A Detailed Algorithmic Description of TENET

In this section, we elaborate on the computational process of TENET. The following pseudocode outlines the model's fundamental algorithmic steps, delineating both spatial and temporal attention mechanisms within the Connectome Transformer and Transformer Encoder modules and complements Figure 2 in section 2.2, providing a more comprehensive understanding of how the both of modules are integrated in processing pipeline of TENET. The Connectome Transformer (g) addresses connectome embeddings, while the Transformer Encoder (h) refines these features over time, culminating in a final token vector h_{dyn} for use in classification or regression tasks.

Algorithm 1 Algorithmic Flow of TENET

1:	Input: Time-sequenced connectome embeddin number of timepoints, and Learnable token vect	gs X_t for $t \in \{1,, T\}$, where T is the total or h_{token} .
2:	Output: Final token vector h_{dyn}	token
3:	procedure CONNECTOME TRANSFORMER (g)	
4:	for $t = 1$ to T do	
5:	$H_t^0 \leftarrow \text{Concatenate}(\boldsymbol{X}_t, \boldsymbol{h}_{ ext{token}})$	\triangleright Initial embedding for time t
6:	$oldsymbol{R}_t \leftarrow ext{Linear}(oldsymbol{R}_t)$	▷ Linear transformation of structure encoding
7:	$\Sigma^i(\mathbf{R}_t)_{ij} \leftarrow \operatorname{Linear}(\Sigma^i(\mathbf{R}_t)_{ij})$	Node degree information
8:	for $l = 1$ to L do	$\triangleright L$ is the number of Transformer layers
9:	$oldsymbol{Z}_t^l \gets ext{Concatenate}(\{ ext{attention}(oldsymbol{H}_t^l$	$(\mathbf{R}_t, \Sigma^i(\mathbf{R}_t)_{ij})$ \triangleright Spatial Attention
10:	$oldsymbol{H}_t^{l+1} \leftarrow \mathrm{MLP}(oldsymbol{Z}_t^l)$	
11:	end for	
12:	$oldsymbol{h}_t \leftarrow oldsymbol{H}_t^L[t token]$	▷ Extract token vector as connectome feature
13:	end for	
14:	$oldsymbol{h} \leftarrow ext{Concatenate}(oldsymbol{h}_1,oldsymbol{h}_2,,oldsymbol{h}_T)$	
15:	return h	
16:	end procedure	
17:	procedure TRANSFORMER ENCODER (<i>h</i>)	
18:	$H^0 \leftarrow \text{Concatenate}(\boldsymbol{h}, \boldsymbol{h}_{\text{token}})$	▷ Initial embedding
19:	for $l = 1$ to L do	
20:	$Z^i \leftarrow \operatorname{attention}(H^i)$	▷ Temporal Attenttion
21:	$oldsymbol{H}^{l+1} \leftarrow \mathrm{MLP}(oldsymbol{Z}^l)$	
22:	end for	
23:	$oldsymbol{h}_{dyn} \leftarrow oldsymbol{H}^{\scriptscriptstyle L}[t token]$	▷ Extract token vector as final token vector
24:	return h_{dyn}	
25:	end procedure	