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Abstract
The generalization error (risk) of a supervised sta-
tistical learning algorithm quantifies its prediction
ability on previously unseen data. Inspired by
exponential tilting, Li et al. (2021) proposed the
tilted empirical risk (TER) as a non-linear risk
metric for machine learning applications such as
classification and regression problems. In this
work, we examine the generalization error of the
tilted empirical risk in the robustness regime un-
der negative tilt. Our first contribution is to pro-
vide uniform and information-theoretic bounds on
the tilted generalization error, defined as the dif-
ference between the population risk and the tilted
empirical risk, under negative tilt for unbounded
loss function under bounded (1 + ϵ)-th moment
of loss function for some ϵ ∈ (0, 1] with a conver-
gence rate of O(n−ϵ/(1+ϵ)) where n is the number
of training samples, revealing a novel application
for TER under no distribution shift. Secondly, we
study the robustness of the tilted empirical risk
with respect to noisy outliers at training time and
provide theoretical guarantees under distribution
shift for the tilted empirical risk. We empirically
corroborate our findings in simple experimental
setups where we evaluate our bounds to select the
value of tilt in a data-driven manner.

1. Introduction
Empirical risk minimization (ERM) is a popular framework
in machine learning. The performance of the empirical risk
(ER) is affected when the data set is strongly imbalanced
or contains outliers. For these scenarios, inspired by the
log-sum-exponential operator with applications in multino-
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mial linear regression and naive Bayes classifiers (Calafiore
et al., 2019; Murphy, 2012; Williams & Barber, 1998), Li
et al. (2021) propose the tilted empirical risk (TER) for su-
pervised learning applications, such as classification and
regression problems. Li et al. (2021; 2023a) showed that
tilted empirical risk minimization (TERM) can handle class
imbalance, mitigate the effect of outliers, and enable fair-
ness between subgroups. Different applications of TERM
have been explored, e.g., differential privacy (Lowy & Raza-
viyayn, 2021), semantic segmentation (Szabó et al., 2021),
noisy label self-correction (Zhou et al., 2020), and off-policy
learning and evaluation (Behnamnia et al., 2025).1 In this
paper, we corroborate the empirical success of the TERM
framework through statistical learning theory.

A central concern in statistical learning theory is under-
standing the efficacy of a learning algorithm when applied
to test data. This evaluation is typically carried out by in-
vestigating the generalization error, which quantifies the
disparity between the performance of the algorithm on the
training dataset and its performance on previously unseen
data, drawn from the same underlying distribution, via a
risk function. Understanding the generalization behaviour
of learning algorithms is one of the most important ob-
jectives in statistical learning theory. Various approaches
have been developed for empirical risk (Rodrigues & El-
dar, 2021), including VC dimension-based bounds (Vap-
nik, 1999), stability-based bounds (Bousquet & Elisseeff,
2002b), PAC Bayesian bounds (McAllester, 2003), and
information-theoretic bounds (Russo & Zou, 2019; Xu &
Raginsky, 2017). This paper focuses on the generalization
and robustness of the tilted empirical risk (tilted generaliza-
tion error) of learning algorithms. Our contributions are:

• In Section 3, we provide upper and lower bounds on
the tilted generalization error under unbounded loss
functions for the negative tilt with a bound via uniform
and information-theoretical approaches and establish
the convergence rate of O(n−ϵ/(1+ϵ)) for some ϵ ∈
(0, 1].

• In Section 4, we study the robustness of the tilted em-
pirical risk under distribution shift induced by noise
or outliers for unbounded loss functions with bounded

1Behnamnia et al. (2025) use the term log-sum-exponential,
which is the same as the tilted empirical risk studied herein.
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(1+ϵ)-th moment assumption, for some ϵ ∈ (0, 1], and
negative tilt, and derive generalization bounds.

• In Section 5, we provide a data-driven approach to
selecting the value of tilt for regression problems,
with observed test errors corroborating the theoreti-
cal bounds.

• In Section 6, we study the KL-regularized TERM prob-
lem under unbounded loss function with bounded sec-
ond moment assumption and provide an upper bound
on the expected tilted generalization error with con-
vergence rate O(n−ϵ) under unbounded loss function
with bounded (1 + ϵ)-th moment for some ϵ ∈ (0, 1].

2. Preliminaries
Notations: Upper-case letters denote random variables
(e.g., Z), lower-case letters denote the realizations of ran-
dom variables (e.g., z), and calligraphic letters denote sets
(e.g., Z). All logarithms are in the natural base. The tilted
expectation of a random variable X with tilting γ is defined
as 1

γ log(E[exp(γX)]). The set of probability distributions
(measures) over a space X with finite variance is denoted
by P(X ).

Information measures: For two probability measures
P and Q defined on the space X , such that P is abso-
lutely continuous with respect to Q, the Kullback-Leibler
(KL) divergence between P and Q is KL(P∥Q) :=∫
X log (dP/dQ) dP. If Q is also absolutely continuous

with respect to P , then the symmetrized KL divergence
is DSKL(P∥Q) := KL(P∥Q) + KL(Q∥P ). The mutual
information between two random variables X and Y is
defined as the KL divergence between the joint distribu-
tion and the product-of-marginal distribution I(X;Y ) :=
KL(PX,Y ∥PX ⊗ PY ), where PX ⊗ PY is the product of
the marginal distributions. The conditional KL divergence
between PY |X and PY over PX is KL(PY |X∥PY |PX) :=∫
X KL(PY |X=x∥PY )dPX(x). The symmetrized KL infor-

mation between X and Y is given by ISKL(X;Y ) :=
DSKL(PX,Y ∥PX ⊗ PY ); see Aminian et al. (2015). The
total variation distance between two densities P and Q is
defined as TV(P,Q) :=

∫
X |dP − dQ|.

2.1. Problem Formulation

Let S = {Zi}ni=1 be the training set, where each sample
Zi = (Xi, Yi) belongs to the instance space Z := X × Y;
here X is the input (feature) space and Y is the output (label)
space. We assume that Zi are i.i.d. generated from the same
data-generating distribution µ. We also assume Z̃ ∼ µ as
an i.i.d. sample with respect to the training set.

A set of hypotheses H has elements h : X 7→ Y ∈ H.
When H is finite, then its cardinality is denoted by card(H).

In order to measure the performance of the hypothesis h,
we use a non-negative loss function ℓ : H×Z → R+

0 .

We apply different methods to study the performance of our
algorithms, including uniform and information-theoretic ap-
proaches. In uniform approaches, such as the VC-dimension
and the Rademacher complexity approach (Vapnik, 1999;
Bartlett & Mendelson, 2002), the hypothesis space H is
independent of the learning algorithm. Therefore, these
methods are algorithm-independent; our results for these
methods do not specify the learning algorithms.

Learning Algorithms: For information-theoretic ap-
proaches in supervised learning, following Xu & Raginsky
(2017), we consider learning algorithms that are character-
ized by a Markov kernel (a conditional distribution) PH|S .
Such a learning algorithm maps a data set S to a hypothesis
in H, which is chosen according to PH|S . This concept thus
includes randomized learning algorithms.

2.2. Risk Functions

The main quantity we are interested in is the population risk,
defined by

R(h, µ) := EZ̃∼µ[ℓ(h, Z̃)], h ∈ H.

As the distribution µ is unknown, in classical statistical
learning, the (true) population risk for h ∈ H is estimated
by the (linear) empirical risk

R̂(h, S) =
1

n

n∑
i=1

ℓ(h, Zi). (1)

The generalization error for the linear empirical risk is given
by

gen(h, S) := R(h, µ)− R̂(h, S). (2)

This is the difference between the true risk and the linear
empirical risk. The TER, as a non-linear empirical risk with
tilt γ (Li et al., 2021), a.k.a. log-sum-exponential, estimates
the population risk by

R̂γ(h, S) =
1

γ
log
( 1
n

n∑
i=1

exp
(
γℓ(h, Zi)

))
.

The TER is an increasing function in the tilt parameter γ (Li
et al., 2023a, Theorem 1), and as γ → 0, the TER converges
to the linear empirical risk in (1). In this work, we focus
on negative tilt γ < 0. Inspired by Li et al. (2021), the
primary objective is to optimize the population risk; the
TERM is used in order to help the learning dynamics. For
our analysis, we decompose the population risk as follows:

R(h, µ) = R(h, µ)− R̂γ(h, S)︸ ︷︷ ︸
tilted generalization error

+ R̂γ(h, S),︸ ︷︷ ︸
tilted empirical risk

(3)
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where we define the tilted generalization error as

genγ(h, S) := R(h, µ)− R̂γ(h, S). (4)

In learning theory, for uniform approaches, most works
focus on bounding the linear generalization error gen(h, S)
from (2) such that under the distribution of the dataset S,
with probability at least (1− δ), it holds that for all h ∈ H,

|gen(h, S)|| ≤ g(δ, n), (5)

where g is a real function dependent on δ ∈ (0, 1) and
n is the number of data samples. Similarly, for the tilted
generalization error from (4), we are interested in finding a
bound gt(δ, n, γ) such that with probability at least 1 − δ,
under the distribution of S,∣∣genγ(h, S)∣∣ ≤ gt(δ, n, γ), (6)

where gt is a real function. We set h∗(µ) :=
argminh∈H R(h, µ) and h∗

γ(S) := argminh∈H R̂γ(h, S).
We use the following notations. The excess risk under the
tilted empirical risk is

Eγ(µ) := R(h∗
γ(S), µ)− R(h∗(µ), µ). (7)

The expected TER with respect to the distribution of S is

Rγ(h, µ
⊗n) = Eµ⊗n [R̂γ(h, S)], (8)

and the tilted (true) population risk is

Rγ(h, µ
⊗n)

=
1

γ
log
(
Eµ⊗n

[ 1
n

n∑
i=1

exp(γℓ(h, Zi))
])

.
(9)

Under the i.i.d. assumption, the tilted population risk is
equal to an entropic risk function (Howard & Matheson,
1972). We also introduce the non-linear generalization er-
ror2, as

ĝenγ(h, S) := Rγ(h, µ
⊗n)− R̂γ(h, S). (10)

For ease of notation, we consider Rγ(h, µ
⊗n) = Rγ(h, µ).

Information-theoretic Approach: For the information-
theoretic approach, as the hypothesis H is a random variable
under a learning algorithm as Markov kernel, i.e., PH|S ,
we take expectations over the hypothesis H . We denote
the expected true risk, expected empirical risk, expected

2We refer to this as non-linear generalization error since a
non-linear transformation of the population risk, instead of the
population risk, is used.

entropic risk, and expected tilted generalization error by

R(H,PH ⊗ µ) := EPH⊗µ[ℓ(H,Z)],

Rγ(H,QH,S) := EQH,S
[R̂γ(H,S)],

Rγ(H,QH,S) :=

1

γ
log
(
EQH,S

[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
)

genγ(H,S) := EPH,S
[genγ(H,S)],

(11)

where QH,S ∈ {PH ⊗ µ⊗n, PH,S}. In addition to bounds
of the form (6), we provide upper bounds on the absolute
value of expected tilted generalization error with respect to
the joint distribution of S and H , of the form

|genγ(H,S)| ≤ ge(n, γ),

where ge is a real function. We also introduce the non-linear
expected generalization error, which plays an important role
in deriving our bounds, as

ĝenγ(H,S) := Rγ(H,PH ⊗ µ⊗n)−Rγ(H,PH,S). (12)

3. Generalization Bounds for Unbounded Loss
Functions

In this section, we derive upper bounds on the tilted gen-
eralization error via uniform and information-theoretical
approaches for negative tilt (γ < 0) under bounded (1 + ϵ)-
th moment of loss function, for some ϵ ∈ (0, 1], with con-
vergence rate of O(n−ϵ/(1+ϵ)). Regarding the bounded
loss function, we also provide the tilted generalization error
bounds via uniform and information-theoretical approaches
in Appendix H. Note that, with a bounded loss function,
we can exploit the Lipschitz property of the logarithmic
function. However, when dealing with unbounded losses,
the loss function lacks the Lipschitz property, making it im-
possible to apply the same techniques used in the bounded
case (see Appendix H).

Several works have already proposed some solutions to
overcome the boundedness assumption under linear em-
pirical risk (Haddouche & Guedj, 2022; Alquier & Guedj,
2018; Holland, 2019) via a PAC-Bayesian approach un-
der the bounded second-moment assumption. Furthermore,
an upper bound on generalization error via VC-dimension
and growth function is proposed in Cortes et al. (2019,
Corollary 12) with convergence rate of O(log(n)n−ϵ/(1+ϵ)).
In contrast, we derive bounds with a convergence rate of
O(n−ϵ/(1+ϵ)). A more detailed comparison is provided in
Section 7.

3.1. Uniform Bounds

The following assumption is made for the uniform analysis.
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Assumption 3.1 (Uniform bounded (1 + ϵ)-th moment3).
There is a constant κu ∈ R+ such that the loss function
(H,Z) 7→ ℓ(H,Z) satisfies Eµ[ℓ

1+ϵ(h, Z)] ≤ κ1+ϵ
u uni-

formly for all h ∈ H and some ϵ ∈ (0, 1].

The assumption on the (1 + ϵ)-th moment, Assumption 3.1,
is satisfied for example if the loss function is sub-Gaussian
or sub-Exponential under the distribution µ for all h ∈ H,
see Boucheron et al. (2013). Inspired by the approach of
Behnamnia et al. (2025), which provides a regret bound
based on a tilted operator, we aim to analyze the generaliza-
tion error of tilted empirical risk within a uniform approach.
All proof details for the results in this section are deferred
to Appendix D.1.

For uniform bounds of the type (6), we decompose the tilted
generalization error (4) as follows,

genγ(h, S) = R(h, µ)− Rγ(h, µ
⊗n)︸ ︷︷ ︸

I1

+ĝenγ(h, S), (13)

We first derive an upper bound on term I1 in the following
Proposition.
Proposition 3.2. Under Assumption 3.1, for γ < 0 and
some ϵ ∈ (0, 1], the difference between the population risk
and the tilted population risk satisfies

0 ≤ R(h, µ)− Rγ(h, µ
⊗n) ≤ |γ|ϵκ1+ϵ

u . (14)

Then, using Bernstein’s inequality (Boucheron et al., 2013)
and properties of the logarithm, we can provide upper and
lower bounds on the tilted generalization error.
Proposition 3.3. Given Assumption 3.1 for some ϵ ∈ (0, 1],
for any fixed h ∈ H with probability at least (1− δ), then
the following upper bound holds on the tilted generalization
error for γ < 0 and some ϵ ∈ (0, 1],

genγ(h, S) ≤
2 exp(|γ|κu)

|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u log(2/δ)

n

+
4 exp(|γ|κu) log(2/δ)

3n|γ|
+ |γ|ϵκ1+ϵ

u .

Proposition 3.4. Given Assumption 3.1 for some ϵ ∈
(0, 1], there exists a ζ ∈ (0, 1) such that for n ≥
(4γ2κ2

u+8/3ζ) log(2/δ)
ζ2 exp(2γκu)

, for any fixed h ∈ H with probabil-
ity at least (1− δ), and γ < 0, the following lower bound
on the tilted generalization error holds,

genγ(h, S) ≥ −2 exp(|γ|κu)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u log(2/δ)

n

− 4 exp(|γ|κu)(log(2/δ))

3n|γ|(1− ζ)
.

3Note that we assume that higher order moments, larger than
(1 + ϵ), are unbounded.

Combining Proposition 3.3 and Proposition 3.4, we derive
an upper bound on the absolute value of the tilted general-
ization error.

Theorem 3.5. Under the same assumptions in Propo-
sition 3.4 and a finite hypothesis space, then for n ≥
(4|γ|1+ϵκ1+ϵ

u +8/3ζ) log(2/δ)
ζ2 exp(2γκu)

, for γ < 0 and with probability
at least (1−δ), the absolute value of the titled generalization
error satisfies

sup
h∈H

|genγ(h, S)| (15)

≤2 exp(|γ|κu)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u B(δ)

n
+

4 exp(|γ|κu)B(δ)

3n|γ|(1− ζ)

+ |γ|ϵκ1+ϵ
u ,

where B(δ) = log(card(H)) + log(2/δ).

Remark 3.6. For γ ≍ n−1/(1+ϵ), n ≥ (4κ1+ϵ
u +8/3ζ) log(2/δ)
ζ2 exp(−2κu)

and −1 < γ < 0, the upper bound in Theorem 3.5
gives a theoretical guarantee on the convergence rate of
O(n−ϵ/(1+ϵ)). Using TER with negative tilt can help to
derive an upper bound on the absolute value of the tilted
generalization error under the bounded (1 + ϵ)-th moment
assumption.

The following Lemma establishes an upper bound on the
excess risk of tilted empirical risk, expressed in terms of
suph∈H |genγ(h, S)|.
Lemma 3.7. The excess risk of the tilted empirical risk
satisfies,

Eγ(µ) ≤ 2 sup
h∈H

|genγ(h, S)|. (16)

Combining Lemma 3.7 with Theorem 3.5, an upper bound
on the excess risk of the tilted empirical risk can be derived
(See Appendix D.1).

The theorems in this section assume that the hypothesis
space is finite; this is, for example, the case in classification
problems with a finite number of classes. If this assumption
is violated, we can apply the growth function technique
from Bousquet et al. (2003); Vapnik (1999). In particular,
the growth function can be bounded by VC-dimension in
binary classification (Vapnik, 1999) or Natarajan dimension
(Holden & Niranjan, 1995) for multi-class classification sce-
narios. Note that the VC-dimension and Rademacher com-
plexity bounds are uniform bounds and are independent of
the learning algorithms. Furthermore, one can construct an ϵ-
net over the hypothesis space, thereby discretizing the space.
In this construction, we select a finite subset H ′ ⊂ Rm

such that for every h ∈ H , there exists a h′ ∈ H ′ with
∥h − h′∥ ≤ r. By applying our finite hypothesis result to
this discretized set and controlling the approximation error
through the Lipschitz property of the loss function, we ef-
fectively generalize our bounds to the continuous case. This
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method is exemplified in (Xu & Raginsky, 2017), which
demonstrates that “for an uncountable hypothesis space, we
can always convert it to a finite one by quantizing the output
of the smallest set H ′ such that for all h ∈ H there is a
h′ ∈ H ′ with ∥h − h′∥ ≤ r, where the Lipschitz maxi-
mal inequality (Lemma 5.7 in (Vershynin, 2010)) is derived
using a similar quantization technique.

3.2. Information-theoretic Bounds

In the information-theoretic approach for the unbounded
loss function, we relax the uniform assumption, Assump-
tion 3.1, as follows,

Assumption 3.8 (Bounded (1 + ϵ)-th moment). The
learning algorithm PH|S , loss function ℓ, and µ
are such that there is a constant κt ∈ R+ with
which the loss function (H,Z) 7→ ℓ(H,Z) satisfies
max

(
EPH,Z

[ℓϵ(H,Z)],EPH⊗µ[ℓ
1+ϵ(H,Z)]

)
≤ κ1+ϵ

t for
some ϵ ∈ (0, 1].

For our information-theoretical analysis, we use the follow-
ing decomposition;

genγ(H,S) = R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ)︸ ︷︷ ︸
I3

+ ĝenγ(H,S)

+ Rγ(H,PH,S)− EPH,S
[R̂γ(H,S)]︸ ︷︷ ︸

I4

.

(17)

We can derive bounds on I3 and I4 in a similar approach to
Proposition 3.2.

Then, we provide upper and lower bounds on the non-linear
expected generalization error of the tilted empirical risk,
ĝenγ(H,S), under negative tilt. These results are helpful
in deriving an upper bound on the absolute expected tilted
generalization error.

Proposition 3.9. Given Assumption 3.8 and assuming that
2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

≤ n holds, then the following inequality holds,

ĝenγ(H,S) ≤ exp(|γ|κt)

|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

t I(H;S)

n
,

and if 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

> n holds, then following inequality
holds,

ĝenγ(H,S) ≤ exp(|γ|κt)

|γ|

(I(H;S)

n
+

2ϵ|γ|1+ϵκ1+ϵ
t

2

)
.

Proposition 3.10. Under Assumption 3.8 for some ϵ ∈
(0, 1], assume further that there exists ζ ∈ (0, 1) such that
one of the following cases holds,

(a) ζ ≤ 2ϵ|γ|1+ϵκ1+ϵ
t exp(|γ|κt)
2 and n ≥ 2ϵ|γ|1+ϵκ1+ϵ

t I(H;S)
ζ2 exp(2γκt)

,

(b) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and n ≥ 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

,

(c) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and

2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

> n ≥ 2I(H;S)

2ζ exp(γκt)− 2ϵ|γ|1+ϵκ1+ϵ
t

.

Then, the following lower bounds on non-linear expected
generalization error hold,

ĝenγ(H,S) ≥



− exp(|γ|κt)
|γ|(1−ζ)

√
2|γ|1+ϵκ1+ϵ

t I(H;S)
n ,

if (a) or (b) hold,
− exp(|γ|κt)
(1−ζ)|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
,

if (c) holds.

Using Proposition 3.9 and Proposition 3.10, we can obtain
upper bound and lower bounds on the expected tilted gen-
eralization error, respectively. Then, combining upper and
lower bounds on expected tilted generalization error, we can
derive the upper bound on the absolute value of the expected
tilted generalization error in the following.

Theorem 3.11. Under the same assumptions as in Proposi-
tion 3.10, the following upper bounds on absolute expected
tilted generalization error hold,

|genγ(H,S)| ≤


D(γ)

√
2κϵ+1

t |γ|1+ϵI(H;S)
n + C(γ),

if (a) or (b) hold,

D(γ)
(

I(H;S)
n +

2ϵ|γ|1+ϵκ1+ϵ
t

2

)
+ C(γ),

if (c) holds.

where C(γ) = |γ|ϵκ1+ϵ
t and D(γ) = exp(|γ|κt)

|γ|(1−ζ) .

Convergence rate: Assuming γ = O(n−1/(1+ϵ)) and

n ≥ κ1+ϵ
t exp(2κt)I(H;S)

ζ2 , then the upper bound in Theo-
rem 3.11 has the convergence rate O(n−ϵ/(1+ϵ)). Note
that the result in Theorem 3.11 holds for unbounded loss
functions, provided that the (1 + ϵ)-th moment of the loss
function exists for some ϵ ∈ (0, 1].

The results in this section are non-vacuous for bounded
I(H;S). If this assumption is violated, we can apply the
individual sample method (Bu et al., 2020), chaining meth-
ods (Asadi et al., 2018), or conditional mutual informa-
tion frameworks (Steinke & Zakynthinou, 2020) to derive
a tighter upper bound for the expected tilted generalization
error.

4. Robustness of TER
Previous experimental work by Li et al. (2021; 2023a) has
demonstrated that tilted empirical risk with negative tilt
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(γ < 0) exhibits robustness against noisy samples and out-
liers during training. In this section, we investigate the
robustness of TER under distributional shift scenarios. In-
spired by the concept of influence functions (Marceau &
Rioux, 2001; Christmann & Steinwart, 2004; Ronchetti &
Huber, 2009), we model distributional shift through a distri-
bution µ̃ ∈ P(Z), which represents the effect of outliers or
noise in the noisy training dataset Ŝ.

Uniform Approach: Our robustness analysis of TER is
based on the following assumption.
Assumption 4.1 (Uniform bounded second moment under
µ̃). There is a constant κs ∈ R+ such that the loss func-
tion (H,Z) 7→ ℓ(H,Z) satisfies Eµ̃[ℓ

1+ϵ(h, Z)] ≤ κ1+ϵ
s

uniformly for all h ∈ H.

For our robustness analysis, we employ the following de-
composition of the tilted generalization error,

genγ(h, Ŝ) = R(h, µ)− Rγ(h, µ)︸ ︷︷ ︸
I1

+ĝenγ(h, Ŝ)

+ Rγ(h, µ)− Rγ(h, µ̃)︸ ︷︷ ︸
I4

.
(18)

Using the functional derivative (Cardaliaguet et al., 2019),
see also Appendix C, we can bound I4 as follows.
Proposition 4.2. Given Assumption 4.1 and Assumption 3.1,
then the difference of tilted population risk under, (9), be-
tween µ and µ̃ is bounded as follows for all h ∈ H,

1

|γ|

∣∣∣ log(EZ∼µ[C(h, Z)])− log(EZ̃∼µ̃[C(h, Z̃)])
∣∣∣ (19)

≤ TV(µ, µ̃)
γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

,

where C(h, Z) = exp(γℓ(h, Z)).

Using Proposition 4.2, we can provide upper and lower
bounds on the tilted generalization error under distributional
shift. Then, combining upper and lower bounds, we can
derive an upper bound on the absolute value of the tilted
generalization error under distribution shift.
Theorem 4.3. Under the same assumptions in Theorem 3.5
for some ϵ ∈ (0, 1], then for n ≥ (4|γ|1+ϵκ1+ϵ

u +8/3ζ) log(2/δ)
ζ2 exp(2γκu)

and γ < 0, and with probability at least (1−δ), the absolute
value of the tilted generalization error under distributional
shift satisfies

sup
h∈H

|genγ(h, Ŝ)| (20)

≤ 2 exp(|γ|κs)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

s B(δ)

n
+

4 exp(|γ|κs)B(δ)

3n|γ|(1− ζ)

+ |γ|ϵκ1+ϵ
u +

TV(µ, µ̃)
γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

,

where B(δ) = log(card(H)) + log(2/δ).

Using Lemma 3.7, we can derive an upper bound on excess
risk under distribution shift.

Other Divergences: Our approach can be extended to incor-
porate other divergence measures that quantify distribution
shift based on training and testing samples directly, rather
than their underlying distributions. This is in line with meth-
ods commonly explored in the domain adaptation literature
(e.g., (Ben-David et al., 2006; Zou et al., 2024; Ye et al.,
2021)).

Comparison with ERM: Theorem 4.3 gives an upper
bound on the tilted generalization error of TERM under
distribution shifts, which is valid for all distribution shifts.
Specifically, this upper bound depends on the total variation
distance TV(µ, µ̃), which is bounded for any distributions
µ and µ̃. This robustness is attributed to the negative tilt and
properties of the exponential function. In contrast, for ERM,
we need to derive an upper bound on the following term,

Dif(µ, µ̃) := EZ∼µ[ℓ(h, Z)]− EZ̃∼µ̃[ℓ(h, Z̃)]. (21)

For unbounded loss functions, deriving an upper bound on
Dif(µ, µ̃) in terms of total variation distance is not feasible.
While such bounds can be established using KL-divergence
KL(µ∥µ̃) under specific conditions (e.g., when the loss
function is sub-Gaussian under the data-generating distribu-
tion), these bounds may become unbounded for certain µ̃.
In this context, TERM with negative tilt emerges as a robust
solution, providing theoretical performance guarantees for
distribution-shift under unbounded loss functions.

Robustness vs Generalization: The term TV(µ,µ̃)
γ2 repre-

sents the distributional shift cost (or robustness) associated
with the TER. This cost can be reduced by increasing |γ|.
However, increasing |γ| also amplifies other terms in the
upper bound of the tilted generalization error. Therefore,
there is a trade-off between robustness and generalization,
particularly for γ < 0 in the TER. Li et al. (2021) also
empirically observed this trade-off for negative tilt.

Information-theoretic Approach: Using a similar ap-
proach, we can derive an upper bound on expected tilted
generalization error under distribution shift. We make the
following assumption.

Assumption 4.4. The learning algorithm PH|Ŝ , loss func-
tion ℓ, and µ are such that there is a constant κt ∈ R+

with which the loss function (H,Z) 7→ ℓ(H,Z) satisfies
max

(
EPH,Z̃

[ℓ1+ϵ(H, Z̃)],EPH⊗µ̃[ℓ
1+ϵ(H, Z̃)]

)
≤ κ1+ϵ

st

for some ϵ ∈ (0, 1].

Using Theorem 3.11 and similar results to Proposition 4.2,
we derive an upper bound on absolute expected tilted gener-
alization error under distribution shift.
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Theorem 4.5. Under the same assumptions as in Theo-
rem 3.11 and Assumption 4.4, the following upper bounds
on absolute expected tilted generalization error hold under
distributional shift, if (a) or (b) hold,

|genγ(H, Ŝ)| ≤ exp(|γ|κst)

|γ|(1− ζ)
G
(
I(H; Ŝ)

)
+ |γ|ϵκ

+
TV(µ, µ̃)

γ2

(
exp(|γ|κt)− exp(|γ|κst)

)
(κt − κst)

,

where κ = κ1+ϵ
t + κ1+ϵ

st , if (a) or (b) hold we have

G(I(H; Ŝ)) =

√
2κϵ+1

st |γ|1+ϵI(H;Ŝ)
n and if (c) holds, we

have, G(I(H; Ŝ)) = I(H;Ŝ)
n +

2ϵ|γ|1+ϵκ1+ϵ
st

2 .

We can observe the same robustness and generalization in
Theorem 4.5.

5. Data-driven Choice of Tilt
In this section, we provide a data-driven approach for choos-
ing the tilt (γ) based on theoretical results. It is noteworthy
that the upper bound in Theorem 4.3 can be infinite for
γ → −∞ and γ = 0 and a fixed n. Consequently, there
must exist a γ ∈ (−∞, 0) that minimizes this upper bound.
To illustrate this point, consider the case where n → ∞;
here, the first and second terms in the upper bound, (20),
would vanish. Thus, we are led to the following minimiza-
tion problem:

γdata := argmin
γ∈(−∞,0)

[
|γ|ϵκ1+ϵ

u

+
TV(µ, µ̃)

γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

]
,

(22)

for which a solution γ∗ exists. As γ⋆ decreases when
TV(µ, µ̃) increases, practically, this implies that if the train-
ing distribution becomes more adversarial (i.e., further away
from the benign test distribution), we would use smaller
negative γ’s to bypass outliers. Therefore, we can consider
γdata as a data-driven choice for the TERM problem. We
consider a simple experiment to show the effectiveness of
data-driven tilt, γdata.

In this experiment, we consider the logistic regression setup
described in Li et al. (2023a), adding a Gaussian or Pareto
outlier dataset to the training dataset at different ratios (ρ)
relative to the training dataset. We evaluate the following
values:

• γ⋆: The optimal tilt based on grid search
• R(hγ⋆(Ŝ), µ): The population risk under the

optimal TERM solution where hγ⋆(Ŝ) :=

argminh∈H R̂γ⋆(h, Ŝ).
• R(hERM(Ŝ), µ): The population risk under the ERM solu-

tion where hERM(Ŝ) := argminh∈H R̂(h, Ŝ).

• γdata: The data-driven tilt based on optimization of (22).
• R(hγdata(Ŝ), µ): The population risk under the data-driven

tilt solution where hγdata(Ŝ) := argminh∈H R̂γdata(h, Ŝ).

The training dataset consists of 1,000 samples. The results
for Gaussian and Pareto outliers are reported in Table 1 and
Table 2, respectively. For the Pareto-outlier as a distribu-
tion with unbounded second moment, we observe better
performance for the data-driven approach in comparison
with ERM. Note that the variance of TERM and data-driven
TERM in comparison with ERM has less variance as ex-
pected. The details of the experiments are provided in
Appendix G . More experiments for Linear regression as
proposed in (Li et al., 2021) is provided in Appendix G.

Table 1: Logistic Regression with Gaussian Outliers: Re-
sults averaged over three runs (n = 1, 000 samples), show-
ing mean ± standard deviation.

ρ γ⋆ R(hγ⋆(Ŝ), µ) R(hERM(Ŝ), µ) γdata R(hγdata(Ŝ), µ)

0.1% −0.53±0.000 0.00±0.000 0.05±0.001 −1.40±0.000 0.00±0.000

17.6% −2.98±0.000 0.15±0.004 0.22±0.001 −4.91±0.002 0.16±0.003

35.0% −3.86±0.000 0.16±0.004 0.30±0.002 −3.33±0.000 0.20±0.002

52.5% −2.10±0.000 0.11±0.001 0.28±0.002 −1.93±0.000 0.14±0.001

70.0% −1.23±0.000 0.14±0.002 0.18±0.000 −2.28±0.000 0.15±0.002

Table 2: Logistic Regression with Pareto Outliers: Results
averaged over three runs (n = 1, 000 samples), showing
mean ± standard deviation.

ρ γ⋆ R(hγ⋆(Ŝ), µ) R(hERM(Ŝ), µ) γdata R(hγdata(Ŝ), µ)

0.1% −1.40±0.000 0.00±0.000 0.03±0.001 −0.70±0.000 0.01±0.000

17.58% −3.33±0.000 0.00±0.003 0.02±0.000 −0.88±0.000 0.01±0.000

35.05% −1.05±0.000 0.00±0.000 0.01±0.002 −0.70±0.000 0.01±0.000

52.53% −1.05±0.000 0.01±0.000 0.01±0.002 −1.06±0.000 0.01±0.001

70.00% −0.88±0.000 0.00±0.002 0.02±0.001 −0.70±0.000 0.01±0.000

6. The KL-Regularized TERM Problem for
Unbounded Loss Functions

Our upper bound in Theorem 3.11 on the absolute value
of the expected tilted generalization error depends on the
mutual information between H and S. Therefore, it is of
interest to investigate an algorithm that minimizes the regu-
larized expected TERM via mutual information.

P ⋆
H|S = arg inf

PH|S

Rγ(H,PH,S) +
1

α
I(H;S), (23)

where α is the inverse temperature. As discussed by Xu &
Raginsky (2017); Aminian et al. (2023), the regularization
problem in (23) is dependent on the data distribution, PS .
Therefore, we relax the problem in (23) by considering the
following regularized version via KL divergence,

P ⋆
H|S = arg inf

PH|S

Rγ(H,PH,S) (24)

+
1

α
KL(PH|S∥πH |PS),

7
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where I(H;S) ≤ KL(PH|S∥πH |PS) and πH is a prior
distribution over hypothesis space H. All proof details are
deferred to Appendix F.

Proposition 6.1. The solution to the expected TERM regu-
larized via KL divergence, (24), is the tilted Gibbs Posterior
(a.k.a. Gibbs Algorithm),

P γ
H|S :=

πH

Fα(S)

( 1
n

n∑
i=1

exp(γℓ(H,Zi))
)−α/γ

, (25)

where Fα(S) is a normalization factor.

Note that the Gibbs posterior,

Pα
H|S :=

πH

F̃α(S)
exp

(
− α

( 1
n

n∑
i=1

ℓ(H,Zi)
))

, (26)

is the solution to the KL-regularized ERM minimization
problem, where F̃α(S) is the normalization factor. There-
fore, the tilted Gibbs posterior is different from the Gibbs
posterior, (26). It can be shown that for γ → 0, the tilted
Gibbs posterior converges to the Gibbs posterior. Therefore,
it is interesting to study the expected tilted generalization
error of the tilted Gibbs posterior. For this purpose, we
give an exact characterization of the difference between the
expected TER under the joint and the product of marginal
distributions of H and S.

Proposition 6.2. The difference between the expected TER
under the joint and product of marginal distributions of H
and S can be expressed as,

Rγ(H,PH ⊗ µ)− Rγ(H,PH,S) =
ISKL(H;S)

α
. (27)

We next provide a parametric upper bound on the tilted
generalization error of the tilted Gibbs posterior.

Theorem 6.3. Under the same Assumptions, cases (a) and
(b) in Theorem 3.11, the expected tilted generalization error
of the tilted Gibbs posterior satisfies

0 ≤ genγ(H,S) ≤ 2α exp(2|γ|κt)κ
1+ϵ
t

(1− ζ)2n|γ|1−ϵ

+
exp(|γ|κt)κ

1+ϵ
t |γ|1/2+ϵ

(1− ζ)|γ|

√
2α

n
+ 2|γ|ϵκ1+ϵ

t .

(28)

Convergence rate: If γ = O(1/n), then we obtain a con-
vergence rate of O(n−ϵ) for the upper bound on the tilted
generalization error of the tilted Gibbs posterior.

Comparison with the Gibbs posterior: Our results offer
several advantages over the prior work in Aminian et al.
(2021a). While Theorem 3 in their work establishes an
O(1/n) upper bound on the expected tilted generalization

error of the Gibbs posterior, it requires the strong assump-
tion of sub-Gaussian loss functions. In contrast, we achieve
the same O(1/n) convergence rate under the weaker con-
dition of bounded second moments (when ϵ = 1) for the
tilted Gibbs posterior. Additionally, our analysis extends to
loss functions with bounded (1 + ϵ)-th moments for some
ϵ ∈ (0, 1], a scenario not addressed in the Gibbs posterior
framework.

7. Related Works
In this section, we discuss related works on tilted empir-
ical risk minimization and generalization error under an
unbounded loss function. More related works for general-
ization error analysis are discussed in Appendix B.

Tilted Empirical Risk Minimization: The TERM algo-
rithm for machine learning is proposed by Li et al. (2021),
where good performance of the TERM under outlier and
noisy label scenarios for negative tilting (γ < 0), and, un-
der imbalance and fairness constraints, for positive tilting
(γ > 0), is demonstrated. Zhang et al. (2023) study the
TERM as a target function to improve the robustness of
estimators. The application of TERM in federated learning
is also studied, in Li et al. (2023b); Zhang et al. (2022).

Inspired by TERM, Wang et al. (2023) propose a class of
new tilted sparse additive models based on the Tikhonov
regularization scheme. Their results have some limitations.
First, in (Wang et al., 2023, Theorem 3.3) the authors derive
an upper bound for λ = n−ζ where ζ < −1/2 and λ are
the regularization parameters in (Wang et al., 2023, Eq.4).
This implies λ → ∞ as n → +∞, which is impractical.
As the analysis in (Wang et al., 2023) assumes that both the
loss function and its derivative are bounded, it can not be ap-
plied to the unbounded loss function scenario. Furthermore,
we consider KL regularization, which is different from the
Tikhonov regularization scheme with the sparsity-induced
ℓ1,2-norm regularizer as introduced in Wang et al. (2023).
Therefore, our results do not cover the learning algorithm
in Wang et al. (2023). Lee et al. (2020) propose an upper
bound on the entropic risk function generalization error via
a representation of a coherent risk function and using the
Rademacher complexity approach. However, their approach
is limited to bounded loss functions.

Tilted risk for off-policy learning and evaluation is pro-
posed in a concurrent work by Behnamnia et al. (2025)
where a regret bound analysis of this estimator under heavy-
tailed weighted reward assumption is proposed. More de-
tails about similarities and differences with this work are
provided in Appendix B.

Although rich experiments are given by Li et al. (2021) for
the TERM algorithm in different applications, the general-
ization error of the TERM has not yet been addressed for
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unbounded loss functions with bounded (1 + ϵ)-th moment
for some ϵ ∈ (0, 1].

Generalization error under unbounded loss functions:
Several studies have investigated the generalization error of
linear empirical risk under unbounded loss functions. Some
works studied the generalization error under unbounded
loss functions via the PAC-Bayesian approach. Losses with
heavier tails are studied by Alquier & Guedj (2018) where
probability bounds are developed. Using a different esti-
mator than empirical risk, PAC-Bayes bounds for losses
with bounded second and third moments are developed by
Holland (2019). Notably, their bounds include a term that
can increase with the number of samples n. Kuzborskij
& Szepesvári (2019) and Haddouche & Guedj (2022) also
provide bounds for losses with a bounded second moment.
The bounds in Haddouche & Guedj (2022) rely on a pa-
rameter that must be selected before the training data is
drawn. Information-theoretic bounds based on the second
moment of suph∈H |ℓ(h, Z)−E[ℓ(h, Z̃)]| are derived in Lu-
gosi & Neu (2022; 2023). In contrast, our second moment
assumption is more relaxed, being based on the expected ver-
sion with respect to the distribution over the hypothesis set
and the data-generating distribution. Furthermore, an upper
bound on generalization error via VC-dimension and growth
function under bounded (1 + ϵ)-th moment for ϵ ∈ (0, 1] is
proposed in (Cortes et al., 2019, Corollary 12) which is mo-
tivated by relative deviation generalization bounds in binary
classification. In addition, the final convergence rate for
unbounded loss is O(log(n)n

−ϵ
1+ϵ ) based on (Cortes et al.,

2019, Corollary 12). In contrast, we derive the results for
a multi-classification scenario with a convergence rate of
O(n

−ϵ
1+ϵ ). Our work focuses on tilted empirical risk, which

is overlooked in the literature on unbounded loss functions.

8. Conclusion
In this paper, we study the tilted empirical risk minimization,
as proposed by Li et al. (2021). In particular, we established
an upper and lower bound on the tilted generalization error
of the tilted empirical risk through uniform and information-
theoretic approaches, obtaining theoretical guarantees that
the convergence rate is O(n−ϵ/(1+ϵ)) under unbounded loss
functions for negative tilt provided that (1+ϵ)-th moment of
loss function is bounded for some ϵ ∈ (0, 1]. We also study
the tilted generalization error under distribution shift in the
training dataset due to noise or outliers, where we discussed
the generalization and robustness trade-off. We also explore
the KL-regularized tilted empirical risk minimization, where
the solution involves the tilted Gibbs posterior, and we de-
rive a parametric upper bound on this minimization with
a convergence rate of O(n−ϵ) under some conditions and
unbounded loss function provided that (1 + ϵ)-th moment
of loss functions is bounded for some ϵ ∈ (0, 1].

9. Future Works
Building on our current results, we highlight several promis-
ing directions for future work:

Overparameterization Regime: An interesting avenue is
to explore generalization bounds for tilted empirical risk in
overparameterized models, particularly in the mean-field
regime. Techniques from recent works, such as Aminian
et al. (2023), may offer valuable insights for extending our
results in this setting.

Removing Sample Size Assumptions for Unbounded
Losses: For unbounded loss functions, we currently re-
quire a lower bound on the number of training samples to
establish generalization guarantees. While we relaxed this
assumption for the bounded loss case (see Appendix H),
extending the analysis to the unbounded case without any
sample size constraints would be a valuable extension.

Positive Tilt (γ > 0): Our analysis focuses on the case
of negative tilting (γ < 0), assuming that the unbounded
loss function has a bounded (1 + ϵ)-th moment for some
ϵ ∈ (0, 1]. Extending the generalization analysis to positive
tilting scenarios with unbounded losses remains an open
and important direction.

Alternative Generalization Frameworks: Our current
bounds rely on uniform and information-theoretic frame-
works. However, other frameworks—such as PAC-Bayesian
analysis (Catoni, 2003), algorithmic stability (Bousquet &
Elisseeff, 2002b), and Rademacher complexity (Bartlett &
Mendelson, 2002)—offer complementary perspectives on
generalization. We derived results using these frameworks
under the bounded loss function assumption in Appendix H.
Investigating the applicability of these methods to tilted em-
pirical risk under an unbounded loss function could yield
deeper theoretical insights.
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Impact Statement
The goal of this work is to improve our understanding of
tilted empirical risk (TER) and to enhance its practical ap-
plicability by introducing a data-driven approach for hy-
perparameter tuning. However, we acknowledge that our
current theoretical analysis, which focuses on the negative
tilt regime for understanding the robustness of TER, does
not capture all aspects of TER—particularly its behavior
under positive tilt for biases and imbalance scenarios.
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A. Summary of Notations
All notations are summarized in Table 3.

Table 3: Summary of notations in the paper

Notation Definition Notation Definition

S Training set Zi i-th sample
X Input (feature) space Y Output (label) space
µ Data-generating distribution µ̃ Data-generating distribution under distributional shift
γ Tilt parameter KL(P∥Q) KL-divergence between P and Q

I(X;Y ) Mutual information DSKL(P∥Q) Symmetrized KL divergence
TV(P,Q) Total variation distance κu Bound on second moment

h Hypothesis H Hypothesis space
ℓ(h, z) Loss function R(h, µ) Population (true) risk
R̂γ(h, S) Tilted empirical risk genγ(h, S) Tilted generalization error

Rγ(h, µ
⊗n) Tilted population risk Eγ(µ) Excess risk

B. Other Related Works
This section details related works about tilted empirical risk minimization, the Rademacher complexity and stability and
PAC-Bayesian bounds. We also compare our work with Behnamnia et al. (2025) in more details.

Generalization Error Analysis: Different approaches have been applied to study the generalization error of general learning
problems under empirical risk minimization, including VC dimension-based, Rademacher complexity, PAC-Bayesian,
stability and information-theoretic bounds.

Uniform Bounds: Uniform bounds (or VC bounds) are proposed by Vapnik & Chervonenkis (1971); Bartlett et al. (1998;
2019). For any class of functions F of VC dimension d, with probability at least 1 − δ the generalization error is
O
(
(d+ log(1/δ))1/2n−1/2

)
. This bound depends solely on the VC dimension of the function class and on the sample size;

in particular, it is independent of the learning algorithm.

Information-theoretic bounds: Russo & Zou (2019); Xu & Raginsky (2017) propose using the mutual information between
the input training set and the output hypothesis to upper bound the expected generalization error. Multiple approaches have
been proposed to tighten the mutual information-based bound: Bu et al. (2020) provide tighter bounds by considering the
individual sample mutual information; Asadi et al. (2018); Asadi & Abbe (2020) propose using chaining mutual information;
and Steinke & Zakynthinou (2020); Hafez-Kolahi et al. (2020); Aminian et al. (2020; 2021b) provide different upper bounds
on the expected generalization error based on the linear empirical risk framework.

Rademacher Complexity Bounds: This approach is a data-dependent method to provide an upper bound on the generalization
error based on the Rademacher complexity of the function class H, see (Bartlett & Mendelson, 2002; Golowich et al., 2018).
Bounding the Rademacher complexity involves the model parameters. Typically, in Rademacher complexity analysis, a
symmetrization technique is used which can be applied to the empirical risk, but not directly to the TER.

Stability Bounds: Stability-based bounds for generalization error are given in Bousquet & Elisseeff (2002a); Bousquet et al.
(2020); Mou et al. (2017); Chen et al. (2018); Aminian et al. (2023). For stability analysis, the key tool is Lemma 7 in
Bousquet & Elisseeff (2002b), which is based on ERM linearity. Therefore, we can not apply stability analysis to TER
directly.

PAC-Bayesian bounds: First proposed by Shawe-Taylor & Williamson (1997); McAllester (1999) and McAllester (2003),
PAC-Bayesian analysis provides high probability bounds on the generalization error in terms of the KL divergence between
the data-dependent posterior induced by the learning algorithm and a data-free prior that can be chosen arbitrarily (Alquier,
2021). There are multiple ways to generalize the standard PAC-Bayesian bounds, including using information measures
other than KL divergence (Alquier & Guedj, 2018; Bégin et al., 2016; Hellström & Durisi, 2020; Aminian et al., 2021b) and
considering data-dependent priors (Rivasplata et al., 2020; Catoni, 2007; Dziugaite & Roy, 2018; Ambroladze et al., 2007).
However, this method has not been applied to TER to provide generalization error bounds.

15



Generalization and Robustness of the Tilted Empirical Risk

The aforementioned approaches are applied to study the generalization error in the linear empirical risk framework. To
our knowledge, the generalization error of the tilted empirical risk minimization from information-theoretical and uniform
approach perspectives has not been explored.

Comparison with Behnamnia et al. (2025): In a concurrent work in reinforcement learning, Behnamnia et al. (2025)
introduce an estimator for off-policy evaluation and learning based on the log-sum-exponential (LSE) operator applied to
weighted rewards. This estimator can be viewed as a negatively tilted risk function. Their focus lies in bounding the regret,
defined as the gap between the value of the optimal policy and that induced by the estimator, and in deriving concentration
inequalities under heavy-tailed reward distributions. We compare our work with theirs from several perspectives:

Objective Functions: Our study targets supervised learning, where the goal is to minimize a risk function such as empirical
or tilted risk. In contrast, Behnamnia et al. (2025) addresses off-policy learning, aiming to maximize expected reward for
a given logged data with respect to a policy, conditional distribution over actions for a given context. Furthermore, in a
supervised learning scenario, the loss function is given. In contrast, in off-policy learning, the reward function is not known,
and some samples of reward are given. Therefore, the learning paradigms and optimization targets differ. For more details,
comparison of these scenarios see (Swaminathan & Joachims, 2015, Table 1).

Assumptions: We assume a bounded hypothesis class and heavy-tailed loss functions. In contrast, (Behnamnia et al., 2025,
Assumption 5.1) considers a bounded policy class and assume heavy-tailed weighted rewards. These differences reflect
the distinct nature of these tasks: off-policy and supervised learning scenarios. Note that the definition of heavy-tailed
random variable is general in statistical learning theory (Resnick, 2007) and can be applied in different contexts, e.g., bandit,
off-policy learning, and supervised learning.

Methodology: Despite differing goals, both works employ some common statistical tools, such as concentration inequalities.
We build on analytical techniques similar to theirs, including lemmas concerning variance bounds under heavy-tailed
distributions. However, our uniform bounds operate under different assumptions and are adapted to the supervised learning
setting. In particular, we used Lemma C.2 and Lemma C.3– where a different proof of Lemma C.3 is proposed in (Behnamnia
et al., 2025, Theorem 5.3)– to derive our upper bounds on absolute value of generalization error (Theorem 3.5) using
uniform approach under heavy-tailed assumption. However, as discussed in Section 3.1, the uniform approach has inherent
limitations, e.g., assuming bounded hypothesis sets which is a complexity measure in the supervised learning scenario. The
limitations also apply to results in (Behnamnia et al., 2025, Theorem 5.3) with finite policy set as a complexity measure in
off-policy learning. To overcome the limitations of finiteness of sets assumptions, we further develop new bounds using
information-theoretic techniques.

Bounded Scenario: Both works note limitations on sample complexity under heavy-tailed assumptions. We show in
Appendix H that such constraints can be lifted by assuming bounded loss functions—leading to generalization guarantees
for all number of training samples.

Robustness: A key contribution of our work is the analysis of tilted empirical risk under distribution shift, a direction not
explored in earlier literature to our knowledge. Our results highlight the distinct value of TER in handling training-test
distribution discrepancies.

Regularization: We also explored the KL-regularized problem for tilted empirical risk, where a tighter convergence rate of
O(n−ϵ) for tilted empirical risk was derived under a heavy-tailed assumption.

C. Technical Tools
We first define the functional linear derivative as in (Cardaliaguet et al., 2019).

Definition C.1. (Cardaliaguet et al., 2019) A functional U : P(Rn) → R admits a functional linear derivative if there is a
map δU

δm : P(Rn)× Rn → R which is continuous on P(Rn), such that for all m,m′ ∈ P(Rn), it holds that

U(m′)− U(m) =

∫ 1

0

∫
Rn

δU

δm
(mλ, a) (m

′ −m)(da) dλ,

where mλ = m+ λ(m′ −m).

The following lemmas are used in our proofs.
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Lemma C.2 (Lemma 28 in (Lugosi & Neu, 2023)). For x > 0, the following inequality holds for ϵ ∈ (0, 1],

exp(−x) ≤ 1− x+ x(1+ϵ). (29)

The following lemma also appears in the concurrent work by Behnamnia et al. (2025). For the sake of completeness, we
provide an alternative proof below.

Lemma C.3. Suppose that X > 0 and γ < 0, then we have for ϵ ∈ (0, 1],

Var(exp(γX)) ≤ 2ϵ|γ|1+ϵE[|X|1+ϵ]. (30)

Proof. From the variance definition, we have,

Var(exp(γX)) = E
[(

exp(γX)− E[exp(γX)]
)2]

(31)

(a)
=

1

2
EX,X′

[(
exp(γX)− exp(γX ′)

)2]
(32)

(b)

≤ 1

2
EX,X′

[(
exp(γX)− exp(γX ′)

)1+ϵ]
(33)

(c)

≤ 1

2
|γ|1+ϵEX,X′ [|X −X ′|1+ϵ] (34)

(d)

≤ 1

2
|γ|1+ϵEX,X′ [|X +X ′|1+ϵ] (35)

(e)

≤ 2ϵ|γ|1+ϵEX [|X|1+ϵ], (36)

where (a) follows from variance representation for i.i.d copy X and X ′, (b) follows from the fact that | exp(γX) −
exp(γX ′)| ≤ 1, (c) follows from the fact that exp(γx) is Lipschitz for γ < 0, with parameter |γ|, therefore, we have
| exp(γx)− exp(γx′)| ≤ |γ||x− x′|, (d) follows the positiveness of X and X ′ and (e) follows from Jensen-inequality.

Lemma C.4. Suppose that 0 < a < X < b < ∞. Then the following inequality holds,

VarPX
(X)

2b2
≤ log(E[X])− E[log(X)] ≤ VarPX

(X)

2a2
,

where VarPX
(X) is the variance of X under the distribution PX .

Proof. As d2

dx2

(
log(x) + βx2

)
= −1

x2 + 2β, the function log(x) + βx2 is concave for β = 1
2b2 and convex for β = 1

2a2 .
Hence, by Jensen’s inequality,

E[log(X)] = E
[
log(X) +

X2

2b2
− X2

2b2

]
≤ log(E[X]) +

1

2b2
E[X]2 − 1

2b2
E[X2]

= log(E[X])− 1

2b2
VarPX

(X),

which completes the proof of the lower bound. A similar approach can be applied to derive the upper bound.

Lemma C.5. Suppose that 0 < a < X < b < ∞. Then the following inequality holds,

−VarPX
(X) exp(b)

2
≤ exp(E[X])− E[exp(X)] ≤ −VarPX

(X) exp(a)

2
,

where VarPX
(X) is the variance of X under the distribution PX .

In the next results, PS is the distribution of S.
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Lemma C.6 (Hoeffding Inequality, Boucheron et al., 2013). Suppose that S = {Zi}ni=1 are bounded independent random
variables such that a ≤ Zi ≤ b, i = 1, . . . , n. Then the following inequality holds with probability at least (1− δ) under
PS , ∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣ ≤ (b− a)

√
log(2/δ)

2n
. (37)

Lemma C.7 (Bernstein’s Inequality, Boucheron et al., 2013). Suppose that S = {Zi}ni=1 are i.i.d. random variable such
that |Zi − E[Z]| ≤ R almost surely for all i, and Var(Z) = σ2. Then the following inequality holds with probability at
least (1− δ) under PS , ∣∣∣E[Z]− 1

n

n∑
i=1

Zi

∣∣∣ ≤√4σ2 log(2/δ)

n
+

4R log(2/δ)

3n
. (38)

Lemma C.8. For a positive random variable, Z > 0 and ϵ ∈ (0, 1], suppose E[Z1+ϵ] ≤ η . Then, the following inequality
holds,

E[Z] ≤ η1/1+ϵ.

Lemma C.9. Suppose E[|X|1+ϵ] < ∞. Then, for X > 0 and γ < 0 the following inequality holds,

0 ≤ E[X]− 1

γ
logE[eγX ] ≤ |γ|ϵE[X1+ϵ].

Proof. The left inequality follows from Jensen’s inequality applied to f(x) = log (x). For the right inequality, from
Lemma C.2 for ϵ ∈ (0, 1]

eγX ≤ 1 + γX + |γ|1+ϵX1+ϵ. (39)

Therefore, we have,

1

γ
logE[eγX ] ≥ 1

γ
logE

[
1 + γX + |γ|1+ϵ|X|1+ϵ

]
=

1

γ
log
(
1 + γE[X] + |γ|1+ϵE[|X|1+ϵ]

)
≥ 1

γ

(
γE[X] + |γ|1+ϵE[|X|1+ϵ]

)
= E[X]− |γ|ϵE[X1+ϵ].

Lemma C.10. Suppose that 0 < a < x < b and f(x) is an increasing and concave function. Then the following holds,

f ′(b)(b− a) ≤ f(b)− f(a) ≤ f ′(a)(b− a). (40)

Lemma C.11 (Uniform bound (Mohri et al., 2018)). Let F be the set of functions f : Z → [0,M ] and µ be a distribution
over Z . Let S = {zi}ni=1 be a set of size n i.i.d. drawn from Z . Then, for any δ ∈ (0, 1), with probability at least 1− δ over
the choice of S, we have

sup
f∈F

{
EZ∼µ[f(Z)]− 1

n

n∑
i=1

f(zi)

}
≤ 2R̂S(F) + 3M

√
1

2n
log

2

δ
.

We use the next two results, namely Talagrand’s contraction lemma and Massart’s Lemma, to estimate the Rademacher
complexity.

Lemma C.12 (Talagrand’s contraction lemma (Shalev-Shwartz & Ben-David, 2014)). Let ϕi : R → R (i ∈ {1, . . . , n}) be
L-Lipschitz functions and Fr be a set of functions from Z to R. Then it follows that for any {zi}ni=1 ⊂ Z ,

Eσ

[
sup
f∈Fr

1

n

n∑
i=1

σiϕi(f(zi))

]
≤ LEσ

[
sup
f∈Fr

1

n

n∑
i=1

σif(zi)

]
.
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Lemma C.13 (Massart’s lemma (Massart, 2000)). Assume that the hypothesis space H is finite. Let B2 :=

maxh∈H

(∑n
i=1 h

2(zi)
)
. Then

R̂S(H) ≤
B
√

2 log(card(H))

n
.

Lemma C.14 (Lemma 1 in (Xu & Raginsky, 2017)). For any measureable function f : Z → [0,M ],

∣∣∣EPX,Y
[f(X,Y )]− EPX⊗PY

[f(X,Y )]
∣∣∣ ≤ M

√
I(X;Y )

2
.

Lemma C.15 (Coupling Lemma). Assume the function f : Z → [0,M ] and the function g : R+ 7→ R+ are L-Lipschitz.
Then the following upper bound holds,

∣∣∣EPX,Y
[g ◦ f(X,Y )]− EPX⊗PY

[g ◦ f(X,Y )]
∣∣∣ ≤ LM

√
I(X;Y )

2
.

We recall that the notation TV denotes the total variation distance between probability distributions.

Lemma C.16 (Kantorovich-Rubenstein duality of total variation distance, see (Polyanskiy & Wu, 2022)). The Kantorovich-
Rubenstein duality (variational representation) of the total variation distance is as follows:

TV(m1,m2) =
1

2L
sup
g∈GL

{EZ∼m1
[g(Z)]− EZ∼m2

[g(Z)]} , (41)

where GL = {g : Z → R, ||g||∞ ≤ L}.

D. Proofs and Details of Section 3
D.1. Proofs and Details of Uniform bounds under Unbounded Loss

Proposition 3.2 (Restated). Under Assumption 3.1, for γ < 0, the difference between the population risk and the tilted
population risk satisfies

0 ≤ R(h, µ)− Rγ(h, µ
⊗n) ≤ |γ|ϵκ1+ϵ

u . (42)

Proof. The proof follows from Lemma C.9.

Proposition 3.3 (Restated). Given Assumption 3.1, for any fixed h ∈ H with probability at least (1− δ), then the
following upper bound holds on the tilted generalization error for γ < 0 and some ϵ ∈ (0, 1],

genγ(h, S) ≤
2 exp(−γκu)

|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u log(2/δ)

n
+

4 exp(−γκu) log(2/δ)

3n|γ|
+ |γ|ϵκ1+ϵ

u . (43)

Proof. Using Bernstein’s inequality, Lemma C.7, for Xi = exp(γℓ(h, Zi)) and considering 0 < Xi < 1, we have

1

n

n∑
i=1

exp γℓ(h, Zi) ≤ E[exp(γℓ(h, Z̃))] +

√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
+

4 log(2/δ)

3n
,

where we also used that

log(x+ y) = log(y) + log(1 +
x

y
) ≤ log(y) +

x

y
for y > x > 0. (44)
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Thus,

log
( 1
n

n∑
i=1

exp γℓ(h, Zi)
)

≤ log
(
E[exp(γℓ(h, Z̃))]

)
+

1

E[exp(γℓ(h, Z̃))]

√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
+

1

E[exp(γℓ(h, Z̃))]

4 log(2/δ)

3n

≤ log
(
E[exp(γℓ(h, Z̃))]

)
+ exp(−γκu)

√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
+ exp(−γκu)

4 log(2/δ)

3n
.

Therefore, for γ < 0 we have

1

γ
log
(
E[exp(γℓ(h, Z̃))]

)
− 1

γ
log
( 1
n

n∑
i=1

exp γℓ(h, Zi)
)

≤ exp(−γκu)

|γ|

√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
+ exp(−γκu)

4 log(2/δ)

3n|γ|
.

Using Lemma C.3, completes the proof.

Proposition 3.4 (Restated). Given Assumption 3.1, there exists a ζ ∈ (0, 1) such that for n ≥ (4γ2κ2
u+8/3ζ) log(2/δ)
ζ2 exp(2γκu)

,
for any fixed h ∈ H with probability at least (1−δ), and γ < 0, the following lower bound on the tilted generalization
error holds,

genγ(h, S) ≥ −2 exp(|γ|κu)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u log(2/δ)

n
− 4 exp(|γ|κu)(log(2/δ))

3n|γ|(1− ζ)
. (45)

Proof. Recall that Z̃ ∼ µ and

genγ(h, S) = R(h, µ)− 1

γ
log(E[exp(γℓ(h, Z̃))])

+
1

γ
log(E[exp(γℓ(h, Z̃))])− 1

γ
log

(
1

n

n∑
i=1

exp(γℓ(h, Zi))

)
.

First, we apply Lemma C.9 to yield R(h, µ) − 1
γ log(E[exp(γℓ(h, Z̃))]) ≥ 0. Next we focus on the second line of this

display. Bernstein’s inequality, Lemma C.7, for Xi = exp(γℓ(h, Zi)), so that 0 < Xi < 1, gives that with probability at
least (1− δ),

1

n

n∑
i=1

exp γℓ(h, Zi) ≥ E[exp(γℓ(h, Z̃))]−

√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
− 4 log(2/δ)

3n
. (46)

Assume for now that there is a ζ ∈ (0, 1) such that√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
+

4 log(2/δ)

3n
≤ ζE[exp(γℓ(h, Z̃))]. (47)
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As log(y − x) = log(y) + log(1 − x
y ) ≥ log(y) − x

y−x for y > x > 0, then by taking y = E[exp(γℓ(h, Z̃))] and

x =

√
4Var(exp(γℓ(h,Z̃))) log(2/δ)

n + 4 log(2/δ)
3n , so that with (47) we have y − x ≥ (1− ζ)y > 0, taking logarithms on both

sides of (46) gives that with probability at least (1− δ),

log
( 1
n

n∑
i=1

exp γℓ(h, Zi)
)

≥ log
(
E[exp(γℓ(h, Z̃))]

)
− 1

E[exp(γℓ(h, Z̃))]

√4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
+

4 log(2/δ)

3n


≥ log

(
E[exp(γℓ(h, Z̃))]

)
− 1

(1− ζ)E[exp(γℓ(h, Z̃))]

√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n

− 1

(1− ζ)E[exp(γℓ(h, Z̃))]

4 log(2/δ)

3n

≥ log
(
E[exp(γℓ(h, Z̃))]

)
− exp(−γκu)

(1− ζ)

√
4Var(exp(γℓ(h, Z̃))) log(2/δ)

n
− exp(−γκu)

(1− ζ)

4 log(2/δ)

3n

≥ log
(
E[exp(γℓ(h, Z̃))]

)
− |γ|2κu exp(−γκu)

(1− ζ)

√
log(2/δ)

n
− exp(−γκu)

(1− ζ)

4 log(2/δ)

3n
.

(48)

Here we used that by Assumption 3.1 and Lemma C.8,

E[exp(γℓ(h, Z̃))] ≤ exp[E(γℓ(h, Z̃))] ≤ exp(γκu)

and by Assumption 3.1 and Lemma C.3,

Var(exp(γℓ(h, Z̃))) ≤ 2ϵ|γ|1+ϵE[ℓ(h, Z̃)1+ϵ] ≤ 2ϵ|γ|1+ϵκ1+ϵ
u .

This gives the stated bound assuming that (47) holds. In order to satisfy (47), viewing (47) as a quadratic inequality in
√
n

and using that (a+ b)2 ≤ 2a2 + 2b2 yields

n ≥ (4Var(exp(γℓ(h, Z̃))) + 8/3ζE[exp(γℓ(h, Z̃))]) log(2/δ)

ζ2(E[exp(γℓ(h, Z̃))])2
,

Now applying exp(γκu) ≤ E[exp(γℓ(h, Z̃))] ≤ 1 and Var(exp(γℓ(h, Z̃))) ≤ 2ϵ|γ|1+ϵκ1+ϵ
u completes the proof.

Theorem 3.5 (Restated). Under the same assumptions in Proposition 3.4 and a finite hypothesis space, then for
n ≥ (4|γ|1+ϵκ1+ϵ

u +8/3ζ) log(2/δ)
ζ2 exp(2γκu)

, for γ < 0 and with probability at least (1 − δ), the absolute value of the titled
generalization error satisfies

sup
h∈H

|genγ(h, S)| ≤
2 exp(|γ|κu)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u B(δ)

n
+

4 exp(|γ|κu)B(δ)

3n|γ|(1− ζ)
+ |γ|ϵκ1+ϵ

u , (49)

where B(δ) = log(card(H)) + log(2/δ).

Proof. Combining the upper and lower bounds, Proposition 3.3 and Proposition 3.4, we can derive the following bound for
a fixed h ∈ H,

|genγ(h, S)| ≤
2 exp(−γκu)

(1− ζ)

√
2ϵ|γ|1+ϵκ1+ϵ

u (log(2/δ))

n
+

4 exp(−γκu)(log(2/δ))

3n|γ|(1− ζ)
+ |γ|ϵκ1+ϵ

u . (50)

Then, using the union bound completes the proof.
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Lemma 3.7. The excess risk of the tilted empirical risk satisfies,

Eγ(µ) ≤ 2 sup
h∈H

|genγ(h, S)|

Proof. It can be proved that,
Eγ(µ) ≤ 2 sup

h∈H
|genγ(h, S)|

and
R(h∗

γ(S), µ) ≤ R̂γ(h
∗
γ(S), µ) + U ≤ R̂γ(h

∗(µ), µ) + U ≤ R(h∗(µ), µ) + 2U,

where U = suph∈H |R(h, µ)− R̂γ(h, S)| = suph∈H | genγ(h, S)|.

Corollary D.1. Under the same assumption in Proposition 3.4 and a finite hypothesis space, then for n ≥
(4γ2κ2

u+8/3ζ) log(2/δ)
ζ2 exp(2γκu)

with probability at least (1− δ) and γ < 0, the excess risk of tilted empirical risk satisfies,

Eγ(µ) ≤
4 exp(|γ|κu)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u B(δ)

n
+ 2|γ|ϵκ1+ϵ

u +
8 exp(|γ|κu)B(δ)

3n|γ|(1− ζ)
, (51)

where B(δ) = log(card(H)) + log(2/δ) and Eγ(µ) is defined in (7).

Proof. Combining Theorem 3.5 with Lemma 3.7 completes the proof.

D.2. Proofs and Details of Information-theoretic Bounds under Unbounded Loss

Proposition D.2. Under Assumption 3.8, for γ < 0, it holds for some ϵ ∈ (0, 1] that,

0 ≤ R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ) ≤ |γ|ϵκ1+ϵ
t ,

− |γ|ϵκ1+ϵ
t ≤ Rγ(H,PH,S)− EPH,S

[R̂γ(H,S)] ≤ 0.
(52)

Proof. The proof follows from Lemma C.9.

Proposition 3.9. Given Assumption 3.8, the following inequality holds for γ < 0,

Rγ(H,PH ⊗ µ)− Rγ(H,PH,S) ≤

 exp(|γ|κt)
|γ|

√
2|γ|1+ϵκ1+ϵ

t I(H;S)
n , if I(H;S)

n ≤ 2ϵ|γ|1+ϵκ1+ϵ
t

2
exp(|γ|κt)

|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
, if I(H;S)

n >
2ϵ|γ|1+ϵκ1+ϵ

t

2

Proof. For γ < 0, we use that 0 ≤ exp(γℓ(H, Z̃)) ≤ 1 and Var(exp(γℓ(H, Z̃))) ≤ |γ|1+ϵE[ℓ(H, Z̃)1+ϵ] ≤ |γ|1+ϵκ1+ϵ
t .

Note that the variable exp(γℓ(H, Z̃)) is sub-exponential with parameters (|γ|1+ϵκ1+ϵ
t , 1) under the distribution PH ⊗ µ.

Using the approach in (Bu et al., 2020; Aminian et al., 2021a) for the sub-exponential case, we have∣∣∣EPH⊗µ[exp(γℓ(H, Z̃))]− EPH,S
[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
∣∣∣

≤


√

2|γ|1+ϵκ1+ϵ
t

I(H;S)
n if I(H;S)

n ≤ 2ϵ|γ|1+ϵκ1+ϵ
t

2
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2 if I(H;S)
n >

2ϵ|γ|1+ϵκ1+ϵ
t

2 .

(53)

Therefore, we have for I(H;S)
n ≤ 2ϵ|γ|1+ϵκ1+ϵ

t

2 ,

EPH,S

[ 1
n

n∑
i=1

exp(γℓ(H,Zi))
]
≤
(
EPH⊗µ

[
exp(γℓ(H, Z̃))

]
+

√
2|γ|1+ϵκ1+ϵ

t

I(H;S)

n

)
. (54)
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Using (44) gives

1

γ
log
(
EPH,S

[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
)
− 1

γ
log(EPH⊗µ[exp(γℓ(H, Z̃))])

≥ 1

γEPH⊗µ[exp(γℓ(H, Z̃))]

√
2|γ|1+ϵκ1+ϵ

t

I(H;S)

n
.

(55)

For I(H;S)
n >

2ϵ|γ|1+ϵκ1+ϵ
t

2 , we have

EPH,S

[ 1
n

n∑
i=1

exp(γℓ(H,Zi))
]
≤
(
EPH⊗µ

[
exp(γℓ(H, Z̃))

]
+

I(H;S)

n
+

2ϵ|γ|1+ϵκ1+ϵ
t

2

)
. (56)

Using (44) again, we obtain,

1

γ
log
(
EPH,S

[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
)
− 1

γ
log(EPH⊗µ[exp(γℓ(H, Z̃))])

≥ 1

γEPH⊗µ[exp(γℓ(H, Z̃))]

(I(H;S)

n
+

2ϵ|γ|1+ϵκ1+ϵ
t

2

)
.

(57)

As under Assumption 3.8 and Lemma C.8, we have exp(γκt) ≤ EPH⊗µ[exp(γℓ(H, Z̃))], the final result follows.

Proposition 3.10. Under Assumption 3.8, there exists ζ ∈ (0, 1) such that one of the following cases holds,

(a) ζ ≤ 2ϵ|γ|1+ϵκ1+ϵ
t exp(|γ|κt)
2 and n ≥ 2ϵ|γ|1+ϵκ1+ϵ

t I(H;S)
ζ2 exp(2γκt)

,

(b) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and n ≥ 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

,

(c) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

> n ≥ 2I(H;S)

2ζ exp(γκt)−|γ|1+ϵκ1+ϵ
t

,
Then, the following lower bounds on non-linear expected tilted generalization error hold,

ĝenγ(H,S) ≥

− exp(|γ|κt)
|γ|(1−ζ)

√
2|γ|1+ϵκ1+ϵ

t I(H;S)
n , if (a) or (b) hold,

− exp(|γ|κt)
(1−ζ)|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
, if (c) holds.

Proof. Note that, we have, ∣∣∣EPH⊗µ[exp(γℓ(H, Z̃))]− EPH,S
[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
∣∣∣

≤


√

2|γ|1+ϵκ1+ϵ
t

I(H;S)
n if I(H;S)

n ≤ 2ϵ|γ|1+ϵκ1+ϵ
t

2
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2 if I(H;S)
n >

2ϵ|γ|1+ϵκ1+ϵ
t

2 .

(58)

For I(H;S)
n ≤ 2ϵ|γ|1+ϵκ1+ϵ

t

2 , we have,

EPH,S

[ 1
n

n∑
i=1

exp(γℓ(H,Zi))
]
≥
(
EPH⊗µ

[
exp(γℓ(H, Z̃))

]
−
√

2|γ|1+ϵκ1+ϵ
t

I(H;S)

n

)
. (59)

Assume for now that there is a ζ ∈ (0, 1) such that√
2|γ|1+ϵκ1+ϵ

t

I(H;S)

n
≤ ζEPH⊗µ

[
exp(γℓ(H, Z̃))

]
(60)
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As log(y − x) = log(y) + log(1− x
y ) ≥ log(y)− x

y−x for y > x > 0, then by taking y = EPH⊗µ

[
exp(γℓ(H, Z̃))

]
and

x =
√
2|γ|1+ϵκ1+ϵ

t
I(H;S)

n , so that with (47) we have y − x ≥ (1− ζ)y > 0, taking logarithms on both sides of (59) gives
that

1

γ
log(EPH⊗µ[exp(γℓ(H, Z̃))])− 1

γ
log
(
EPH,S

[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
)

≥ −1

γ(1− ζ)EPH⊗µ[exp(γℓ(H, Z̃))]

√
2|γ|1+ϵκ1+ϵ

t I(H;S)

n
,

(61)

where it holds for n ≥ 2|γ|1+ϵκ1+ϵ
t I(H;S)

ζ2 exp(2γκt)
. As we also have I(H;S)

n ≤ 2ϵ|γ|1+ϵκ1+ϵ
t

2 , we consider the condition n ≥

max
( 2|γ|1+ϵκ1+ϵ

t I(H;S)
ζ2 exp(2γκt)

, 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

)
.

For 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

> n, we have

EPH,S

[ 1
n

n∑
i=1

exp(γℓ(H,Zi))
]
≥
(
EPH⊗µ

[
exp(γℓ(H, Z̃))

]
− I(H;S)

n
− 2ϵ|γ|1+ϵκ1+ϵ

t

2

)
. (62)

As log(y − x) = log(y) + log(1− x
y ) ≥ log(y)− x

y−x , we obtain,

1

γ
log
(
EPH,S

[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
)
− 1

γ
log(EPH⊗µ[exp(γℓ(H, Z̃))])

≤ −1

γ(1− ζ ′)EPH⊗µ[exp(γℓ(H, Z̃))]

(I(H;S)

n
+

2ϵ|γ|1+ϵκ1+ϵ
t

2

)
,

(63)

Assume for now that there is a ζ ′ ∈ (0, 1) such that

ζ ′EPH⊗µ

[
exp(γℓ(H, Z̃))

]
≥ I(H;S)

n
+

2ϵ|γ|1+ϵκ1+ϵ
t

2
. (64)

where it holds for 2I(H;S)

2ζ′ exp(γκt)−|γ|1+ϵκ1+ϵ
t

≤ n. Therefore, the final condition is

2I(H;S)

2ζ ′ exp(γκt)− |γ|1+ϵκ1+ϵ
t

≤ n ≤ 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

Note that, we also have due to 2ab ≤ a2 + b2,√
2|γ|1+ϵκ1+ϵ

t I(H;S)

n
≤ I(H;S)

n
+

2ϵ|γ|1+ϵκ1+ϵ
t

2
(65)

Therefore, we can choose ζ = ζ ′. Furthermore, we can also discuss the following cases.

• If ζ exp(γκt) ≤ 2ϵ|γ|1+ϵκ1+ϵ
t

2 holds, then for n ≥ 2ϵ|γ|1+ϵκ1+ϵ
t I(H;S)

ζ2 exp(2γκt)
we have,

Rγ(H,PH ⊗ µ)− Rγ(H,PH,S) ≥
− exp(|γ|κt)

|γ|(1− ζ)

√
2|γ|1+ϵκ1+ϵ

t I(H;S)

n
.

• If ζ exp(γκt) ≥ 2ϵ|γ|1+ϵκ1+ϵ
t

2 holds, then we have,

Rγ(H,PH ⊗ µ)− Rγ(H,PH,S)

≥


− exp(|γ|κt)
|γ|(1−ζ)

√
2|γ|1+ϵκ1+ϵ

t I(H;S)
n , if 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

≤ n

− exp(|γ|κt)
(1−ζ)|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
, if 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

) > n ≥ 2I(H;S)

2ζ′ exp(γκt)−|γ|1+ϵκ1+ϵ
t

.
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Using Proposition 3.9, we can obtain the following upper bound on the expected tilted generalization error.
Proposition D.3. Given Assumption 3.8, the following upper bound holds on the expected tilted generalization error for
γ < 0,

genγ(H,S) ≤

 exp(|γ|κt)
|γ|

√
2|γ|1+ϵκ1+ϵ

t I(H;S)
n + |γ|ϵκ1+ϵ

t , if I(H;S)
n ≤ 2ϵ|γ|1+ϵκ1+ϵ

t

2
exp(|γ|κt)

|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
+ |γ|ϵκ1+ϵ

t , if I(H;S)
n >

2ϵ|γ|1+ϵκ1+ϵ
t

2

Proof. We use the following decomposition,

EPH,S
[genγ(H,S)] = EPH,S

[R(H,µ)]− Rγ(H,PH ⊗ µ) + Rγ(H,PH ⊗ µ)− Rγ(H,PH,S) (66)

+Rγ(H,PH,S)− EPH,S
[R̂γ(H,S)].

Then, using Lemma C.9, we have

EPH,S
[R(H,µ)]− Rγ(H,PH ⊗ µ) ≤ |γ|ϵEPH⊗µ[ℓ

1+ϵ(H, Z̃)] ≤ |γ|ϵκ1+ϵ
t , (67)

and now Jensen’s inequality for γ < 0 yields

Rγ(H,PH,S)− EPH,S
[R̂γ(H,S)] ≤ 0. (68)

Applying Proposition 3.9, we obtain

Rγ(H,PH ⊗ µ)− Rγ(H,PH,S) ≤

 exp(|γ|κt)
|γ|

√
2|γ|1+ϵκ1+ϵ

t I(H;S)
n , if I(H;S)

n ≤ 2ϵ|γ|1+ϵκ1+ϵ
t

2
exp(|γ|κt)

|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
, if I(H;S)

n >
2ϵ|γ|1+ϵκ1+ϵ

t

2

Combining (68), (69) and (67) with (66) completes the proof.

Proposition D.4. Under Assumption 3.8, there exists ζ ∈ (0, 1) such that one of the following cases holds,

(a) ζ ≤ 2ϵ|γ|1+ϵκ1+ϵ
t exp(|γ|κt)
2 and n ≥ 2ϵ|γ|1+ϵκ1+ϵ

t I(H;S)
ζ2 exp(2γκt)

,

(b) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and n ≥ 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

,

(c) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

> n ≥ 2I(H;S)

2ζ exp(γκt)−|γ|1+ϵκ1+ϵ
t

,

Then, the following lower bounds on expected tilted generalization error hold,

genγ(H,S) ≥

− exp(|γ|κt)
|γ|(1−ζ)

√
2|γ|1+ϵκ1+ϵ

t I(H;S)
n − |γ|ϵκ1+ϵ

t , if (a) or (b) hold,
− exp(|γ|κt)
(1−ζ)|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
− |γ|ϵκ1+ϵ

t , if (c) holds.

Proof. The proof is similar to Proposition D.3 and using Proposition 3.10.

Theorem 3.11. Under Assumption 3.8, there exists ζ ∈ (0, 1) such that one of the same cases in

(a) ζ ≤ 2ϵ|γ|1+ϵκ1+ϵ
t exp(|γ|κt)
2 and n ≥ 2ϵ|γ|1+ϵκ1+ϵ

t I(H;S)
ζ2 exp(2γκt)

,

(b) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and n ≥ 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

,

(c) ζ >
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and 2I(H;S)

2ϵ|γ|1+ϵκ1+ϵ
t

> n ≥ 2I(H;S)

2ζ exp(γκt)−|γ|1+ϵκ1+ϵ
t

,
Then, the following lower bounds on non-linear expected generalization error hold,

|genγ(H,S)| ≤


exp(|γ|κt)
|γ|(1−ζ)

√
2κ2

t I(H;S)
n + |γ|ϵκ1+ϵ

t , if (a) or (b) hold,
exp(|γ|κt)
(1−ζ)|γ|

(
I(H;S)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2

)
+ |γ|ϵκ1+ϵ

t , if (c) holds.
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Proof. This result follows by combining the upper bound from Proposition D.3 with the lower bound from Proposition D.4.

Remark D.5 (Individual Sample Bound Discussion). We can derive the results based on individual sample approach (Bu
et al., 2020), replacing the following inequality with (53), which is based on individual sample,∣∣∣EPH⊗µ[exp(γℓ(H, Z̃))]− EPH,S

[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
∣∣∣

≤


√

2|γ|1+ϵκ1+ϵ
t

1
n

∑n
i=1 I(H;Zi) if maxi∈[n] I(H;Zi) ≤ 2ϵ|γ|1+ϵκ1+ϵ

t

2

1
n

∑n
i=1 I(H;Zi) +

2ϵ|γ|1+ϵκ1+ϵ
t

2 if mini∈[n] I(H;Zi) >
2ϵ|γ|1+ϵκ1+ϵ

t

2 .

(69)

E. Proof and details of Section 4
Proposition 4.2 (Restated). Given Assumption 4.1 and Assumption 3.1, then the difference of tilted population risk under,
(9), between µ and µ̃ is bounded as follows for all h ∈ H,

∣∣∣ 1
γ
log(EZ̃∼µ[exp(γℓ(h, Z̃))])− 1

γ
log(EZ̃∼µ̃[exp(γℓ(h, Z̃))])

∣∣∣ ≤ TV(µ, µ̃)
γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

. (70)

Proof. We have for a fixed h ∈ H that∣∣∣ 1
γ
log(EZ̃∼µ[exp(γℓ(h, Z̃))])− 1

γ
log(EZ̃∼µ̃[exp(γℓ(h, Z̃))])

∣∣∣
(a)
=
∣∣∣ ∫ 1

0

∫
Z

exp(γℓ(h, z))

|γ|EZ̃∼µλ
[exp(γℓ(h, Z̃))]

(µ̃− µ)(dz)dλ
∣∣∣

(b)

≤ TV(µ, µ̃) exp(|γ|κs)

|γ|

∫ 1

0

exp(|γ|λ(κu − κs))dλ

=
TV(µ, µ̃)

|γ|
exp(|γ|κu)− exp(|γ|κs)

|γ|(κu − κs)
,

(71)

where (a) and (b) follow from the functional derivative with µλ = µ̃+ λ(µ− µ̃) and Lemma C.16. The same approach can
be applied for the lower bound.

Remark E.1. For positive γ, the result in Proposition 4.2 does not hold and can be unbounded.

Proposition E.2 (Upper Bound). Given Assumptions 3.1 and 4.1, for any fixed h ∈ H and with probability least
(1− δ) for γ < 0, then the following upper bound holds on the tilted generalization error

genγ(h, Ŝ) ≤
2 exp(|γ|κs)

|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

s log(2/δ)

n

+
4 exp(|γ|κs)(log(2/δ))

3n|γ|
+ |γ|ϵκ1+ϵ

u +
TV(µ, µ̃)

γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

,

where Ŝ is the training dataset under the distributional shift.

Proof. The proof follows directly from the following decomposition of the tilted generalization error under distribution
shift,

genγ(h, Ŝ) = R(h, µ)− Rγ(h, µ
⊗n)︸ ︷︷ ︸

I5

+Rγ(h, µ)− Rγ(h, µ̃)︸ ︷︷ ︸
I6

+Rγ(h, µ̃)− R̂γ(h, Ŝ)︸ ︷︷ ︸
I7

,

where I5, I6 and I7 can be bounded using Lemma C.9, Proposition 4.2 and Proposition 3.3, respectively.
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Proposition E.3 (Lower Bound). Given Assumptions 3.1 and 4.1, for any fixed h ∈ H and with probability least
(1− δ), there exists a ζ ∈ (0, 1) such that for n ≥ (4γ2κ2

u+8/3ζ) log(2/δ)
ζ2 exp(2γκu)

and γ < 0, such that the following upper
bound holds on the tilted generalization error

genγ(h, Ŝ) ≥− 2 exp(|γ|κs)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

s log(2/δ)

n
− 4 exp(|γ|κs)(log(2/δ))

3n|γ|(1− ζ)

− TV(µ, µ̃)
γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

,

where Ŝ is the training dataset under the distributional shift.

Proof. The proof follows directly from the following decomposition of the tilted generalization error under distribution
shift,

genγ(h, Ŝ) = R(h, µ)− Rγ(h, µ
⊗n)︸ ︷︷ ︸

I5

+Rγ(h, µ)− Rγ(h, µ̃)︸ ︷︷ ︸
I6

+Rγ(h, µ̃)− R̂γ(h, Ŝ)︸ ︷︷ ︸
I7

,

where I5, I6 and I7 can be bounded using Lemma C.9, Proposition 4.2 and Proposition 3.4, respectively.

Theorem 4.3 (Restated). Under the same assumptions in Theorem 3.5, then for n ≥ (4γ2κ2
u+8/3ζ) log(2/δ)
ζ2 exp(2γκu)

and
γ < 0, and with probability at least (1− δ), the absolute value of the tilted generalization error under distributional
shift satisfies

sup
h∈H

|genγ(h, Ŝ)| (72)

≤ 2 exp(|γ|κu)

(1− ζ)|γ|

√
2ϵ|γ|1+ϵκ1+ϵ

u B(δ)

n
+

4 exp(|γ|κu)B(δ)

3n|γ|(1− ζ)

+ |γ|ϵκ1+ϵ
u +

TV(µ, µ̃)
γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

,

where B(δ) = log(card(H)) + log(2/δ).

Proof. The result follows from combining the results of Proposition E.2, Proposition E.3, and applying the union bound.

Theorem 4.5. Under the same assumptions as in Theorem 3.11 and Assumption 4.4, the following upper bounds on absolute
expected tilted generalization error hold under distributional shift, if (a) or (b) hold,

|genγ(H, Ŝ)| ≤ exp(|γ|κst)

|γ|(1− ζ)
G
(
I(H; Ŝ)

)
+ |γ|ϵ(κ1+ϵ

t + κ1+ϵ
st )

+
TV(µ, µ̃)

γ2

(
exp(|γ|κt)− exp(|γ|κst)

)
(κt − κst)

,

where if (a) and (b) hold we have G(I(H; Ŝ)) =

√
2κϵ+1

t |γ|1+ϵI(H;Ŝ)
n and if (c) holds, we have, G(I(H; Ŝ)) = I(H;Ŝ)

n +
2ϵ|γ|1+ϵκ1+ϵ

t

2 .

Proof. The proof follows from Theorem 3.11 and Assumption 4.4. Note that, we have,

0 ≤ R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ) ≤ |γ|ϵκ1+ϵ
t ,

− |γ|ϵκ1+ϵ
st ≤ Rγ(H,PH,Ŝ)− EPH,Ŝ

[R̂γ(H, Ŝ)] ≤ 0.
(73)
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We also have in a similar approach to Proposition 4.2,∣∣∣ 1
γ
log(EPH⊗µ[exp(γℓ(H, Z̃))])− 1

γ
log(EPH⊗µ̃[exp(γℓ(H, Z̃))])

∣∣∣
≤ TV(PH ⊗ µ, PH ⊗ µ̃)

γ2

(
exp(|γ|κt)− exp(|γ|κst)

)
(κt − κst)

.

(74)

Note that TV(PH ⊗ µ, PH ⊗ µ̃) = TV(µ, µ̃). Combining Theorem 3.11 with (74) and (73) completes the proof.

E.1. Convergence rate under distribution shift

In this section, we study the convergence rate under distribution shift. Suppose that we have some outlier samples in training
dataset with distribution ν. Then, we can assume that µ̃ = (1− τ)µ+ τν for some τ ∈ [0, 1]. We analysis the following
term in Theorem 4.3,

TV(µ, µ̃)
γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

. (75)

Using Taylor’s expansion, we can show that
(
exp(|γ|κu)−exp(|γ|κs)

)
(κu−κs)

= O(γ). Furthermore, we have,

TV(µ, µ̃) =
∫
Z

∣∣µ− µ̃
∣∣dz

= τ

∫
Z
|µ− ν|dz

≤ τTV(µ, ν)
≤ 2τ.

(76)

Therefore, we have,
TV(µ, µ̃)

γ2

(
exp(|γ|κu)− exp(|γ|κs)

)
(κu − κs)

= O
( τ
γ

)
. (77)

In general, choosing γ = O(n−1/(1+ϵ)) for n ≥ (4κ1+ϵ
u +8/3ζ) log(2/δ)
ζ2 exp(−2κu)

, we have the overall convergence rate on absolute

titled generalization error, max
(
O
(
τn1/(1+ϵ)

)
, O
(
n−ϵ/(1+ϵ)

))
. Note that choosing τ = O(1/n), we can have the

convergence rate of O
(
n−ϵ/(1+ϵ)

)
. For example, we have one outlier sample, we can choose τ = 1

n+1 .

F. Proof and details of Section 6
Proposition 6.1. The solution to the expected TERM regularized via KL divergence, (24), is the tilted Gibbs Posterior (a.k.a.
Gibbs Algorithm),

P γ
H|S :=

πH

Fα(S)

( 1
n

n∑
i=1

exp(γℓ(H,Zi))
)−α/γ

, (78)

where Fα(S) is a normalization factor.

Proof. From (Zhang, 2006), we know that,

P ⋆
X = min

PX

EPX
[f(x)] +

1

α
KL(PX∥QX), (79)

where P ⋆
X = QX exp(−αf(X))

EQX
[exp(−αf(X))] . Using (79), it can be shown that the tilted Gibbs posterior is the solution to (25).
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Proposition 6.2 (Restated). The difference between the expected TER under the joint and product of marginal
distributions of H and S can be characterized as,

Rγ(H,PH ⊗ µ)− Rγ(H,PH,S) =
ISKL(H;S)

α
. (80)

Proof. As in Aminian et al. (2015), the symmetrized KL information between two random variables (S,H) can be written
as

ISKL(H;S) = EPH⊗µ⊗n [log(PH|S)]− EPH,S
[log(PH|S)]. (81)

The results follows by substituting the tilted Gibbs posterior in (81).

Theorem 6.3 (Restated). Under the same Assumptions in Theorem 3.11 for some ϵ ∈ (0, 1], the expected tilted
generalization error of the tilted Gibbs posterior satisfies

0 ≤ genγ(H,S) ≤ 2α exp(2|γ|κt)κ
1+ϵ
t

(1− ζ)2n|γ|1−ϵ
+

exp(|γ|κt)κ
1+ϵ
t |γ|1/2+ϵ

(1− ζ)|γ|

√
α

n
+ 2|γ|ϵκ1+ϵ

t . (82)

Proof. We expand

genγ(H,S) = R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ⊗n)

+ Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH ⊗ µ)

+ Rγ(H,PH ⊗ µ)− Rγ(H,PH,S)

+ Rγ(H,PH,S)− Rγ(H,PH,S).

(83)

From Proposition 6.2, we have,

Rγ(H,PH ⊗ µ)− Rγ(H,PH,S) =
ISKL(H;S)

α
. (84)

We also have,

0 ≤ R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ⊗n) ≤ |γ|ϵκ(1+ϵ)
u

2
,

0 ≤ Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH ⊗ µ) ≤ |γ|ϵκ(1+ϵ)
u ,

−|γ|ϵκ(1+ϵ)
u ≤ Rγ(H,PH,S)− Rγ(H,PH,S) ≤ 0.

(85)

From Theorem 3.11, there exist ζ ∈ (0, 1) such the following upper bound on absolute value of non-linear expected

generalization error holds provided that 1 <
2ϵ|γ|1+ϵκ1+ϵ

t exp(|γ|κt)
2 and n ≥ 2ϵ|γ|1+ϵκ1+ϵ

t I(H;S)
ζ2 exp(2γκt)

,

∣∣Rγ(H,PH ⊗ µ)− Rγ(H,PH,S)
∣∣ ≤ exp(|γ|κt)

(1− ζ)|γ|

√
2κ1+ϵ

t |γ|1+ϵI(H;S)

n
+ |γ|ϵκ1+ϵ

t . (86)

Using the fact that I(H;S) ≤ ISKL(H;S), we have the following inequality by considering (84) and (86).

I(H;S)

α
≤ exp(|γ|κt)

(1− ζ)|γ|

√
2κ1+ϵ

t |γ|1+ϵI(H;S)

n
+ |γ|ϵκ1+ϵ

t , (87)

where results in
√
I(H;S) ≤ A+

√
A2+4B
2 ≤ A +

√
B, where A = α exp(|γ|κt)

(1−ζ)|γ|

√
2κ1+ϵ

t |γ|1+ϵ

n and B = α|γ|ϵκ1+ϵ
t . We

have, √
I(H;S) ≤ α exp(|γ|κt)

(1− ζ)|γ|

√
2κ1+ϵ

t |γ|1+ϵ

n
+

√
α|γ|ϵκ1+ϵ

t

ϵ
,
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where C is constant independent from n. Therefore,

∣∣Rγ(H,PH ⊗ µ)− Rγ(H,PH,S)
∣∣ ≤ 2α exp(2|γ|κt)κ

1+ϵ
t

(1− ζ)2n|γ|1−ϵ
+

exp(|γ|κt)κ
1+ϵ
t |γ|1/2+ϵ

(1− ζ)|γ|

√
2α

n
+ 2|γ|ϵκ1+ϵ

t . (88)

Combining (88) with (85) completes the proof.

G. Experiment Details
Data-Driven choice of Tilt: A similar discussion in Section 4 applies to the upper bound on the expected tilted generalization
error under distribution shift in Theorem 4.5. However, in the large n regime, the results remain the same.

Logistic Regression: For logistic regression, we consider 500 samples from 2d Gaussian distributions, N (3, 1)×N (1, 1)
and N (−10, 1) × N (−5, 1). For logistic regression, we consider 0.01 as learning rate and 10000 iterations. Our loss
function is ℓ(h, z) = log(1 + exp(−yhTx)) for h ∈ H ⊂ R2.

• Gaussian Outlier: We add outlier samples ρ× 1000 from Gaussian distribution N (−40, 5)×N (−40, 5).

• Pareto Outlier: Note that for Z ∼ Pareto(1, α) as a heavy-tailed distribution, we have fZ(z) =
α

zα+1 . We consider
α = 1.5 to have unbounded variance (heavy-tailed distribution). We add outlier samples ρ × 1000 from Pareto
distribution to Gaussian true sample dataset.

γdata computation: suppose that we have m samples as outlier, {z̃j}mj=1. We model the distribution shift as follows,

µ̃ =
n

n+m
µ+

m

n+m

( m∑
j=1

P (Z = z̃j)∑m
k=1 P (Z = z̃k)

N (z̃j , 0.01)
)
, (89)

where P (Z = z̃j) is the probability of j-th outlier data sampled from Gaussian or Pareto distribution. Then, we have,

TV(µ, µ̃) =
∫
Z
|µ− µ̃|dz

≤ m

n+m

m∑
j=1

P (Z = z̃j)∑m
k=1 P (Z = z̃k)

TV
(
µ,N (z̃j , 0.01)

)
≤ 2m

m+ n
,

(90)

where µ is Gaussian distribution as data generating distribution. We calculate the empirical values of κu using the true
dataset and κs using the training dataset containing outliers. Then, we consider the Hypothesis space as the set of parameters
where the (1 + ϵ)-th moment of loss is bounded by empirical κ1+ϵ

s . For Gaussian, we consider ϵ = 1 and for Pareto
distribution with α = 1.5 we consider ϵ = 0.5. The Logistic regression scenario under Gaussian and Pareto outliers with 10
and 5 number of samples, respectively, are shown in Fig. 1.

Logistic Regression without outlier: Similar to the distribution shift scenario, we can propose a data-driven γ inspired by
Corollary D.1. For this purpose, we assume that n is large enough and γ is a small negative value close to zero. Additionally,
we assume that the first term in the upper bound of Corollary D.1 is zero due to large n. For simplicity in computation, we
consider exp(−γκu) ≈ 1 for small γ. Under these assumptions, we define:

γdata := argmin
γ∈(−∞,0)

[
|γ|
2
κ2
u +

4B(δ)

3n|γ|(1− ζ)

]
, (91)

where B(δ) is defined in Corollary D.1. Note that the term B(δ) can be large due to the cardinality of the hypothesis space,
resulting in a very small γ. In this scenario, we expect that a γ near zero would have a better performance.

Now, we conduct an experiment for a logistic regression problem by sampling from a Pareto distribution as a heavy-
tailed distribution without outlier. We observed that TERM achieves better population risk with an optimal negative
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Figure 1: Logistic Regression Experiments with Outlier

tilt near zero. In this scenario, the data-driven γ performed similarly to the ERM solution. However, the optimal
solution based on grid search outperformed the ERM solution. The experiment was conducted with 1,000 training
samples and we have γ⋆ = −0.5263± 0.0001, R(hγ⋆(Ŝ), µ)= 0.05220± 0.00001, R(hERM(Ŝ), µ) = 0.05249± 0.00002,
γdata = −0.0001± 0.0000 and R(hγdata(Ŝ), µ)= 0.05249± 0.00001.

Linear Regression: We also consider the Linear Regression toy example as mentioned in (Li et al., 2021) where the loss
function is square loss function ℓ(h, z) = 1

2 (h
Tx − y) for h ∈ H ⊂ R2. Similar to logistic regression, we consider two

scenario. One, the outlier is Gaussian, and another case where the outlier is Pareto, where we consider n = 2000. For true
data, we consider X ∼ N (1, 0.5) and y = −x+ 0.5 +N (0, 0.5). For outlier, we consider

• Gaussian outlier: Xoutlier ∼ N (−10, 0.5) and youtlier ∼ N (2, 0.5),

• Pareto outlier: Xoutlier ∼ 2P(1.5, 1) and youtlier ∼ P(1.5, 1), where P(1.5, 1) is Pareto distribution with shape and
scale equal to 1.5 and 1, respectively.

The results are reported in Table 5 and Table 4. The linear regression scenario under Gaussian and Pareto outliers with 10
number of samples are shown in Fig. 2.

Table 4: Linear Regression with Pareto Outliers: Results averaged over three runs (n = 2, 000 samples), showing mean ±
standard deviation.

ρ γ⋆ R(hγ⋆(Ŝ), µ) R(hERM(Ŝ), µ) γdata R(hγdata(Ŝ), µ)

0.049% −0.26667± 0.0555 0.12530± 0.0001 0.25795± 0.0001 −0.1000± 0.0000 0.12530± 0.0002
9.13% −0.7000± 0.0000 0.12183± 0.001 0.6731± 0.0045 −0.3333± 0.04222 0.1700± 0.0005
16.70% −1.43333± 0.1155 0.1238± 0.0002 0.7580± 0.0006 −0.5333± 0.01555 0.2755± 0.0001
33.35% −1.8000± 0.0200 0.1275± 0.0001 1.5096± 0.0050 −0.2333± 0.0022 0.3972± 0.0002
44.45% −2.43333± 0.0088 0.1229± 0.0001 2.2190± 0.0011 −0.1000± 0.0000 0.4908± 0.0001

Linear Regression without outlier: In this scenario, we consider linear regression based on training samples from a Pareto
distribution with shift parameter equal to 1.5 . We observe that for γ⋆ = −0.1±0.00001, R(hγ⋆(Ŝ), µ)= 10.4924±6.7273,
R(hERM(Ŝ), µ) = 20.73892± 12.9752 and γdata = −0.005± 0.0000 and R(hγdata(Ŝ), µ)= 19.05249± 10.4675.
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Table 5: Linear Regression with Gaussian Outliers: Results averaged over three runs (n = 2, 000 samples), showing mean
± standard deviation.

ρ γ⋆ R(hγ⋆(Ŝ), µ) R(hERM(Ŝ), µ) γdata R(hγdata(Ŝ), µ)

0.049% −10.0000± 0.0000 0.7555± 0.0000 1.19923± 0.0001 −3.6333± 0.0288 0.75617± 0.0001
9.13% −0.1000± 0.0000 0.16095± 0.0001 0.3215± 0.0005 −3.8000± 0.3466 0.17083± 0.0009
16.70% −3.4000± 0.1000 0.15515± 0.0000 0.31122± 0.0002 −3.9000± 0.0001 0.15796± 0.0001
33.35% −0.1000± 0.0200 0.1564± 0.0000 0.3127± 0.0001 −5.0666± 0.0022 0.15858± 0.0000
44.45% −3.43333± 0.0001 0.1530± 0.0001 0.3070± 0.0001 −5.8000± 0.0080 0.15399± 0.0001
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Figure 2: Linear Regression Experiments with Outlier

H. Generalization Bounds for Bounded Loss Functions
Upper bounds under linear empirical risk for bounded loss functions via information theoretic and uniform bounds are
studied by Shalev-Shwartz & Ben-David (2014) and Xu & Mannor (2012), respectively. Inspired by these works, in this
section, we provide upper bounds on the tilted generalization error via uniform and information-theoretic approaches for
bounded loss functions with the convergence rate of O(1/

√
n) which is similar to generalization error under linear empirical

risk. The following results are derived for bounded loss function scenario,

• Uniform bounds

• Information-theoretical bounds

• KL-regularized TERM under bounded loss function

• Rademacher Complexity bounds

• Stability bounds

• PAC-Bayesian bounds

The theoretical analysis in this section hinges on two fundamental properties: the Lipschitz continuity of the logarithmic
function on a bounded interval and the boundedness of the loss function. When working with bounded loss functions,
we can analyze the positive tilt scenario. Furthermore, the bounded case does not restrict us on sample size n that would
otherwise be necessary in the unbounded scenario.
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H.1. Uniform bounds for bounded loss

In this section the following assumption is made.

Assumption H.1 (Bounded loss function). There is a constant M such that the loss function, (h, z) 7→ ℓ(h, z) satisfies
0 ≤ ℓ(h, z) ≤ M uniformly for all h ∈ H, z ∈ Z .

For uniform bounds of the type (6), we decompose the tilted generalization error (4) as follows,

genγ(h, S) = R(h, µ)− Rγ(h, µ
⊗n)︸ ︷︷ ︸

I1

+Rγ(h, µ
⊗n)− R̂γ(h, S)︸ ︷︷ ︸

I2

, (92)

where I1 is the difference between the population risk and the tilted population risk, and I2 is the non-linear generalization
error.

We first derive an upper bound on term I1 in the following Proposition.

Proposition H.2. Under Assumption H.1, for γ ∈ R, the difference between the population risk and the tilted population
risk satisfies

−1

2γ
Var
(
exp(γℓ(h, Z))

)
≤ R(h, µ)− Rγ(h, µ

⊗n) ≤ − exp(−2γM)

2γ
Var
(
exp(γℓ(h, Z))

)
. (93)

Proof. For any h ∈ H we have

R(h, µ) = E[ℓ(h, Z)]

= E
[ 1
γ
log
(
exp(γℓ(h, Z))

)]
=

1

|γ|

[
EZ∼µ

[
− log

(
exp(γℓ(h, Z))

)
− exp(−2γM)

2
exp(2γℓ(h, Z))

+
exp(−2γM)

2
exp(2γℓ(h, Z))

]]

≤ 1

γ
log(E[exp(γℓ(h, µ))]) +

exp(−2γM)

2|γ|
Var(exp(γℓ(h, Z)))

= Rγ(h, µ
⊗n) +

exp(−2γM)

2|γ|
Var(exp(γℓ(h, Z))).

(94)

A similar approach can be applied for γ > 0 by using Lemma C.4 and the final result holds.

Note that for γ → 0, the upper and lower bounds in Proposition H.2 are zero. As the log function is Lipschitz on a bounded
interval, applying the Hoeffding inequality to term I2 and Proposition H.2 to term I1 in (13), we obtain the following upper
bound on the tilted generalization error.

Theorem H.3. Given Assumption H.1, for any fixed h ∈ H with probability at least (1− δ) the tilted generalization
error satisfies the upper bound,

genγ(h, S) ≤
− exp(−2γM)

2γ
Var

(
exp(γℓ(h, Z))

)
+

(
exp(|γ|M)− 1

)
|γ|

√
log(2/δ)

2n
. (95)
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Proof. We can apply the Proposition H.2 to provide an upper bound on term I1. Regarding the term I5, we have for γ < 0

Rγ(h, µ
⊗n)− R̂γ(h, S)

=
1

γ
log(Eµ⊗n [

1

n

n∑
i=1

exp(γℓ(h, Zi))])−
1

γ
log(

1

n

n∑
i=1

exp(γℓ(h, Zi)))

≤ exp(−γM)

|γ|
∣∣EZ̃∼µ[exp(γℓ(h, Z̃))]− 1

n

n∑
i=1

exp(γℓ(h, Zi))
∣∣

≤ exp(−γM)(1− exp(γM))

|γ|

√
log(2/δ)

2n
.

(96)

Similarly, for γ > 0, we have

Rγ(h, µ
⊗n)− R̂γ(h, S) ≤

(exp(γM)− 1)

|γ|

√
log(2/δ)

2n
. (97)

Combining this bound with Proposition H.2 completes the proof.

Theorem H.4. Under the same assumptions of Theorem H.3, for a fixed h ∈ H, with probability at least (1− δ),
the tilted generalization error satisfies the lower bound

genγ(h, S) ≥
−1

2γ
Var

(
exp(γℓ(h, Z))

)
−
(
exp(|γ|M)− 1

)
|γ|

√
log(2/δ)

2n
. (98)

Proof. The proof is similar to that of Theorem H.3, by using the lower bound in Proposition H.2.

Combining Theorem H.3 and Theorem H.4, we derive an upper bound on the absolute value of the titled generalization error.

Corollary H.5. Let A(γ) = (1− exp(γM))2. Under the same assumptions in Theorem H.3, with probability at
least (1− δ), and a finite hypothesis space, the absolute value of the titled generalization error satisfies

sup
h∈H

|genγ(h, S)| ≤
(
exp(|γ|M)− 1

)
|γ|

√
log(card(H)) + log(2/δ)

2n
+

max(1, exp(−2γM))A(γ)

8|γ|
,

where A(γ) = (1− exp(γM))2.

Proof. We can derive the following upper bound on the absolute of tilted generalization error by combining Theorem H.3
and Theorem H.4 for any fixed h ∈ H

|genγ(h, S)| ≤
(
exp(|γ|M)− 1

)
|γ|

√
log(card(H)) + log(2/δ)

2n
+

max(1, exp(−2γM))A(γ)

8|γ|
, (99)

where A(γ) = (1− exp(γM))2. Then, the final result follow by applying the uniform bound for all h ∈ H using (99).

Corollary H.6. Under the same Assumptions as in Theorem H.3 and assuming γ is of order O(n−β) for β > 0, the upper
bound on the tilted generalization error in Theorem H.3 has a convergence rate of max

(
O(1/

√
n), O(n−β)

)
as n → ∞.

Proof. Using the inequality x
x+1 ≤ log(1 + x) ≤ x and Taylor expansion for the exponential function,

exp(|γ|M) = 1 + |γ|M +
|γ|2M2

2
+

|γ|3M3

6
+O(γ4), (100)
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it follows that (
exp(|γ|M)− 1

)
|γ|

≈ M +
|γ|M2

2
+

|γ|2M3

6
+O(γ3). (101)

This results in a convergence rate of O(1/
√
n) for

(
exp(|γ|M)−1

)
|γ|

√
log(card(H))+log(2/δ)

2n under γ → 0.

For the term max(1,exp(−2γM))(1−exp(γM))2

8|γ| , using Taylor expansion, we have the convergence rate of O(|γ|) for the first
term; this completes the proof.

Remark H.7. Choosing β ≥ 1/2 in Corollary H.6 gives a convergence rate of O(1/
√
n) for the tilted generalization error.

Remark H.8 (The influence of γ). As γ → 0, the upper bound in Corollary H.5 on the absolute value of tilted generalization
error converges to the upper bound on absolute value of the generalization error under the ERM algorithm obtained by
Shalev-Shwartz & Ben-David (2014),

sup
h∈H

|gen(h, S)| ≤ M

√
log(card(H)) + log(2/δ)

2n
. (102)

In particular,
(
exp(|γ|M)− 1

)
/|γ| → M and the first term in Corollary H.5 vanishes. Therefore, the upper bound

converges to a uniform bound on the linear empirical risk.

Using Corollary H.6, we derive an upper bound on the excess risk.

Corollary H.9. Under the same assumptions in Theorem H.3, and a finite hypothesis space, with probability at
least (1− δ), the excess risk of tilted empirical risk satisfies

Eγ(µ) ≤
2
(
exp(|γ|M)− 1

)
|γ|

√
log(card(H)) + log(2/δ)

2n
+

2max(1, exp(−2γM))A(γ)

8|γ|
,

where A(γ) = (1− exp(γM))2.

Proof. It can be proved that,
Eγ(µ) ≤ 2 sup

h∈H
|genγ(h, S)|

and
R(h∗

γ(S), µ) ≤ R̂γ(h
∗
γ(S), µ) + U ≤ R̂γ(h

∗(µ), µ) + U ≤ R(h∗(µ), µ) + 2U,

where U = suph∈H |R(h, µ)− R̂γ(h, S)| = suph∈H | genγ(h, S)|.

Note that suph∈H | genγ(h, S)| can be bounded using Corollary H.5.

H.2. Information-theoretic bounds for bounded loss functions

Next, we provide an upper bound on the expected tilted generalization error. For information-theoretic bounds, we employ
the following decomposition of the expected tilted generalization error,

genγ(H,S) = {R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ⊗n)}+ {Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH,S)}. (103)

The following is helpful in deriving the upper bound.

Proposition H.10. Under Assumption H.1, the following inequality holds,∣∣∣Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH,S)
∣∣∣ ≤ (exp(|γ|M)− 1)

|γ|

√
I(H;S)

2n
.

Proof. The proof follows directly from applying Lemma C.15 to the log(.) function and then applying Lemma C.14.
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Using Proposition H.10, we derive the following upper and lower bounds on the expected tilted generalization error.

Theorem H.11. Under Assumption H.1, the expected tilted generalization error satisfies

genγ(H,S) ≤ (exp(|γ|M)− 1)

|γ|

√
I(H;S)

2n
− γ exp(−γM)

2

(
1− 1

n

)
EPH

[
VarZ̃∼µ(ℓ(H, Z̃))

]
.

Proof. We expand

genγ(H,S) = R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ⊗n) + Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH,S). (104)

Using Proposition H.10, it follows that

|Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH,S)| ≤
(exp(|γ|M)− 1)

|γ|

√
I(H;S)

2n
. (105)

Using the Lipschitz property of the log(.) function under Assumption H.1, we have for γ > 0,

R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ⊗n)

= EPH⊗µ⊗n [
1

γ
log(exp(

γ

n

n∑
i=1

ℓ(H,Zi)))]− EPH⊗µ⊗n [
1

γ
log(

1

n

n∑
i=1

exp(γℓ(H,Zi)))]

≤ exp(−γM)

γ
EPH⊗µ⊗n

[
exp(

γ

n

n∑
i=1

ℓ(H,Zi))−
1

n

n∑
i=1

exp(γℓ(H,Zi))
]

≤ − exp(−γM)

2γ
EPH⊗µ⊗n

[( 1
n

n∑
i=1

γ2ℓ(H,Zi)
2
)
−
( 1

n2

( n∑
i=1

γℓ(H,Zi)
)2)]

=
− exp(−γM)

2γ
(1− 1/n)EPH

[
VarZ̃∼µ(γℓ(H, Z̃))

]
=

− exp(−γM)γ

2
(1− 1/n)EPH

[
VarZ̃∼µ(ℓ(H, Z̃))

]

(106)

where Z̃ ∼ µ. A similar results also holds for γ < 0. Combining (105), (106) with (104) completes the proof.

We now give a lower bound via the information-theoretic approach.

Theorem H.12. Under the same assumptions in Theorem H.11, the expected tilted generalization error satisfies

genγ(H,S) ≥ − (exp(|γ|M)− 1)

|γ|

√
I(H;S)

2n
− γ exp(γM)

2

(
1− 1

n

)
EPH

[
VarZ̃∼µ(ℓ(H, Z̃))

]
.

Proof. Similarly as in the proof of Theorem H.11, we can prove the lower bound. Using the Lipschitz property of the log(.)
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function under Assumption H.1, we have for γ > 0,

R(H,PH ⊗ µ)− Rγ(H,PH ⊗ µ⊗n)

= EPH⊗µ⊗n [
1

γ
log(exp(

γ

n

n∑
i=1

ℓ(H,Zi)))]− EPH⊗µ⊗n [
1

γ
log(

1

n

n∑
i=1

exp(γℓ(H,Zi)))]

≥ 1

γ
EPH⊗µ⊗n

[
exp(

γ

n

n∑
i=1

ℓ(H,Zi))−
1

n

n∑
i=1

exp(γℓ(H,Zi))
]

≥ − exp(γM)

2γ
EPH⊗µ⊗n

[( 1
n

n∑
i=1

γ2ℓ(H,Zi)
2
)
−
( 1

n2

( n∑
i=1

γℓ(H,Zi)
)2)]

=
− exp(γM)

2γ

(
1− 1

n

)
EPH

[
VarZ̃∼µ(γℓ(H, Z̃))

]
=

−γ exp(γM)

2

(
1− 1

n

)
EPH

[
VarZ̃∼µ(ℓ(H, Z̃))

]
.

(107)

Similar results also holds for γ < 0. Combining (105), (107) with (104) completes the proof.

Combining Theorem H.11 and Theorem H.12, we derive an upper bound on the absolute value of the expected tilted
generalization error.

Corollary H.13. Under the same assumptions in Theorem H.11, the absolute value of the expected titled generaliza-
tion error satisfies

|genγ(H,S)| ≤ (exp(|γ|M)− 1)

|γ|

√
I(H;S)

2n
+

|γ|M2 exp(|γ|M)

8

(
1− 1

n

)
. (108)

Proof. We can derive the upper bound on absolute value of the expected tilted generalization error by combining Theo-
rem H.11 and Theorem H.12.

Remark H.14. In Corollary H.13, we observe that by choosing γ = O(n−β), the overall convergence rate of the generaliza-
tion error upper bound is max(O(1/

√
n), O(n−β)) for bounded I(H;S). For β ≥ 1/2, the convergence rate of (108) is

the same as the convergence rate of the expected upper bound in (Xu & Raginsky, 2017). In addition, for γ → 0, the upper
bound in Corollary H.13 converges to the expected upper bound in (Xu & Raginsky, 2017).

Similar to unbounded loss function, the results in this section are non-vacuous for bounded I(H;S). If this assumption is
violated, we can apply the individual sample method (Bu et al., 2020), chaining methods (Asadi et al., 2018), or conditional
mutual information frameworks (Steinke & Zakynthinou, 2020) to derive tighter upper bound for the tilted generalization
error.

H.2.1. INDIVIDUAL SAMPLE BOUND DISCUSSION

We can apply previous information-theoretic bounding techniques (e.g., (Bu et al., 2020), (Asadi et al., 2018), and (Steinke
& Zakynthinou, 2020)), exploiting the Lipschitz property of the logarithm function (or Lemma C.10) over a bounded
support. For example, to derive an upper bound based on the individual sample (Bu et al., 2020), using the approach for
Proposition H.10 and Lemma C.10, we have for γ > 0, we have

Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH,S) ≤
1

γ

(
EPH⊗µ⊗n [

1

n

n∑
i=1

exp(γℓ(H,Zi))]− EPH,S
[
1

n

n∑
i=1

exp(γℓ(H,Zi))]
)

≤
(
exp(γM)− 1

)
γ

n∑
i=1

1

n

√
I(H;Zi)

2
, (109)

where for the first equality, we applied the Lemma C.10 and for the second inequality, we use that 1 ≤ exp(γℓ(H,Zi)) ≤
exp(γM) for γ > 0 and the approach in (Bu et al., 2020) for bounding via individual samples. A similar approach also can

37



Generalization and Robustness of the Tilted Empirical Risk

be applied to γ < 0. Therefore, the following upper bound holds on the absolute value of the expected tilted generalization
error,

|genγ(H,S)| ≤ (exp(|γ|M)− 1)

|γ|n

n∑
i=1

√
I(H;Zi)

2n
+

|γ|M2 exp(|γ|M)

8

(
1− 1

n

)
.

H.3. The KL-Regularized TERM Problem

In this section, similar to unbounded case (Section 6), we study the KL-regularized under bounded loss function for both
negative and positive tilts. We consider the same definitions in Section 6. We next provide a parametric upper bound on the
tilted generalization error of the tilted Gibbs posterior under bounded loss function.

Theorem H.15. Under Assumption H.1, the expected tilted generalization error of the tilted Gibbs posterior
satisfies,

genγ(H,S) ≤ α(exp(|γ|M)− 1)2

2γ2n
+

Var(exp(γℓ(H, Z̃)))

2γ

(
1/n− exp(−2γM)

)
. (110)

Proof. Note that, we have

I(H;S)

α
≤ ISKL(H;S)

α

= Rγ(H,PH ⊗ µ)− Rγ(H,PH,S)

≤
∣∣∣Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH,S)

∣∣∣
≤ (exp(|γ|M)− 1)

|γ|

√
I(H;S)

2n
.

(111)

Therefore, we have
I(H;S)

α
≤ (exp(|γ|M)− 1)

|γ|

√
I(H;S)

2n
. (112)

Solving (112), results in, √
I(H;S) ≤ α

(exp(|γ|M)− 1)

|γ|

√
1

2n
. (113)

Therefore, we obtain, ∣∣∣Rγ(H,PH ⊗ µ⊗n)− Rγ(H,PH,S)
∣∣∣ ≤ α

(exp(|γ|M)− 1)2

2γ2n
. (114)

Using Theorem H.11, the final result follows.

Similar to Corollary H.13, we derive the following upper bound on the absolute value of the expected tilted generalization
error of the tilted generalization error.

Corollary H.16. Under the same assumptions in Theorem H.15, the absolute value of the expected tilted generalization
error of the tilted Gibbs posterior satisfies

|genγ(H,S)| ≤ α(exp(|γ|M)− 1)2

2γ2n
+

|γ|M2 exp(|γ|M)

8

(
1− 1

n

)
. (115)

Remark H.17 (Convergence rate). If γ = O(1/n), then we obtain a theoretical bound on the convergence rate of O(1/n)
for the upper bound on the tilted generalization error of the tilted Gibbs posterior.
Remark H.18 (Discussion of γ). From the upper bound in Theorem H.15, we can observe that under γ → 0 and
Assumption H.1, the upper bound converges to the upper bound on the Gibbs posterior (Aminian et al., 2021a). For positive
tilt (γ > 0), and sufficient large value of n, the upper bound in Theorem H.15, can be tighter than the upper bound on the
Gibbs posterior.
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In addition to KL-regularized linear risk minimization, the Gibbs posterior is also the solution to another problem. For this

formulation we recall that the α-Rényi divergence between P and Q is given by Rα(P∥Q) := 1
α−1 log

( ∫
X

(
dP
dQ

)α
dQ
)
, for

α ∈ (0, 1)∪ (1,∞). We also define the conditional Rényi divergence between PX|Y and QX|Y as Rα(PX|Y ∥QX|Y |PY ) :=

1
α−1EPY

[
log
( ∫

X

(
dPX|Y
dQX|Y

)α
dQX|Y

)]
, for α ∈ (0, 1) ∪ (1,∞). Here, PX|Y denotes the conditional distribution of X

given Y .

Proposition H.19 (Gibbs posterior). Suppose that γ = 1
α −1 and α ∈ (0, 1)∪ (1,∞). Then the solution to the minimization

problem

Pα
H|S = arg inf

PH|S

{
EPS

[ 1
γ
log
(
EPH|S

[
exp

(
γR̂(H,S)

)])]
+Rα(PH|S∥πH |PS)

}
, (116)

with R̂(H,S) the linear empirical risk (1), and the Gibbs posterior,

Pα
H|S =

πH [exp(−γR̂(H,S))]

EπH
[exp(−γR̂(H,S))]

,

where πH is the prior distribution on the space H of hypotheses.

Proof. Let us consider the following minimization problem,

find argmin
PY

{
1

γ
log(EPY

[exp(γf(Y ))]) +Rα(PY ∥QY )

}
, (117)

where γ = 1
α − 1. As shown by Dvijotham & Todorov (2012), the solution to (117) is the Gibbs posterior,

P ⋆
Y =

QY exp(−αf(Y ))

EQY
[exp(−αf(Y ))]

.

If α → 1, then γ → 0 and (116) converges to the KL-regularized ERM problem.

The tilted generalization error under the Gibbs posterior can be bounded as follows.

Proposition H.20. Under Assumption H.1 when training with the Gibbs posterior, (26), the following upper bound holds on
the expected tilted generalization error,

genγ(H,S) ≤ M2α

2n
− Var(exp(γℓ(H,Z)))

2γ
exp(−2γM). (118)

Proof. Let us consider the following decomposition,

genγ(H,S) = R(H,PH ⊗ µ)− EPH,S
[
1

n

n∑
i=1

ℓ(H,Zi)] + EPH,S
[
1

n

n∑
i=1

ℓ(H,Zi)]− Rγ(H,PH,S). (119)

From Aminian et al. (2021a), for the Gibbs posterior we have

R(H,PH ⊗ µ)− EPH,S

[ 1
n

n∑
i=1

ℓ(H,Zi)
]
≤ αM2

2n
.

In addition, using Lemma C.4 for uniform distribution, we have

1

n

n∑
i=1

1

γ
log
(
exp(γℓ(H,Zi))

)
− 1

γ
log
( 1
n

n∑
i=1

exp(γℓ(H,Zi))
)
≤ −Var(exp(γℓ(H,Z)))

2γ
exp(−2γM).

This completes the proof.
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Furthermore, we can provide an upper bound on the absolute value of the expected tilted generalization error under the
Gibbs posterior,

∣∣genγ(H,S)
∣∣ ≤ M2α

2n
+

max(1, exp(−2γM))

8γ
(1− exp(γM))2. (120)

In (120), choosing γ = O(1/n) we obtain a proof of a convergence rate of O(1/n) for the upper bound on the absolute
value of the expected tilted generalization error of the Gibbs posterior.

H.4. Other Bounds

In this section, we provide upper bounds via Rademacher complexity (Bartlett & Mendelson, 2002) and PAC-Bayesian
approaches (Alquier, 2021) under bounded loss functions assumption. The results are based on the assumption of bounded
loss functions (Assumption H.1).

H.4.1. RADEMACHER COMPLEXITY

Inspired by the work (Bartlett & Mendelson, 2002), we provide an upper bound on the tilted generalization error via
Rademacher complexity analysis. For this purpose, we need to define the Rademacher complexity.

As in Bartlett & Mendelson (2002), for a hypothesis set H of functions h : X 7→ Y , the Rademacher complexity with respect
to the dataset S is

RS(H) := ES,σσσ

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)
]
,

where σσσ = {σi}ni=1 are i.i.d Rademacher random variables; σi ∈ {−1, 1} and σi = 1 or σi = −1 with probability 1/2, for
i ∈ [n]. The empirical Rademacher complexity R̂S(H) with respect to S is defined by

R̂S(H) := Eσσσ

[
sup
h∈H

1

n

n∑
i=1

σih(Xi)
]
. (121)

To provide an upper bound on the tilted generalization error, first, we apply the uniform bound, Lemma C.11, and Talagrand’s
contraction lemma (Talagrand, 1996) in order to derive a high-probability upper bound on the tilted generalization error; we
employ the notation (121).

Proposition H.21. Given Assumptions H.1 and assuming the loss function is Mℓ′ -Lipschitz-continuous in a binary
classification problem, the tilted generalization error satisfies with probability at least (1− δ) that

ĝenγ(h, S) ≤ 2 exp(|γ|M)Mℓ′R̂S(H) +
3(exp(|γ|M)− 1)

|γ|

√
log(1/δ)

2n
.

Proof. Note that exp(γM) ≤ x ≤ 1 for γ < 0 and 1 ≤ x ≤ exp(γM) for γ > 0. Therefore, we have the Lipschitz
constant exp(−γM) and 1 for negative and positive γ, respectively. Similarly, for exp(γx) and 0 < x < M , we have the
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Lipschitz constants γ and γ exp(γM), for γ < 0 and γ > 0, respectively. For γ < 0, we have

ĝenγ(h, S) =
1

γ
log
(
EZ∼µ[exp(γℓ(h, Z))]

)
− 1

γ
log
( 1
n

n∑
i=1

exp
(
γℓ(h, Zi)

))
≤ | 1

γ
log
(
EZ∼µ[exp(γℓ(h, Z))]

)
− 1

γ
log
( 1
n

n∑
i=1

exp
(
γℓ(h, Zi)

))
|

≤ 1

|γ|

∣∣∣ log (EZ∼µ[exp(γℓ(h, Z))]
)
− log

(
1

n

n∑
i=1

exp
(
γℓ(h, Zi)

))∣∣∣
(a)

≤ exp(−γM)

|γ|

∣∣∣EZ∼µ[exp(γℓ(h, Z))]− 1

n

n∑
i=1

exp
(
γℓ(h, Zi)

)∣∣∣
(b)

≤ exp(−γM)

|γ|
2R̂S(E ◦ L ◦ H) +

3 exp(−γM)(1− exp(γM))

|γ|

√
log(1/δ)

2n

(c)

≤ 2 exp(−γM)R̂S(L ◦ H) +
3 exp(−γM)(1− exp(γM))

|γ|

√
log(1/δ)

2n

(d)

≤ 2 exp(−γM)Mℓ′R̂S(H) +
3(exp(−γM)− 1)

|γ|

√
log(1/δ)

2n
,

(122)

where (a) holds due to the Lipschitzness of log(x) in a bounded interval, (b) holds due to the uniform bound Lemma C.11,
(c) and (d) hold due to Talagrand’s contraction Lemma C.12).

Similarly, we can prove for γ > 0, we have

ĝenγ(h, S) ≤ 2 exp(γM)Mℓ′R̂S(H) +
3(exp(γM)− 1)

γ

√
log(1/δ)

2n
. (123)

Then, we obtain an upper bound on the generalization error by combining Proposition H.21, Massart’s lemma (Massart,
2000) and Lemma C.4.

Theorem H.22. Under the same assumptions as in Proposition H.21, assuming a finite hypothesis space, the tilted
generalization error satisfies with probability at least (1− δ) that

genγ(h, S) ≤
max(1, exp(−2γM))

8γ
(exp(γM)− 1)2 + 2AMℓ′B

√
2 log(card(H))

n

+
3(A(γ)− 1)

|γ|

√
log(1/δ)

2n
,

where A(γ) = exp(|γ|M) and B2 = maxh∈H

(∑n
i=1 h

2(zi)
)

.

Proof. We consider the following decomposition for the Rademacher complexity,

genγ(h, S) = R(h, µ)− Rγ(h, µ
⊗n) + Rγ(h, µ

⊗n)− R̂γ(h, S),

where R(h, µ)− Rγ(h, µ
⊗n) can be bounded using Proposition H.2. The second term can be bounded by using Proposi-

tion H.21 and Massart’s lemma (Lemma C.13).

Similar to Remark H.7, assuming γ = O(1/
√
n), we have the convergence rate of O(1/

√
n) for the tilted generalization

error. For an infinite hypothesis space, covering number bounds can be applied to the empirical Rademacher complexity,
see, e.g., (Kakade et al., 2008). We note that the VC-dimension and Rademacher complexity bounds are uniform bounds
and are independent of the learning algorithms.
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H.4.2. A STABILITY BOUND

In this section, we also study the upper bound on the tilted generalization error from the stability perspective (Bousquet &
Elisseeff, 2002b). In the stability approach, (Bousquet & Elisseeff, 2002b), the learning algorithm is a deterministic function
of S.

For stability analysis, we define the replace-one sample dataset as

S(i) = {Z1, · · · , Z̃i, · · · , Zn},

where the sample Zi is replaced by an i.i.d. data sample Z̃i sampled from µ. To distinguish the hypothesis in the stability
approach from the uniform approaches, we consider hs : Zn 7→ H as the learning algorithm. In the stability approach, the
hypothesis is a deterministic function hs(S) of the dataset. We are interested in providing an upper bound on the expected
tilted generalization error EPS

[
genγ(hs(S), S)

]
.

Theorem H.23. Under Assumption H.1, the following upper bound holds with probability at least (1− δ) under
distribution PS ,

EPS

[
genγ(hs(S), S)

]
≤ (1− exp(γM))2

8γ

(
1 + exp(−2γM)

)
+ exp(|γ|M)EPS ,Z̃ [|ℓ(hs(S), Z̃)− ℓ(hs(S(i)), Z̃)|].

(124)

Proof. We use the following decomposition of the tilted generalization error;

EPS

[
genγ(hs(S), S)

]
= EPS

[
R(hs(S), µ)−

1

γ
log(EPS ,µ[exp(γℓ(hs(S), Z̃))])

]
+ EPS

[
1

γ
log(EPS ,µ[exp(γℓ(hs(S), Z̃))])− 1

γ
log
(
EPS

[ 1
n

n∑
i=1

exp(γℓ(hs(S), Zi))
])]

+ EPS

[
1

γ
log
(
EPS

[ 1
n

n∑
i=1

exp(γℓ(hs(S), Zi))
])

− R̂γ(hs(S), S)

]
.

(125)

Using Lemma C.4, we have

EPS

[
R(hs(S), µ)−

1

γ
log(EPS ,µ[exp(γℓ(hs(S), Z̃))])

]
≤ − exp(−2γM)

2γ
VarPS ,µ(exp(γℓ(hs(S), Z̃))),

and

EPS

[
1

γ
log
(
EPS

[ 1
n

n∑
i=1

exp(γℓ(hs(S), Zi))
])

− R̂γ(hs(S), S)

]

=
1

γ
log
(
EPS

[ 1
n

n∑
i=1

exp(γℓ(hs(S), Zi))
])

− EPS

[
1

γ
log
( 1
n

n∑
i=1

exp(γℓ(hs(S), Zi))
)]

≤ 1

2γ
Var
(
exp(γℓ(hs(S), Zi))

)
.

Using the Lipschitz property of the log and exponential functions on a closed interval, we have∣∣∣ 1
γ
log(EPS ,µ[exp(γℓ(hs(S), Z̃))])− 1

γ
log
(
EPS

[ 1
n

n∑
i=1

exp(γℓ(hs(S), Zi))
])∣∣∣

=
∣∣∣ 1
γ
log(EPS ,µ[exp(γℓ(hs(S), Z̃))])− 1

γ
log
(
EPS

[
exp(γℓ(hs(S), Zi))

])∣∣∣
≤ exp(|γ|M)EPS ,µ[|ℓ(hs(S), Z̃)− ℓ(hs(S(i)), Z̃)|].
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Finally, we have

EPS

[
genγ(hs(S), S)

]
≤ 1

2γ
Var
(
exp(γℓ(hs(S), Zi))

)
− exp(−2γM)

2γ
VarPS ,µ(exp(γℓ(hs(S), Z̃)))

+ exp(|γ|M)EPS ,µ[|ℓ(hs(S), Z̃)− ℓ(hs(S(i)), Z̃)|]

≤ (1− exp(γM))2

8γ

(
1 + exp(−2γM)

)
+ exp(|γ|M)EPS ,µ[|ℓ(hs(S), Z̃)− ℓ(hs(S(i)), Z̃)|].

We also consider the uniform stability as in (Bousquet & Elisseeff, 2002b).
Definition H.24 (Uniform Stability). A learning algorithm is uniform β-stable with respect to the loss function if the
following holds for all S ∈ Zn and z̃i ∈ Z ,∣∣ℓ(hs(S), z̃i)− ℓ(hs(S(i)), z̃i)

∣∣ ≤ β, i ∈ [n].

Remark H.25 (Uniform Stability). Suppose that the learning algorithm is β-uniform stable with respect to a given loss
function. Then, using Theorem H.23, we have

EPS

[
genγ(hs(S), S)

]
≤ (1− exp(γM))2

8|γ|

(
1 + exp(−2γM)

)
+ exp(|γ|M)β. (126)

Note that for a learning algorithm with uniform β-stability, where β = O(1/n), then with γ of order O(1/n), we obtain a
guarantee on the convergence rate of O(1/n).

H.4.3. A PAC-BAYESIAN BOUND

Inspired by previous works on PAC-Bayesian theory, see, e.g.,(Alquier, 2021; Catoni, 2003), we derive a high probability
bound on the expectation of the tilted generalization error with respect to the posterior distribution over the hypothesis space.

In the PAC-Bayesian approach, we fix a probability distribution over the hypothesis (parameter) space as prior distribution,
denoted as Qh. Then, we are interested in the generalization performance under a data-dependent distribution over the
hypothesis space, known as posterior distribution, denoted as ρh.

Theorem H.26. Under Assumption H.1, the following upper bound holds on the conditional expected tilted
generalization error with probability at least (1− δ) under the distribution PS; for any η > 0,

|Eρh
[genγ(H,S)]| ≤ max(1, exp(−2γM))(1− exp(γM))2

8|γ|

+
ηA2(γ)

8n
+

(KL(ρh∥Qh) + log(1/δ))

η
,

(127)

where A(γ) = exp(|γ|M), Qh and ρh are prior and posterior distributions over the hypothesis space, respectively.

Proof. We use the following decomposition of the generalization error,

Eρh
[genγ(H,S)] = Eρh

[R(H,µ)− Rγ(H,µ) + Rγ(H,µ)− R̂γ(H,S)].

The term Eρh
[R(H,µ) − Rγ(H,µ)] can be bounded using Lemma C.4. The second term Rγ(H,µ) − R̂γ(H,S) can be

bounded using the Lipschitz property of the log function and Catoni’s bound (Catoni, 2003).

Remark H.27. Choosing η and γ such that η−1 ≍ 1/
√
n and γ = O(1/

√
n) results in a theoretical guarantee on the

convergence rate of O(1/
√
n).
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