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Abstract

Mean-Field Multi-Agent Reinforcement Learning (MF-MARL) is attractive in the
applications involving a large population of homogeneous agents, as it exploits
the permutation invariance of agents and avoids the curse of many agents. Most
existing results only focus on online settings, in which agents can interact with
the environment during training. In some applications such as social welfare
optimization, however, the interaction during training can be prohibitive or even
unethical in the societal systems. To bridge such a gap, we propose a SAFARI
(peSsimistic meAn-Field vAlue iteRatIon) algorithm for off-line MF-MARL, which
only requires a handful of pre-collected experience data. Theoretically, under a
weak coverage assumption that the experience dataset contains enough information
about the optimal policy, we prove that for an episodic mean-field MDP with
a horizon H and N training trajectories, SAFARI attains a sub-optimality gap
of O(H2deff/

√
N), where deff is the effective dimension of the function class

for parameterizing the value function, but independent on the number of agents.
Numerical experiments are provided.

1 Introduction

Significant progress has been made towards multi-agent reinforcement learning (MARL) for many
prominent sequential decision making problems, such as social welfare optimization (Leibo et al.,
2017), fleet control of autonomous vehicles (Shalev-Shwartz et al., 2016) and playing multiplayer
online battle arena (MOBA) games (Berner et al., 2019). As the joint state and action space scales
exponentially with the number of agents, however, MARL becomes computationally expensive. One
remedy is the mean-field regime when an extremely large number of homogenous agents are involved,
e.g., social welfare optimization. The effect of each agent on the overall multi-agent system can
become infinitesimal, and therefore all agents can be considered interchangeable/indistinguishable
(Yang et al., 2018; Carmona et al., 2019; Li et al., 2021). Accordingly, the interaction among agents
can be captured by some mean-field quantity such as the empirical distribution of states, and therefore
each agent only needs to find the best response to the so-called “mean-field state”, which avoids the
curse of many agents.

Most existing results on mean-field MARL (MF-MARL) are for the online setting (Yang et al., 2018;
Zhang et al., 2019), where the agents can interact with the environment during training. However,
such interaction during training can be prohibitive for some important applications (Leibo et al., 2017;
Mandel et al., 2014; Jaques et al., 2019; Levine et al., 2020). Taking social welfare optimization as
an example, repeatedly conducting social experiments on human being can be unaffordable or even
unethical in the societal systems. Therefore, we can only consider the offline settings, i.e., we learn
the optimal policy based on some pre-collected experience data (Levine et al., 2020). Unfortunately,
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existing offline reinforcement learning (RL) algorithms and theories all focus on the single agent
settings, and no algorithms and theories have been developed for MARL under the offline settings,
regardless of the mean-field regime or not.

To bridge such a critical gap, we propose the first pessimistic algorithm – named SAFARI (peSsimistic
meAn-Field vAlue iteRatIon) for mean-field MARL, which can provably achieve sample efficiency
under the offline setting. Our proposed algorithm contains two important components: (1) To
incorporate the permutation invariance of the homogenous agents, we adopt a RKHS (Reproducing
Kernel Hilbert Space) mean-embedding approach for approximating value functions, which avoids the
exponential blowup of the agents’ state and action spaces; (2) We develop an uncertainty quantifier,
and integrate it into the value iteration procedure as the penalty function. Such a penalty function
can effectively screen the “spuriously correlated trajectories”, i.e., which possibly happen to appear
in the experience data, but are actually unrelated to the optimal policy, but by chance induce large
cumulative rewards and hence may potentially mislead the learned policy.

Theoretically, we establish a data-dependent upper bound on the suboptimality of SAFARI for MF-
MARL without the stringent assumptions on the sufficient coverage of the experience data (e.g., finite
concentrability coefficients (Chen and Jiang, 2019) or uniformly lower bounded densities of visitation
measure (Yin et al., 2020)). More specifically, we only assume that the experience data of N training
trajectories contains enough information about the optimal policy. Then we prove that for an episodic
MF-MARL problem with a horizon H , SAFARI attains a sub-optimality gap of O(H2deff/

√
N),

where deff is the effective dimension of the function class (RKHS) for parameterizing the value
function and independent on the number of agents. In addition to the offline settings, our SAFARI
algorithm can also be extended to MF-MARL under the online setting (OMPPO algorithm), which is
of independent interest. Details are provided in a longer technical report version, which is available
upon request.

The rest of this paper is organized as follows: Section 2 reviews related work on mean-field multi-
agent reinforcement learning and offline reinforcement learning for the single agent settings; Section
3 introduces our problem setup of the mean-field MARL regime; Section 4 introduces our proposed
SAFARI algorithm; Section 5 establishes the theoretical guarantees for SAFARI; Section 6 presents
numerical experiments on the multi-agent particle cooperative navigation scenario; Section 7 draws a
brief conclusion.

2 Related Work

• Mean-Field MARL. Existing literature has proposed various mean-field approximation approaches
to model the population behavior of the agents for MARL with a large number, even infinitely many
homogenous agents. Yang et al. (2017) investigate a mean-field game with deterministic linear
state transitions, and reformulate it as a mean-field MDP, where the mean-field state lies in finite-
dimensional probability simplex. Yang et al. (2018) propose a mean-field approximation approach
over actions, which approximates the interaction between any given agent and the population by
the interaction between the agent’s action and the averaged actions of its neighboring agents. Such
an averaging approach over the local actions, however, is only applicable when a sparse graph
over agents is given, which requires extensive prior knowledge. Carmona et al. (2019) investigate
a mean-field MDP from the perspective of mean-field control. As the mean-field state lies in a
probability simplex and continuous in nature, they propose to discretize the joint state-action space
such that conventional RL algorithms can be applied. Wang et al. (2020) investigate a mean-field
MDP motivated by permutation invariance. They require a central controller managing the actions of
all the agents, and therefore is restricted to handling the curse of many agents from the exponential
blowup of joint state space. More recently, Li et al. (2021) investigate a similar mean-field MDP,
which allows agents to make their own local actions without resorting to a centralized controller. All
these methods focus on the online settings. In comparison, our proposed SAFARI algorithm and
theory focus on the offline settings.

• RL for Mean-Field Game. Our work is also related to the literature that studies RL methods
for mean-field games (Huang et al., 2003; Lasry and Lions, 2006a,b; Huang et al., 2007). Such a
game can be viewed as the infinite-agent limit of general-sum Markov game with homogeneous
agents, and the aggregated effect of the other agents is also summarized as a mean-field state. In
contrast to mean-field MARL, the solution concept of mean-field game is the Nash equilibrium,
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which corresponds to a pair of a local policy π∗ of the representative agent and a mean-field state d∗
satisfying the following two properties: (i) when the mean-field state is set to d∗, π∗ is the optimal
policy of the representative agent; and (ii) when all agents adopt π∗, the resulting mean-field state is
d∗. Recently, there are many recent works developing RL methods for solving mean-field games.
See, e.g., Guo et al. (2019, 2020b,a); Fu et al. (2019); Anahtarcı et al. (2019); Anahtarci et al. (2020);
Anahtarcı et al. (2020); Perrin et al. (2020); Elie et al. (2020); uz Zaman et al. (2020); Cui and Koeppl
(2021) and the references therein. Most of these methods adopts a double-loop structure, where the
inner loop finds the optimal local policy given the current mean field state and the outer loop updates
the mean-field states. Moreover, these works often assume the data distribution is well-explored
with either a generative model (Azar et al., 2012) or bounded concentrability coefficients (Munos,
2007). Our mean-field MARL problem is similar to the inner-loop problem of finding the optimal
local policy in mean-field games. In contrast to these existing works, our algorithm and theory can
be applied to datasets that are possibly not well-explored. Moreover, as mean-field MARL and
mean-field games are different models, our work is not directly comparable to these works.

• Offline Single-Agent RL. Our work is also closely related to the literature on offline single-agent
RL, which often focuses on either policy evaluation or policy optimization. In particular, in policy
evaluation, the goal is to estimate the value function of a target policy, whereas in policy optimization,
we aims to learn the optimal policy, which can be achieved via estimating the optimal value function.
For both these tasks, in the offline setting, due to the lack of continuing exploration (Szepesvári, 2010),
the distribution shift (Levine et al., 2020) is a fundamental challenge. That is, the trajectories in the
dataset and those induced by the target policy or the optimal policy might have diverse distributions.
Such a challenge is further exacerbated when function approximators are adopted to represent the
desired value functions. To overcome such a challenge, most of the existing theoretical works
imposes certain well-exploration assumptions on the dataset. Some of commonly made assumptions
include uniformly lower bounded visitation measure of the behavior policy, uniformly upper bounded
importance sampling ratio, and bounded concentrability coefficients. See, e.g., Antos et al. (2007,
2008); Munos and Szepesvári (2008); Farahmand et al. (2010, 2016); Scherrer et al. (2015); Jiang and
Li (2016); Thomas and Brunskill (2016); Farajtabar et al. (2018); Liu et al. (2018); Xie et al. (2019);
Nachum et al. (2019a,b); Tang et al. (2019); Zhang et al. (2020b); Chen and Jiang (2019); Kallus
and Uehara (2019, 2020); Jiang and Huang (2020); Uehara et al. (2020); Duan et al. (2020); Yin and
Wang (2020); Yin et al. (2020); Nachum and Dai (2020); Yang et al. (2020a); Fu et al. (2020b); Fan
et al. (2020); Xie and Jiang (2020a,b); Liao et al. (2020); Zhang et al. (2020a); Ren et al. (2021) and
the references therein.

However, in practice, such assumptions on the dataset often fail to hold (Fujimoto et al., 2019;
Agarwal et al., 2020; Fu et al., 2020a; Gulcehre et al., 2020). In light of this, there is a line of recent
works that proposes various pessimism-based offline single-agent RL algorithms with empirical
evidence or theoretical guarantees (Yu et al., 2020; Kidambi et al., 2020; Kumar et al., 2020; Liu
et al., 2020b; Buckman et al., 2020; Jin et al., 2020b; Xiao et al., 2021). In particular, Liu et al.
(2020b) propose a regularized variant of fitted Q-iteration (Antos et al., 2007, 2008; Munos and
Szepesvári, 2008), which is shown to attain the optimal policy within a restricted policy class without
assuming the dataset is well-explored. Moreover, with an arbitrary dataset, Buckman et al. (2020);
Jin et al. (2020b); Xiao et al. (2021) identify the critical role of pessimism in achieving offline
sample efficiency. Among these works, our work is particularly related to Jin et al. (2020b), which
develops a pessimistic variant of the value iteration algorithm with finite-dimensional linear function
approximation. In comparison, our SAFARI algorithm extends such an algorithm to mean-field
MARL and we propose to employ RKHS mean embedding for handling the difference between
finite-agent empirical mean-field state and its infinite-agent counterpart. Moreover, our algorithm and
analysis involve infinite-dimensional RKHS, which strictly generalizes those in Jin et al. (2020b).

Notation: Given a space X , we denote M(X ) as the collection of probability distributions supported
on X . Let u, v, w ∈ H be elements in a Hilbert space, we denote ⟨u, v⟩ as the inner product, and u⊗v
as the outer product satisfying (u⊗ v)w = u ⟨v, w⟩. For a scalar a, we denote {a}+ = max{0, a}.
We use O(·) to hide absolute constants and log factors.
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3 Mean-Field Multi-Agent RL

We consider a Multi-Agent Reinforcement Learning (MARL) problem with m+ 1 agents and time
horizon H . For the i-th agent (also known as the Representative Agent (RA)), at step h, we denote
si,h ∈ S and ai,h ∈ A as its state and action, respectively. We assume S and A are compact.

Different from single agent RL problem, the transition kernel, reward function, and policy of a
representative agent in MARL depend not only on its individual state, but the states of m other
agents. Furthermore, we assume that the interaction of the representative agent to the other agents
is permutation invariant, i.e., the influence of all the other agents is modeled using the empirical
distribution of states d̂s,h = 1

m

∑m
j ̸=i δsj,h ∈ M(S). To this end, we define the transition kernel

ph : S ×M(S)×A 7→ M(S), the (deterministic) reward function rh : S ×M(S)×A 7→ R, and
the policy πh : S ×M(S) 7→ M(A) all depending on a “meta state” denoted as ω̂h = (si,h, d̂s,h) ∈
S ×M(S). For simplicity, we denote Ω = S ×M(S) as the meta state space.

Remark 1. The empirical distribution of states d̂s,h is naturally permutation invariant and evolves
according to the transition kernel ph and policy πh. To see this, suppose each agent takes the
same policy πh at step h. Then at step h+ 1, the state sh+1,j of the j-th agent is sampled from the
distribution ph(· | sh,j× d̂s,h, ah,j), where ah,j is determined by policy πh(· | sh,j× d̂s,h). Collecting
m states sh+1,j for j ̸= i induces the empirical distribution of states d̂s,h+1.

We now define several important notions in MARL. Given a policy π, the value function V π
h : Ω 7→ R

at step h ≤ H for a representative agent is

V π
h (ω) = Eπ

[
H∑
i=h

ri(ωi, ai)
∣∣ ωh = ω

]
, (1)

where Eπ denotes the expectation over the randomness in trajectories induced by policy π. The
action-value function (Q-function) Qπ

h : Ω×A 7→ R is defined as

Qπ
h(ω, a) = Eπ

[
H∑
i=h

ri(ωi, ai)
∣∣ ωh = ω, ah = a

]
.

By definition, V π
h and Qπ

h are related via V π
h (ω) =

∫
AQ

π
h(ω, a)π(a|ω)da

△
= ⟨Qπ

h, π⟩A. Next, we
define the Bellman operator and conditional transition operator. At each step h ≤ H , the Bellman
operator denoted as Bh is

(Bhg)(ω, a) = E [rh(ωh, ah) + g(ωh+1) | ωh = ω, ah = a] (2)
= rh(ω, a) + (Phg)(ω, a),

where g is a function defined on Ω, and Ph is referred to as the conditional transition operator.

Mean-Field MARL As the number of agents goes to infinity, the empirical distribution of states
d̂s converges to a (continuous) limit ds. Then the mean-field MARL problem for a representative
agent is defined as a tuple (Ω,A, H, P, r), where Ω and A are the meta state space and action space,
respectively, H is the horizon, P = {ph}Hh=1 : Ω × A 7→ M(S) is the transition kernel, and
r = {rh}Hh=1 is the reward function defined on Ω×A. Following Remark 1, the transition of ds is
also determined by P = {ph}Hh=1.

To tackle the infinite-dimensional joint distribution of states, we embed the meta state-action space
Ω × A into a reproducing kernel Hilbert space (RKHS). Specifically, denote Ξ = S × S × A
and let K : Ξ × Ξ 7→ R be a symmetric positive kernel. The corresponding feature mapping of
kernel k is denoted as ψ, which verifies ⟨ψ(·), ψ(·)⟩ = K(·, ·) can be infinite dimensional. For any
(ω, a) ∈ Ω×A, we define mean embedding as

µ(ω, a) = Es′∼ds
[ψ(s, s′, a)]. (3)

Based on the embedding, we parameterize the reward rh and Markov transition ph as linear functionals
of µ(ω, a) in RKHS HK induced by kernel K, i.e.,

rh(ω, a) = ⟨µ(ω, a), θh⟩ , ph(ω
′ | ω, a) = ⟨µ(ω, a), vh(ω′)⟩ , (4)
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where θh, vh are understood as “weights” and have bounded Hilbert norm (see Assumption 3). Such
a parameterization encodes a rich family of functions, once the kernel is universal (Wang et al., 2020).
By the definition of Q-function and value function, we can show that the Bellman operator can also
be parameterized in HK .
Proposition 1. Suppose the reward function rh and the transition kernel ph is parameterized in HK

by (4) for h = 1, . . . ,H . Then for any g : Ω 7→ R, the Bellman operator (Bhg) and conditional
transition operator (Phg) defined in (2) can be written as

(Bhg)(ω, a) = ⟨µ(ω, a), wg⟩ , (Phg)(ω, a) = ⟨µ(ω, a), wg + θh⟩ ,

where wg depends on the function g.

The proof is provided in Appendix C.1, which follows from pure algebraic manipulation. From
the perspective of policy learning in mean-field MARL, Proposition 1 motivates us to estimate the
Bellman operator Bh in HK , and then optimize the estimated Q-function to obtain a policy. We
introduce the detailed learning procedure in Section 4 (Algorithm 1).

4 Offline Pessimistic Value Iteration

In this section, we introduce our dataset and learning algorithm. We collect multiple trajectories of
a representative agent in a mean-field MARL problem. Here the mean-field state distribution ds is
prohibitive to trace. Instead, we only independently observe the states of a finite number of agents.
Accordingly, the batched dataset DN,H consists of N trajectories of length H , within which the n-th
sequence is τn =

{
(snh ∈ Sm+1, anh ∈ A, rnh ∈ R)

}H
h=1

. Without loss of generality, we assume sh,0
is the state of the representative agent, and the reward function is bounded by 1, i.e., |rh(ω, a)| ≤ 1
for any ω ∈ Ω, a ∈ A. The collected trajectories are generated by some unknown behavior policy.

Recall d̂snh = 1
m

∑m
j=1 s

n
h,j is the empirical state distribution induced by snh. (We slightly alter the

notation to emphasize the empirical distribution is generated by the collection of m states snh,1:m,
while in the previous context, we use a general purpose notation d̂s,h.) We denote ω̂n

h = snh,0 × d̂snh ,
and compute the empirical mean embedding of (ω̂n

h , a
n
h) as

µ(ω̂n
h , a

n
h) = Es′∼d̂sn

h

[ψ(snh,0, s
′, anh)] =

1
m

∑m
j=1 ψ(s

n
h,0, s

n
h,j , a

n
h).

Under mild conditions, the empirical mean embedding µ(ω̂n
h , a

n
h) concentrates around the infinite

agent mean embedding µ(ωn
h , a

n
h) defined in (3), where ωn

h is the infinite agent meta state. See a
detailed error quantification in Lemma 3.

Pessimistic Value Iteration Our goal is to learn an optimal policy to be deployed for all the agents
based on the experience data of the representative agent. The idea is to estimate the Q-function at
each time step in the RKHS HK , and then optimize the Q-function to obtain an optimal policy. In
more detail, at step h ≤ H , we estimate Bellman operator by optimizing the empirical mean squared
Bellman error

(B̂hV̂h+1) = argmin
f

N∑
n=1

(
f(µ(ω̂n

h , a
n
h))− rnh − V̂h+1(ω̂

n
h+1)

)2
+ λ ∥f∥2H , (5)

where λ ≥ 1 controls the regularization strength, V̂ is the estimated value function, and ∥·∥H denotes
the Hilbert norm.

The solution to (5) can be written in a closed form. For notational simplicity, we define

K((ω, a), ·) = Es′∼ds
[K((s, s′, a), ·)] with ω = s× ds.

Then we denote the Gram matrix Kh ∈ RN×N as

[Kh]ℓ,ℓ′ = K((ω̂ℓ
h, a

ℓ
h), (ω̂

ℓ′

h , a
ℓ′

h ))
△
= Es1∼d̂ℓ

h,s2∼d̂ℓ′
h
⟨ψ(sℓh,0, s1, aℓh), ψ(sℓ

′

h,0, s2, a
ℓ′

h )⟩

for ℓ, ℓ′ = 1, . . . , N. Meanwhile, for any (ω, a), we denote feature vector ϕh(ω, a) =[
K((ω̂1

h, a
1
h), (ω, a)), . . . ,K((ω̂N

h , a
N
h ), (ω, a))

]⊤ ∈ RN . Then the estimated Bellman operator
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B̂hV̂h+1 can be written as

(B̂hV̂h+1)(ω, a) = ϕh(ω, a)
⊤α̂h

with α̂h = (Kh + λI)−1[r1h + V̂h+1(ω̂
1
h+1), . . . , r

N
h + V̂h+1(ω̂

N
h+1)]

⊤,
(6)

We summarize the proposed SAFARI algorithm in Algorithm 1.

Algorithm 1 Pessimistic Mean-Field Value Iteration (SAFARI)
Input: Dataset DN,H , coefficient β, regularization coefficient λ.
Initialize: Set V̂H+1 = 0.
for h = H,H − 1, . . . , 1 do

Compute Λh = Kh + λI .

Estimate Q̃h(ω, a)
△
= (B̂hV̂h+1)(ω, a) = ϕh(ω, a)

⊤α̂h as in (6).

Set Γh(ω, a) = β · λ−1/2
(
K((ω, a), (ω, a))− ϕh(ω, a)

⊤Λ−1
h ϕh(ω, a)

)1/2
.

Let Q̂h(ω, a) = min{Q̃h(ω, a)− Γh(ω, a), H − h+ 1}+.
Optimal policy π̂h = argmaxπ⟨Q̂h(ω, ·), π(· | ω)⟩A.
Set V̂h(ω) = ⟨Q̂h(ω, ·), π̂h(· | ω)⟩A.

end for
Output: Estimated Q-function Q̂h, value function V̂h, and optimal policy π̂h for h = 1, . . . ,H .

The quantity Γh quantifies the uncertainty in estimating the Bellman operator BhV̂h+1 using kernel
ridge regression. We subtract Γh for estimating the Bellman operator to account for the spurious
correlation in the experience data (see Technical Overview following Theorem 1 for a detailed
explanation). We truncate Q̂h at H − h+ 1, since the reward function is bounded by 1.

5 Suboptimality of Policy Learned by SAFARI

We investigate the performance of the optimal policy π̂ learned by Algorithm 1. Before we proceed,
we state the following assumptions.
Assumption 1 (Boundedness of Kernel). Kernel K(·, ·) is bounded, i.e., without loss of generality,
we assume supξ∈Ξ |K(ξ, ξ)| ≤ 1.

By Cauchy-Schwarz inequality, Assumption 1 implies for any ξ1, ξ2 ∈ Ξ, K(ξ1, ξ2) ≤√
K(ξ1, ξ1)K(ξ2, ξ2) ≤ 1. Such an assumption holds for a rich family of commonly used ker-

nels, e.g., RBF kernel and Laplacian kernel, and is a standard assumption in literature (Caponnetto
and De Vito, 2007; Muandet et al., 2012).

The second assumption characterizes the spectrum of kernel K. We first introduce the integral
operator induced by kernel K. Let f : Ξ 7→ R be a square-integrable function. Then we define the
integral operator TK as

(TKf)(ξ) =
∫
K(ξ, x)f(x)dx for ξ ∈ Ξ.

By Mercer’s theorem (Hearst et al., 1998), TK has corresponding positive eigenvalues σi and
eigenfunctions νi. Then the kernel K admits a decomposition

K(ξ1, ξ2) =

∞∑
i=1

σiνi(ξ1)νi(ξ2).

Assumption 2 (Spectrum of Kernel). The eigenvalue σi satisfies one of the following three condi-
tions:

1. (Finite Spectrum). There exists a positive integer γ, such that σi = 0 for all i > γ.

2. (Exponential Decay). There exist positive constants C1, C2 and exponent γ > 0 such that
σi ≤ C1 exp (−C2i

γ).
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3. (Polynomial Decay). There exists a positive constant C and exponent γ ≥ 3 +O( 1d ) such that
σi ≤ Ci−γ , where d is the dimension of S × S ×A.

Furthermore, in (Exponential Decay) and (Polynomial Decay), we assume the eigenfunction νi is
uniformly bounded, i.e., supi ∥νi∥∞ ≤ 1.

As we will show in our theory, the decay rate of the spectrum significantly influences the performance
of the proposed SAFARI algorithm. We give examples to better interpret the three categories above.
In (Finite Spectrum) case, by (4), the reward function and transition kernel is a linear function of a
finite dimensional feature map. Such a parameterization is satisfied by linear MDP (Yang and Wang,
2019; Jin et al., 2020a). In (Exponential Decay) and (Polynomial Decay) cases, the feature map is
infinite dimensional. For example, RBF kernel belongs to (Exponential Decay) case, while Laplacian
kernel and neural tangent kernel belong to (Polynomial Decay) case. We assume γ ≥ 3 +O(1/d)
in (Polynomial Decay) for technical simplicity, yet it is not restrictive: Laplacian kernel and neural
tangent kernel both have a polynomial decay rate of γ = d (Bietti and Bach, 2020).

The last assumption imposes some regularity on the reward function and transition probabilities.
Assumption 3 (Boundedness). The weights θh and vh in reward function rh and Markov transition
kernel ph are bounded for any h = 1, . . . ,H , respectively, i.e., ∥θh∥H ≤ 1 and

∫
Ω
∥vh(x)∥H dx ≤√

deff , where deff = supKh
log det(I +Kh/λ) is the effective dimension of HK with supremum

over all Gram matrix Kh ∈ RN×N .

The effective dimension describes the complexity of HK for parameterizing the MDP (Yang et al.,
2020b), whose scale is closely related to the spectrum of kernel K. In the special case of K having a
γ-finite spectrum as in Assumption 2, we have deff = O(γ), which resembles the dimensionality of a
finite dimensional Euclidean space.

We measure the pointwise suboptimality of the learned policy π̂. We define the global optimal policy
by the recursion,

π∗
h = argmax

π
⟨Q∗

h, π⟩A , with Q∗
h = BhV

∗
h+1, V

∗
h = ⟨Q∗

h, π
∗
h⟩A , and V ∗

H+1 = 0.

Then the suboptimality of π̂ is given as

SubOpt(π̂;ω) = V π∗

1 (ω)− V π̂
1 (ω).

Our main result is provided in the following theorem, which upper bounds SubOpt(π̂;ω).
Theorem 1. Suppose Assumption 1 – 3 hold. For any δ ∈ (0, 1), let π̂h be the policy returned by
Algorithm 1 with

m ≥ log(2/δ), λ = 1, β =


cmax{d, γ}H

√
log(max{d, γ}HN/δ) (Finite Spectrum)

cH

√
d (log(HN/δ))

1+2/γ (Exponential Decay)

cN
d+1
d+γH

√
d log(HN/δ) (Polynomial Decay)

,

where d is the dimension of Ξ = S × S × A and c is some constant depending on C,C1, C2 and
Lebesgue measure of Ξ. Then for any meta state ω, with probability at least 1−δ over the randomness
of the dataset DN,H , we have

SubOpt(π̂;ω) ≤ 2

H∑
h=1

Eπ∗ [Γh(ωh, ah) | ω1 = ω].

Theorem 1 indicates that the suboptimality of learned policy depends on the uncertainty quantifier
Γh. The scale of Γh depends on how well the collected data explore the state-action space. Moreover,
from a Bayesian learning perspective, Γh measures the eliminated uncertainty in estimating the
Bellman operator given dataset DN,H (Jin et al., 2020b). To better understand the convergence of
SubOpt, we specialize Theorem 1 under a weak data coverage assumption.
Assumption 4 (Weak Coverage). Suppose the dataset is collected under some behavior policy π̄
such that there exists a constant cmin > 0 satisfying

inf
∥f∥H=1

⟨f,Eπ̄[µ(ωh, ah)⊗ µ(ωh, ah)]f⟩ ≥ cmin for any h = 1, . . . ,H.

Recall that µ is the mean embedding in HK .

7



Assumption 4 says that the operator Eπ̄[µ(ωh, ah)⊗ µ(ωh, ah)] is positive definite. Intuitively, this
requires that the collected data relatively well spread over the state-action space. We present the
following Corollary providing a concrete convergence rate of SubOpt.
Corollary 1. Under the setting in Theorem 1, we additionally assume Assumption 4 holds. Then for
N ≥ Ω(log(deffH/δ)) sufficiently large, with probability 1− δ, we have

SubOpt(π̂;ω) = O

(
H2deff

√
log(deffHN/δ)

N

)
.

Here deff is the effective dimension of RKHS HK , which takes value

deff =


max{d, γ} logN (Finite Spectrum)
d(logN)1+1/γ (Exponential Decay)

dN
d+1
d+γ logN (Polynomial Decay)

.

Impact of Kernel Spectrum The spectrum of kernel K significantly influences the performance of
the learned policy. In (Finite Spectrum) case, the effective dimension scales linearly with dimension
d and γ, and SubOpt converges at a rate of O(H2 max{d, γ}/

√
N), which recovers the result of

Corollary 4.5 in Jin et al. (2020b) on linear MDP. In (Exponential Decay) case, the convergence rate
is O(H2d(logN)1+1/γ/

√
N), which is similar to (Finite Spectrum) case with additional logarithmic

dependence on N . However, in (Polynomial Decay) case, the convergence rate is considerably slower,
and relies heavily on the decay rate γ. Consider, for instance, Laplacian kernel and NTK, whose
spectrum decays with γ = d. Then SubOpt converges at a rate of O(H2dN− 1

2d logN), which
suffers from the curse of dimensionality without further assumptions on data.

No Curse of Many Agents The convergence of SubOpt does not suffer from the curse of many
agents. In particular, both Theorem 1 and Corollary 1 only impose a mild requirement on the number
m of neighboring agents to be sampled. This is due to the permutation invariance in mean-field
MARL, since the interactive influence of neighboring agents are captured by the distribution of states.

Technical Overview We briefly discuss the proof of Theorem 1 and Corollary 1. The full proof is
deferred to Appendix A and B. We first decompose SubOpt into three terms (see Lemma 1):

SubOpt(π;ω) = E1 + E2 + E3.

Here E1 =
∑H

h=1 Eπ̂[Q̂h(ωh, ah) − (BhV̂h+1)(ωh, ah) | ω1 = ω] reflects the uncertainty
in estimating the Bellman operator. Note that the evaluating trajectory is generated by the
learned policy π̂, which has spurious correlation with the estimated Bellman operator; E2 =∑H

h=1 Eπ∗ [(BhV̂h+1)(ωh, ah) − Q̂h(ωh, ah) | ω1 = ω] is the estimation error of Bellman oper-
ator again, yet it is evaluated by a trajectory generated by π∗. Compared to E1, E2 does not suffer
from the spurious correlation between the learned policy and the estimated Bellman operator. Lastly,
E3 =

∑H
h=1 Eπ[⟨Q̂h(ωh, ·), π∗

h(· | ωh) − π̂h(· | ωh)⟩A | ω1 = ω] is the optimization error. By the
optimality of π̂, we immediately have E3 ≤ 0.

In order to tackle E1 and E2, we properly choose Γh so that the event E = {|BhV̂h+1 − B̂hV̂h+1| ≤
Γh} happens with high probability. In fact, Γh is understood as the uncertainty quantifier of estimating
BhV̂h+1 with high confidence 1− δ. Then we can show E1 ≤ 0 conditioned on event E, meanwhile
E2 ≤ 2

∑H
h=1 Eπ∗ [Γh(ωh, ah) | ω1 = ω]. To this end, we reduce the upper bound of SubOpt to

bounding the uncertainty quantifier Γh, which allows us to leverage statistical tools. In particular, Γh

consists of two types of statistical error: 1) covariate concentration error on mean embedding, i.e.,
finite agent empirical embedding µ(ω̂n

h , a
n
h) concentration error with respect to population counterpart

µ(ωn
h , a

n
h); 2) regression error in Bellman operator estimation. We bound 1) by concentration of

empirical means in Hilbert spaces (see Lemma 3). In bounding 2), we exploit the closed form solution
of kernel ridge regression and concentration of self-normalizing processes (see Lemma 5).

6 Numerical Experiment

We perform experiments on the multi-agent particle environment (MPE, Lowe et al. (2017)), a popular
benchmark used in prior work (Mordatch and Abbeel, 2018; Liu et al., 2020a). Here, we consider the
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cooperative navigation scenario, where N agents must spread to cooperatively cover N landmarks
across the map. Each agent is able to observe information about the k closest landmarks and agents,
and receives a global reward r = −

∑N
i=1 minj∈[N ] ∥yi − xj∥2, where xi ∈ R2 and yi ∈ R2 are

agent and landmark positions, respectively. Implementation of all environments follows from the
official codebase of Liu et al. (2020a). See hyperparameter choices and more details in Appendix E.
Sample code is also available at https://github.com/wange011/offline-pessimistic.

Figure 1: Training reward on the 15
agent environment.

Data Generation To receive optimal reward on cooperative
navigation, individual agent must learn to coordinate their be-
haviors to each cover a different landmark. As a result, we
generate data for the offline setting by training a MARL pol-
icy and collecting experience data after convergence. We use
counterfactual multi-agent policy gradients (COMA) to address
the problem of credit assignment by learning a joint critic that
marginalizes out an individual agent’s action with a counterfac-
tual baseline (Foerster et al., 2018). This, in turn, allows the
agent-level policies to learn sufficient coordination by evaluat-
ing their individual impact on the team reward. Both the policy
and critic networks are implemented as traditional MLPs, with
64 and 512 nodes in a single hidden layer, respectively, and we
use parameter sharing for policy networks. To sanity check the performance of COMA, we train
the individual actor-critic (IAC) algorithm (Konda and Tsitsiklis, 2000), which applies the policy
gradient to train independent actor-critics. Given the lack of an in-built coordination mechanism, IAC
is expected to perform suboptimally on multi-agent settings.

As all agents take the same action in the mean-field MARL formulation, COMA produces experiences
by selecting the action that corresponds with the plurality vote (mode) of individual agent policy
outputs. However, to demonstrate that this does not greatly inhibit convergence behavior, we train IAC
and the original COMA implementation, labeled COMA-O, without this restriction. As demonstrated
in Figure 1, with error bar computed over 3 independent random seeds, COMA-O performs the best.
It is worth noting that COMA receives slightly lower rewards yet still performing significantly better
than IAC with the same number of learnable parameters.

(a) 15 agents (b) 30 agents (c) 100 agents
Figure 2: Average reward after training. COMA and IAC are evaluated off loaded pre-trained models.

In Figure 2, we implement our SAFARI algorithm with varying number of agents on n = 500 sample
episodes of experience data. We evaluate the performance over a horizon H = 50 on 3 different
random seeds. We observe that SAFARI is able to perform comparably to COMA in settings with
m = 15, 30, and 100 agents. Due to mean-field permutation invariance, we see that the performance
gap between SAFARI and COMA does not widen as the number of agents increases, a behavior that
is normally expected given the exponential growth of the joint state-action space.

7 Conclusion

This paper proposes a SAFARI (Pessimistic Mean-Field Value Iteration) algorithm in offline mean-
field MARL. We prove a suboptimality bound O(H2deff/

√
N), and provide concrete rate of conver-

gence under a weak data coverage assumption. The suboptimality bound is free of the curse of many
agents due to the permutation invariance in mean-field formulation. We also extend to the online
setting in a longer technical report version.

9
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Supplementary Material for “Pessimism Meets Invariance:
Provably Efficient Offline Mean-Field Multi-Agent RL”

A Proof of Theorem 1 — Offline Pessimistic Policy Learning

Throughout the proofs, we adopt the following convention on inner product and outer product in
Hilbert space HK . Let V = [v1, . . . , vd]

⊤ and U = [u1, . . . , ud] be collections of elements in HK

(vi, uj ∈ H). For any w ∈ HK , we denote ⟨V,w⟩ = [⟨v1, w⟩ , . . . , ⟨vd, w⟩]⊤ ∈ Rd, meanwhile,〈
V ⊤, w

〉
= ⟨V,w⟩⊤ ∈ Rd is a row vector. We also denote

〈
V ⊤, U

〉
=
∑d

i=1 ⟨vi, ui⟩ ∈ R, while〈
V,U⊤〉 ∈ Rd×d is a matrix. For outer product, we similarly denote V ⊤ ⊗ U =

∑d
i=1 vi ⊗ ui and

V ⊗U⊤ = [vi ⊗ uj ]i,j as operators. Such a convention coincides with the standard vector algebra in
finite dimensional spaces.

Proof. The full proof consists of four steps. In each step, we require several technical lemmas, whose
proofs are deferred to Appendix C.

Step 1: Suboptimality Decomposition. We decompose SubOpt into three terms.

Lemma 1. Given a policy π = {πh}Hh=1 and Q-function {Qh}Hh=1 with Vh = ⟨Qh, πh⟩A, for any
meta state ω, SubOpt can be decomposed into three terms,

SubOpt(π;ω) =

H∑
h=1

Eπ

[
Qh(ωh, ah)− (BhVh+1)(ωh, ah)

∣∣ ω1 = ω
]

︸ ︷︷ ︸
E1

+

H∑
h=1

Eπ∗
[
(BhVh+1)(ωh, ah)−Qh(ωh, ah)

∣∣ ω1 = ω
]

︸ ︷︷ ︸
E2

+

H∑
h=1

Eπ

[
⟨Qh(ωh, ·), π∗

h(· | ωh)− πh(· | ωh)⟩A
∣∣ ω1 = ω

]
︸ ︷︷ ︸

E3

.

(7)

The proof is provided in Appendix C.2. We instantiate π, Qh, and Vh in Lemma 1 to π̂h, Q̂h, and V̂h
returned by Algorithm 1. The optimality of π̂h, i.e., π̂h = argmaxπ⟨Q̂h, πh⟩A implies that the third
term E3 in (7) is non-positive. Therefore, SubOpt(π̂;ω) admits the upper bound

SubOpt(π̂;ω) ≤ E1 + E2. (8)

Step 2: Pessimism Correction and Simplified Suboptimality Upper Bound. We further simplify
(8) by assuming the following concentration condition:∣∣∣(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)

∣∣∣ ≤ Γh(ω, a) for any (ω, a) ∈ Ξ. (9)

We will show in Step 4 that choosing β and λ = 1 as in Theorem 1, Γh computed in Algorithm 1
verifies condition (9) with probability at least 1 − δ. Conditioned on (9), we can show term E1 is
negative and term E2 is bounded by 2Γh.

Lemma 2. In the setup of Theorem 1, let Q̂h and Γh be computed as in Algorithm 1. Conditioned
on (9), for any (ω, a), the following sandwich inequality holds true,

0 ≤ (BhV̂h+1)(ω, a)− Q̂h(ω, a) ≤ 2Γh(ω, a), for h = 1, . . . ,H.
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The proof is provided in Appendix C.3. Lemma 2 immediately implies that term E1 in (7) is
non-positive, and E2 is upper bounded by 2Γh. As a result, we simplify (8) as

SubOpt(π̂;ω) ≤ 2

H∑
h=1

Eπ∗ [Γh(ωh, ah) | ω1 = ω] . (10)

Step 3: Establishing Condition (9). Recall that we require Γh(ω, a) satisfying∣∣∣(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)
∣∣∣ ≤ Γh(ω, a) for any (ω, a) ∈ Ξ,

with probability at least 1 − δ. It suffices to characterize the concentration of B̂hV̂h+1 to BhV̂h+1.
By Proposition 1, we can write BhV̂h+1 = ⟨µ(ω, a), αh⟩ for some weight αh. We also denote
r̂nh = rh(ω̂

n
h , a

n
h). We then decompose (BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a) into three terms,

(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)

= ⟨µ(ω, a), αh⟩ − ϕh(ω, a)
⊤α̂h

= ⟨µ(ω, a), αh⟩ − ϕh(ω, a)
⊤Λ−1

h

[
r̂1h + V̂h+1(ω̂

1
h+1), . . . , r̂

N
h + V̂h+1(ω̂

N
h+1)

]⊤
+ ϕh(ω, a)

⊤Λ−1
h

[
r̂1h − r1h, . . . , r̂

N
h − rNh

]⊤︸ ︷︷ ︸
(A)

= (A) + ⟨µ(ω, a), αh⟩ − ϕh(ω, a)
⊤Λ−1

h

[
(BhV̂h+1)(ω̂

1
n, a

1
h), . . . , (BhV̂h+1)(ω̂

N
n , a

N
h )
]⊤

︸ ︷︷ ︸
(B)

− ϕh(ω, a)
⊤Λ−1

h

[
r̂1h + V̂h+1(ω̂

1
h+1)− BhV̂h+1(ω̂

1
h, a

1
h), . . . , r̂

N
h + V̂h+1(ω̂

N
h+1)− BhV̂h+1(ω̂

N
h , a

N
h )
]⊤

︸ ︷︷ ︸
(C)

.

Consequently, we have∣∣∣(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)
∣∣∣ ≤ |(A)|+ |(B)|+ |(C)|.

Intuitively, term (A) measures the error induced by the empirical estimation of the mean-field
distribution of states. Term (B) corresponds to the bias of kernel ridge regression, and Term (C) is
the statistical error. We tackle these terms separately in the sequel.

• Bounding Term (A). We show reward r̂nh concentrates around rnh , by establishing the concentration
of empirical mean embedding to its population counterpart.
Lemma 3. Let ω̂m be the empirical mean embedding corresponding to m agents i.i.d. sampled from
infinite-agent state distribution. Given any δA > 0, with probability at least 1− δA, for any a ∈ A,
we have

∥µ(ω̂m, a)− µ(ω, a)∥HK
≤
√

2

m
+

√
2 log(1/δA)

m
.

The proof is provided in Appendix C.4. Combining Assumption 3 and Lemma 3, with probability
1− δA, it holds

sup
n

|r̂nh − rnh | ≤ ∥θh∥HK

(√
2

m
+

√
2 log(1/δA)

m

)
≤

(√
2

m
+

√
2 log(1/δA)

m

)
. (11)

We are now ready to prove the following upper bound on (A).
Lemma 4. Suppose Assumption 1 and 2 hold. With probability 1− δA, it holds

|(A)| ≤ 2

(√
1

m
+

√
log(1/δA)

m

)√
log det(I +Kh/λ)

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H
.
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The proof is provided in Appendix C.5. We note that log det(I +Kh/λ) is known as the effective
dimension of an RKHS (Yang et al., 2020b). The scale of log det(I + Kh/λ) closely ties to the
spectrum of kernel K. See Lemma 10 for an upper bound on log det(I +Kh/λ). It is enough to set
δA = δ/2, which yields

|(A)| ≤ 2

(√
1

m
+

√
log(2/δ)

m

)√
log det(I +Kh/λ)

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H

(12)

with probability 1− δ/2.

• Bounding Term (B). We derive a useful decomposition of the mean embedding µ to simplify
term (B). We let Φh = [µ1, . . . , µN ]

⊤ for any fixed collection of µ1, . . . , µN . Then we define the
regularized covariance operator as

Σh = λIHK
+Φ⊤

h ⊗ Φh,

where IHK
is the identity operator on HK , and Φ⊤

h ⊗ Φh =
∑N

n=1 µ1 ⊗ µN . The operator Σh has
eigenvalues lower bounded by λ. Therefore, its inverse operator Σ−1

h is well-defined. Now we check
the identity

Σ−1
h Φ⊤ =

(
λIHK

+Φ⊤
h ⊗ Φh

)−1
Φ⊤

h

(i)
= Φ⊤

h

(
λI +

〈
Φh,Φ

⊤
h

〉)−1

= Φ⊤
h (λI +Kh)

−1
, (13)

where
〈
Φh,Φ

⊤
h

〉
= [⟨µℓ, µℓ′⟩]ℓ,ℓ′ ∈ RN×N , and equality (i) follows from(

λIHK
+Φ⊤

h ⊗ Φh

)
Φ⊤

h = λΦ⊤
h + (Φ⊤

h ⊗ Φh)Φ
⊤
h = λΦ⊤

h +Φ⊤
h

〈
Φh,Φ

⊤
h

〉
= Φ⊤

h

(
λI +

〈
Φh,Φ

⊤
h

〉)
which implies Φ⊤

h

(
λI +

〈
Φh,Φ

⊤
h

〉)−1
=
(
λIHK

+Φ⊤
h ⊗ Φh

)−1
Φ⊤

h . We are ready to decompose
mean embedding µ as

µ(·) = Σ−1
h Σhµ(·)

= Σ−1
h

(
λIHK

+Φ⊤
h ⊗ Φh

)
µ(·)

= λΣ−1
h µ(·) + Σ−1

h Φ⊤
h ⊗ Φhµ(·)

(i)
= λΣ−1

h µ(·) +
(
Φ⊤

h (λI +Kh)
−1 ⊗ Φh

)
µ(·)

(ii)
= λΣ−1

h µ(·) + Φ⊤
h (λI +Kh)

−1 ⟨Φh, µ(·)⟩
= λΣ−1

h µ(·) + Φ⊤
h (λI +Kh)

−1
ϕh(·)

= λΣ−1
h µ(·) + Φ⊤

hΛ
−1
h ϕh(·), (14)

where step (i) follows from (13), and step (ii) uses the definition of outer product. We use (14) to
simplify (B) and derive an upper bound. We overload Φh by replacing fixed collection µ1, . . . , µN

with µ(ω̂1
h, a

1
h), . . . , µ(ω̂

N
h , a

N
h ). By substituting BhV̂h+1(ω, a) = ⟨µ(ω, a), αh⟩ into (B), we have

(B) = ⟨µ(ω, a), αh⟩ − ϕh(ω, a)
⊤Λ−1

h

[〈
µ(ω̂1

h, a
1
h), αh

〉
, . . . ,

〈
µ(ω̂N

h , a
N
h ), αh

〉]⊤
(i)
=
〈
λΣ−1

h µ(ω, a) + Φ⊤
hΛ

−1
h ϕh(ω, a), αh

〉
− ϕh(ω, a)

⊤Λ−1
h

[〈
µ(ω̂1

h, a
1
h), αh

〉
, . . . ,

〈
µ(ω̂N

h , a
N
h ), αh

〉]⊤
= λ

〈
Σ−1

h µ(ω, a), αh

〉
.

By Cauchy-Schwarz inequality, we have

(B) ≤ λ
∥∥∥Σ−1/2

h µ(ω, a)
∥∥∥
H

∥∥∥Σ−1/2
h αh

∥∥∥
H

(i)

≤
√
λ ∥αh∥H

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H
,

where inequality (i) follows from the operator norm of Σ−1
h being upper bounded by λ−1. To finish

bounding term (B), we derive an upper bound on ∥αh∥H. By Proposition 1, we have

αh =

∫
Ω

V̂h+1(x)vh(x)dx+ θh.

17



The estimated value function satisfies |V̂h+1| ≤ H − h. Therefore, by the triangle inequality, we
deduce

∥αh∥H ≤
∥∥∥∥∫

Ω

V̂h+1(x)vh(x)dx

∥∥∥∥
H
+ ∥θh∥H

≤ (H − h)

∫
Ω

∥vh(x)∥H dx+ ∥θh∥H
(i)

≤ (H − h)
√
deff + 1

≤ H
√
deff ,

where inequality (i) holds due to Assumption 3. Consequently, we derive

|(B)| ≤
√
λH
√
deff

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H
. (15)

• Bounding Term (C). We use (13) to write

ϕh(ω, a)
⊤Λ−1

h =
〈
µ(ω, a),Φ⊤

h

〉
Λ−1
h =

〈
µ(ω, a),Φ⊤

hΛ
−1
h

〉
=
〈
µ(ω, a),Σ−1

h Φ⊤
h

〉
. (16)

Denote ∆n(V̂h+1) = r̂nh + V̂h+1(ω̂
n
h+1)− BhV̂h+1(ω̂

n
h , a

n
h). Then term (C) can be rewrite as

(C) =
〈
µ(ω, a),Σ−1

h Φ⊤
h

〉 [
∆1(V̂h+1), . . . ,∆

n(V̂h+1)
]⊤

=

〈
µ(ω, a),Σ−1

h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(V̂h+1)

〉
(i)

≤
∥∥∥Σ−1/2

h µ(ω, a)
∥∥∥
H

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(V̂h+1)

∥∥∥∥∥
H︸ ︷︷ ︸

(⋆)

,

where (i) invokes Cauchy-Schwarz inequality. We construct a space of functions that contains V̂h to
decouple the dependence between the data DN,H and V̂h in (⋆). Specifically, we define Vh consisting
of functions in the form of

Vh(R,B, λ) ={
Vh(ω) : Vh(ω) = max

a∈A

[
min

{
⟨µ(ω, a), θ⟩ − β

√
⟨µ(ω, a),Σ · µ(ω, a)⟩, H − h+ 1

}+
]
,

∥θ∥H ≤ R, β ∈ [0, B], λ−1IHK
⪰ Σ ⪰ 0

}
. (17)

Note that when taking Σ = Σ−1
h in β

√
⟨µ(ω, a),Σ · µ(ω, a)⟩, it becomes an equivalent form of

Γh(ω, a). To see this, we take inner product on both sides of (14) with ψ, and derive

K((ω, a), (ω, a)) = ⟨µ(ω, a), µ(ω, a)⟩
= λ

〈
µ(ω, a),Σ−1

h µ(ω, a)
〉
+
〈
µ(ω, a),Φ⊤〉Λ−1

h ϕh(ω, a)

= λ
〈
µ(ω, a),Σ−1

h µ(ω, a)
〉
+ ϕh(ω, a)

⊤Λ−1
h ϕh(ω, a).

By rearranging terms, we deduce

λ
〈
µ(ω, a),Σ−1

h µ(ω, a)
〉
= K((ω, a), (ω, a))− ϕh(ω, a)

⊤Λ−1
h ϕh(ω, a),

and further Γh(ω, a) = β
√〈

µ(ω, a),Σ−1
h µ(ω, a)

〉
. As a result, we have V̂h ∈ Vh(R,B, λ) for

properly chosen B and R, which are determined in Step 4.

We discretize Vh+1(R,B, λ) with respect to the ℓ∞ norm, and find the closest element to replace
V̂h+1. In more detail, for any ϵ > 0, we denote {Vh+1,j}

N (ϵ,Vh+1(R,B,λ),∥·∥∞)
j=1 as an ϵ-covering of
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Vh+1(R,B, λ), where N (ϵ,Vh+1(R,B, λ), ∥·∥∞) is known as the covering number. By definition,

there exists an index J , such that
∥∥∥V̂h+1 − Vh+1,J

∥∥∥
∞

≤ ϵ. By the triangle inequality, we have

(⋆) =

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)
(
∆n(V̂h+1)−∆n(Vh+1,J) + ∆n(Vh+1,J)

)∥∥∥∥∥
H

≤

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)
(
∆n(V̂h+1)−∆n(Vh+1,J)

)∥∥∥∥∥
H

+

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(Vh+1,J)

∥∥∥∥∥
H

.

The first term above can be bounded by∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)
(
∆n(V̂h+1)−∆n(Vh+1,J)

)∥∥∥∥∥
H

(i)
=

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)
(
V̂h+1(ω̂

n
h+1)− BhV̂h+1(ω̂

n
h , a

n
h)− V̂h+1,J(ω̂

n
h+1) + BhV̂h+1,J(ω̂

n
h , a

n
h)
)∥∥∥∥∥

H

(ii)

≤ 2ϵ

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)

∥∥∥∥∥
H

(iii)

≤ 2ϵλ−1/2N max
ℓ,ℓ′

∣∣∣K((ω̂ℓ
h, a

ℓ
h), (ω̂

ℓ′

h , a
ℓ′

h ))
∣∣∣

≤ 2ϵλ−1/2N,

where equality (i) uses the definition of ∆n, inequality (ii) follows from the definition of V̂h+1,J ,
and inequality (iii) holds since Σh ⪰ λIH. Consequently, we bound (⋆) as

(⋆) ≤ sup
j≤N (ϵ,Vh+1(R,B,λ),∥·∥∞)

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(Vh+1,j)

∥∥∥∥∥
H

+ 2ϵλ−1/2N. (18)

A crucial observation is that Vh+1,j no longer coupled with the data DN,H , which allows us to derive
uniform concentration on the first term above. We need the following lemma.
Lemma 5 (Restatement of Lemma B.2 in Jin et al. (2020b)). For any h ≤ H , let Vh+1 be a given
value function. Then, for any δC ∈ (0, 1), we have

P

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(Vh+1)

∥∥∥∥∥
2

H

> H2

(
2 log

1

δC
+ log det(λI +Kh)

) ≤ δC .

The proof is provided in Appendix C.6. Taking union bound over the covering of Vh+1, we immedi-
ately have

P

sup
j

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(Vh+1,j)

∥∥∥∥∥
2

H

> H2

(
2 log

1

δC
+ log det(λI +Kh)

)
≤ δCN (ϵ,Vh+1(R,B, λ), ∥·∥∞).

We choose δC = N−1(ϵ,Vh+1(R,B, λ), ∥·∥∞) · δ/2 such that

sup
j

∥∥∥∥∥Σ−1/2
h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(Vh+1,j)

∥∥∥∥∥
2

H

≤ H2

(
2 log

2N (ϵ,Vh+1(R,B, λ), ∥·∥∞)

δ
+ log det(λI +Kh)

)
(19)

holds with probability 1 − δ/2. The remaining step is to bound the covering number
N (ϵ,Vh+1(R,B, λ), ∥·∥∞).
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Lemma 6. Suppose Assumption 1 and 2 hold. Recall the definition of Vh in (17). For any h =
1, . . . ,H , it holds

logN (ϵ,Vh(R,B, λ), ∥·∥∞)

≤


γ log(1 + 6R/ϵ) + γ2 log(1 + 6B

√
γ/ϵ), (Finite Spectrum)

C3

(
log 3R

ϵ + C4

) 1+γ
γ + C6

(
log 3B

ϵ + log log 3B
ϵ + C7

) 2+γ
γ , (Exponential Decay)

C5

(
3R
ϵ

) 2
γ−1

(
log 12R

ϵ + 1
)
+ C8

(
3B
ϵ

) 4
γ−1

(
log 3B

ϵ + C9

)
, (Polynomial Decay)

+ log

(
1 +

3B

ϵ
√
λ

)
,

where constants Ci depend on C,C1, C2, λ, and γ in (Exponential Decay) and (Polynomial Decay),
for i = 3, . . . , 10.

The proof is provided in Appendix C.7. Combining (18), (19) and Lemma 6, we obtain

|(C)| ≤
(
H
√
2 logN (ϵ,Vh+1(R,B, λ), ∥·∥∞) + 2 log 2/δ + log det(λI +Kh) + 2ϵλ−1/2N

)
·
∥∥∥Σ−1/2

h µ(ω, a)
∥∥∥
H
. (20)

with probability 1− δ/2.

Step 4: Completing the Proof. We choose proper ϵ, R, B, λ, and verify condition (9) to finish the
proof. We set λ = 1, and determine R first. By parameterizing f(µ(ω, a)) = ⟨µ(ω, a), w⟩ in (5), we
can solve the kernel ridge regression and obtain a closed form solution at step h as

ŵh = Σ−1
h Φ⊤

h [r
1
h + V̂h+1(ω̂

1
h+1), . . . , r

N
h + V̂h+1(ω̂

N
h+1)]

⊤.

Recall that by the definition of Vh in (17), R can be chosen as an upper bound on ∥ŵh∥H, which is
provided in the following Lemma.

Lemma 7. For any λ ≥ 1, we have

∥ŵh∥H ≤ Hλ−1/2
√
log det(I +Kh/λ).

The proof is provided in Appendix C.8. As a result, we choose R = Hλ−1/2
√
log det(I +Kh/λ).

We choose B according to the spectrum of kernel K.

Case 1: (Finite Spectrum). We set B = cγH
√
log(max{d, γ}HN/δ) for some sufficiently large

absolute constant c, which is exactly the choice of β. We first simplify the upper bound on |(C)|
in (20). By only keeping the dominating terms in the covering number and effective dimension
log det(I +Kh/λ) (see Lemma 10), for small ϵ ∈ (0, 1), we have

2 logN (ϵ,Vh+1(R,B, λ), ∥·∥∞) + 2 log 2/δ + log det(λI +Kh)

≤ 4γ2 log

(
1 +

6max{R,B}√γ
ϵ

)
+ 2 log 2/δ + Ceff-FS ·max{d, γ} logN

≤ 4γ2 log

(
6cHγ3/2

√
log(max{d, γ}HN/δ)

ϵδ

)
+ Ceff-FS ·max{d, γ} logN,

where the last inequality is valid when constant c is large. Setting ϵ = γH
√

log(max{d,γ}HN/δ)

2N , we
derive

H
√
2 logN (ϵ,Vh+1(R,B, λ), ∥·∥∞) + 2 log 2/δ + log det(λI +Kh) + 2ϵλ−1/2N

(i)

≤ 2γH
√
log (12cHN

√
γ/δ) +H

√
Ceff-FS ·max{d, γ} logN + γH

√
log(max{d, γ}HN/δ)

(ii)

≤ c

2
γH
√
log(max{d, γ}HN/δ),
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where inequality (i) follows from
√
a+ b ≤

√
a+

√
b and inequality (ii) is always valid when c is

properly chosen. Combining (12), (15), and (20), we have∣∣∣(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)
∣∣∣

≤ |(A)|+ |(B)|+ |(C)|

≤

((√
1

m
+

√
log(2/δ)

m
+H

)√
max{d, γ} logN +

c

2
γH
√
log(max{d, γ}HN/δ)

)
·
∥∥∥Σ−1/2

h µ(ω, a)
∥∥∥
H

(i)

≤ cγH
√
log(max{d, γ}HN/δ)

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H

= Γh(ω, a),

where inequality (i) holds, since m ≥ log(2/δ) and c is sufficiently large. As a consequence,
condition (9) holds true, and we bound SubOpt(π̂;ω) by

SubOpt(π̂;ω) ≤ 2
H∑

h=1

Eπ∗ [Γh(ωh, ah) | ω1 = ω] .

Case 2: (Exponential Decay). We set B = cH

√
d (log(HN/δ))

1+2/γ for a sufficiently large
constant c. Utilizing similar analysis in Case 1, for small ϵ ∈ (0, 1) and sufficiently large c, we
simplify the bound for |(C)|:

2 logN (ϵ,Vh+1(R,B, λ), ∥·∥∞) + 2 log 2/δ + log det(λI +Kh)

≤ (C3 + C6) log

(
6max{R,B}

ϵ
+ (C4 + C7)

) 2+γ
γ

+ 2 log 2/δ + Ceff-ED · d(logN)
1+γ
γ

≤ (C3 + C6)d log

(
12cH

√
d(log(HN/δ))1+2/γ

ϵδ

) 2+γ
γ

+ Ceff-ED · d(logN)
1+γ
γ .

Choosing ϵ = H
√

d(log(HN/δ)1+2/γ

2N , we derive

H
√

2 logN (ϵ,Vh+1(R,B, λ), ∥·∥∞) + 2 log 2/δ + log det(λI +Kh) + 2ϵλ−1/2N

≤
√
2(C3 + C6)H

√
d log(24cN/δ) +H

√
Ceff-ED · d(logN)1+1/γ +H

√
d(log(HN/δ))1+2/γ

≤ c

2
H
√
d(log(HN/δ))1+2/γ .

Lastly, combining (12), (15), and (20), we have∣∣∣(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)
∣∣∣

≤ |(A)|+ |(B)|+ |(C)|

≤

((√
1

m
+

√
log(2/δ)

m
+H

)√
Ceff-ED · d(logN)1+1/γ +

c

2
H
√
d(log(HN/δ))1+2/γ

)
·
∥∥∥Σ−1/2

h µ(ω, a)
∥∥∥
H

≤ cH
√
d(log(HN/δ))1+2/γ

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H

= Γh(ω, a).

As a consequence, condition (9) holds true.
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Case 3: (Polynomial Decay). We set B = cN
d+1
d+γH

√
d log(HN/δ) for a sufficiently large constant

c. For small ϵ ∈ (0, 1) and sufficiently large c, we begin with simplifying the bound for |(C)|:
2 logN (ϵ,Vh+1(R,B, λ), ∥·∥∞) + 2 log 2/δ + log det(λI +Kh)

≤ (C5 + C8)

(
3max{R,B}

ϵ

)4/(γ−1)

log

(
12max{R,B}

ϵ
+ C9 + 1

)
+ 2 log 2/δ

+ Ceff-PD ·N
d+1
d+γ d logN

≤ (C5 + C8)

(
6cN

d+1
d+γH

√
d log(HN/δ)

ϵ

) 4
γ−1

+ Ceff-PD ·N
d+1
d+γ d logN.

Choosing ϵ = 1
2N

−1+ d+1
d+γH

√
d log(HN/δ), we derive

H
√
2 logN (ϵ,Vh+1(R,B, λ), ∥·∥∞) + 2 log 2/δ + log det(λI +Kh) + 2ϵλ−1/2N

≤
√
2(C5 + C8)H (12cN)

2
γ−1 +H

√
Ceff-PD ·N

d+1
d+γ d logN +N

d+1
d+γH

√
d log(HN/δ)

(i)

≤ c

2
HN

d+1
d+γH

√
d log(HN/δ),

where in (i), we have 2
γ−1 ≤ d+1

d+γ for γ ≥ 3 + 4/(d− 1). Lastly, combining (12), (15), and (20), we
have ∣∣∣(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)

∣∣∣
≤ |(A)|+ |(B)|+ |(C)|

≤

((√
1

m
+

√
log(2/δ)

m
+H

)√
Ceff-PD ·N

d+1
d+γ d logN +

c

2
HN

d+1
d+γH

√
d log(HN/δ)

)
·
∥∥∥Σ−1/2

h µ(ω, a)
∥∥∥
H

≤ cHN
d+1
d+γH

√
d log(HN/δ)

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H

= Γh(ω, a).

As a consequence, condition (9) holds true. Therefore, we complete the proof.

B Proof of Corollary 1

Proof. Given Theorem 1, we only need to show the convergence of Γh under Assumption
4. In particular, we show that ∥Σ−1/2

h µ(ω, a)∥H converges at a rate of 1/
√
N . We denote

An = µ(ωn
h , a

n
h) ⊗ µ(ωn

h , a
n
h) − Eπ̄[µ(ωh, ah) ⊗ µ(ωh, ah)], which verifies Eπ̄[An] = 0. We

denote Z =
∑N

n=1An, and distinguish three cases according to the spectrum of K. (In the following
proof, we denote ∥·∥op as the operator norm.)

Case 1: (Finite Spectrum). Using the same argument in Lemma 9, we represent µ(ωn
h , a)⊗ µ(ωn

h , a)
as a γ×γ matrixWn

h , since kernelK has a γ-finite spectrum. We also denoteWh = Eπ̄[µ(ωh, ah)⊗
µ(ωh, ah)]. We keep the notation An and Z unchanged, yet overload the two with An =Wn

h −Wh

and Z =
∑N

n=1An.

By the boundedness of kernel, we deduce that the matrix operator norm ∥Wh∥op is bounded by 1.
Meanwhile, the operator norm of An is bounded by ∥An∥op ≤ ∥Wn

h ∥op + ∥Wh∥op ≤ 2, using the
triangle inequality. Furthermore, we have∥∥Eπ̄[ZZ

⊤]
∥∥
op

= N
∥∥AnA

⊤
n

∥∥
op

≤ N ∥An∥op
∥∥A⊤

n

∥∥
op

≤ 4N,

and similarly ∥∥Eπ̄[Z
⊤Z]

∥∥
op

= N
∥∥A⊤

nAn

∥∥
op

≤ 4N.
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Applying matrix Bernstein inequality, for any t > 0, we have

P
(
∥Z∥op ≥ t

)
≤ 2γ exp

(
− t2/2

4N + 2t/3

)
.

Taking t =
√

10N log(4γH/δ), for sufficiently large N ≥ 5 log(4γH/δ), we obtain

∥Z∥op ≤
√
10N log(4γH/δ) holds with probability 1− δ/2H.

Case 2: (Exponential Decay). We truncate the spectrum of kernel K at M , where the positive integer
M will be determined later. Denote µ̄ as the truncated version of µ. Using the truncation error in
Lemma 9 with λ = 1, we bound

eM
△
= ∥µ(ω, a)⊗ µ(ω, a)− µ̄(ω, a)⊗ µ̄(ω, a)∥op

≤

2
√

C1

C2
exp(−C2Mγ) γ ≥ 1

2
√

C1M1−γ

C2γ
exp(−C2Mγ) γ ∈ (0, 1)

.

We let Ān = µ̄(ωn
h , a

n
h) ⊗ µ̄(ωn

h , a
n
h) − Eπ̄[µ̄(ωh, ah) ⊗ µ̄(ωh, ah)] and Z̄ =

∑N
n=1 Ān. Then we

can derive

P
(
∥Z∥op ≥ t

)
≤ P

(∥∥Z̄∥∥
op

≥ t− 2NeM

)
≤ 2M exp

(
− (t− 2NeM )

2
/2

4N + 2 (t− 2NeM ) /3

)
.

We choose M = c0
C2

(log C1N
C2

)1/γ for some absolute constant c0 ≤ 2 and t = 8
√
N log(4Hdeff/δ),

which gives rise to

t− 2NeM = 8
√
N log(4Hdeff/δ)− 4

√
N ≤

√
10N log(4Hdeff/δ).

For sufficiently large N ≥ 5 log(4Hdeff/δ), we obtain

∥Z∥op ≤ 8
√
N log(4Hdeff/δ) holds with probability 1− δ/2H.

Case 3: (Polynomial Decay). We consider truncating the spectrum at M again. Using the truncation
error of polynomial decay case in Lemma 9, we have

P
(
∥Z∥op ≥ t

)
≤ P

(∥∥Z̄∥∥
op

≥ t− 4N
√
(γ − 1)−1CM−γ+1

)
≤ 2M exp

−

(
t− 4N

√
(γ − 1)−1CM−γ+1

)2
/2

4N + 2
(
t− 4N

√
(γ − 1)−1CM−γ+1

)
/3

 .

We choose M =
(

CN
γ−1

) 1
γ−1

and t = 8
√
N log(4Hdeff/δ), which gives rise to

t− 4N
√

(γ − 1)−1CM−γ+1 = 8
√
N log(4Hdeff/δ)− 4

√
N ≤

√
10N log(4Hdeff/δ).

Further, when γ ≥ 2 + 1/d, we have d+1
d+γ > 1

γ−1 , which implies M ≤ deff . Thus, for N ≥
5 log(4Hdeff/δ), we have

∥Z∥op ≤ 8
√
N log(4Hdeff/δ) holds with probability 1− δ/2H.

We rewrite Z using the covariance operator Σh as

Z = Σh − λIHK
−NEπ̄[µ(ωh, ah)⊗ µ(ωh, ah)]

+

N∑
n=1

{µ(ω̂n
h , a

n
h)⊗ µ(ω̂n

h , a
n
h)− µ(ωn

h , a
n
h)⊗ µ(ωn

h , a
n
h)}︸ ︷︷ ︸

E

.
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We bound the operator norm of E by

∥E∥op = sup
∥f∥H≤1

∥Ef∥H

≤ N ∥µ(ω̂n
h , a

n
h) ⟨µ(ω̂n

h , a
n
h), f⟩ − µ(ωn

h , a
n
h) ⟨µ(ωn

h , a
n
h), f⟩∥H

≤ 2N ∥µ(ω̂n
h , a

n
h)− µ(ωh, ah)∥H .

By Lemma 3, we have ∥µ(ω̂n
h , a

n
h)− µ(ωh, ah)∥H ≤

√
2
m+

√
2 log(4H/δ)

m with probability 1−δ/4H .

Thus, for sufficiently large m ≥ 32N2 log(4H/δ), ∥E∥op ≤
√
N with probability 1 − δ/4H .

Therefore, with probability 1− 3
4δ, we deduce that∥∥∥∥ 1

N
(Σh − λI)− Eπ̄[µ(ωh, ah)⊗ µ(ωh, ah)]

∥∥∥∥
op

≤ 1

N
∥Z∥op +

1

N
∥E∥op

≤ 8

√
log(4deffH/δ)

N
+

√
1

N

holds simultaneously for all h = 1, . . . ,H . For sufficiently large N ≥ 1024
c2min

log(4deffH/δ), we have

1

N
Σh ⪰ Eπ̄[µ(ωh, ah)⊗ µ(ωh, ah)]−

(
8

√
log(4deffH/δ)

N
+

√
1

N

)
· IHK

⪰ cmin

2
· IHK

.

This further implies ∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H

≤ ∥µ(ω, a)∥H
∥∥Σ−1

h

∥∥
op

≤ 2

cmin

√
N
.

Combining with Theorem 1 and taking δ = δ/4 therein, we have

SubOpt(π̂;ω) ≤ 2

H∑
h=1

[Γh(ωh, ah) | ω1 = ω]

≤ 2β

H∑
h=1

[
2

cmin
N−1/2 | ω1 = ω

]

= O

(
H2deff

√
log(deffHN/δ)

N

)
,

where in the last inequality, we substitute into the choice of β and note that by Lemma 10, β =

O(Hdeff
√
log(deffHN/δ). The proof is complete.

C Proofs of Supporting Lemmas for Theorem 1

We provide proofs of technical lemmas for establishing our main results.

C.1 Proof of Proposition 1

Proof. We first show Bhg and Phg can be parameterized in HK . Using the definition in (2), we
derive

(Phg)(ω, a) = E [g(ωh+1) | ωh = ω, ah = a]

=

∫
Ω

g(x)ph(x | ω, a)dx

=

∫
Ω

g(x) ⟨µ(ω, a), vh(x)⟩ dx

=

〈
µ(ω, a),

∫
Ω

g(x)vh(x)dx

〉
∈ HK.

24



Similarly, for Bhg, we have

(Bhg)(ω, a) = (Phg)(ω, a) + rh(ω, a)

=

〈
µ(ω, a),

∫
Ω

g(x)vh(x)dx

〉
+ ⟨µ(ω, a), θh⟩

=

〈
µ(ω, a),

∫
Ω

g(x)vh(x)dx+ θh

〉
∈ HK .

The proof is complete.

C.2 Proof of Lemma 1

Proof. We write SubOpt(π̂;ω) as

SubOpt(π;ω) = V π∗

1 (ω)− V1(ω) + V1(ω)− V π
1 (ω), (21)

where Vh = ⟨Qh, π⟩A. Note the difference between V1 and V π
1 , where in the former, each Vh is

computed from a given Q-function Qh. By the extended value difference in Section B.1 of Cai et al.
(2020) (see also Lemma A.1 in Jin et al. (2020b)), we have

V1(ω)− V π
1 (ω) = Eπ [⟨Q1(ω1, ·), π(· | ω1)⟩A − ⟨Qπ

1 (ω1, ·), π(· | ω1)⟩A | ω1 = ω]

= Eπ

[
⟨Q1(ω1, ·), π(· | ω1)⟩A − ⟨(B1V2)(ω1, ·), π(· | ω1)⟩A

+ ⟨(B1V2)(ω1, ·), π(· | ω1)⟩A − ⟨Qπ
1 (ω, ·), π(· | ω)⟩A

∣∣ ω1 = ω
]

= Eπ [Q1(ω1, a1)− (B1V2)(ω1, a1) | ω1 = ω] + Eπ [V2(ω2)− V π
2 (ω2) | ω1 = ω]

= · · ·

=

H∑
h=1

Eπ [Qh(ωh, ah)− (BhVh+1)(ωh, ah) | ω1 = ω] . (22)

Analogously, we derive

V π∗

1 (ω)− V1(ω) =

H∑
h=1

Eπ∗
[
⟨Qh(ωh, ·), πh(· | ωh)− π∗(· | ωh)⟩

∣∣ ω1 = ω
]

+

H∑
h=1

Eπ∗
[
Qh(ωh, ah)− (BhVh+1)(ωh, ah)

∣∣ ω1 = ω
]
. (23)

Substituting (22) and (23) into (21), we obtain the desired decomposition in Lemma 1.

C.3 Proof of Lemma 2

Proof. We first prove the left inequality, i.e.,

0 ≤ (BhV̂h+1)(ω, a)− Q̂h(ω, a).

Conditioned on the event
∣∣∣(BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a)

∣∣∣ ≤ Γh(ω, a), we have

(BhV̂h+1)(ω, a)− Q̂h(ω, a)
(i)

≥ (BhV̂h+1)(ω, a)− Q̃h(ω, a) + Γ(ω, a) ≥ 0,

where inequality (i) follows from Q̂ is a bounded truncated version of Q̃h. Therefore, the left
inequality holds for any (ω, a). Next, we show the right inequality, i.e.,

(BhV̂h+1)(ω, a)− Q̂h(ω, a) ≤ 2Γh(ω, a).

Observe V̂h+1 ≤ H − h in Algorithm 1. Combining with |rh| ≤ 1, we have

(BhV̂h+1)(ω, a) ≤ H − h+ 1.
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This implies (B̂hV̂h+1) ≤ H − h+ 1− Γh. Therefore, we deduce

Q̂h ≥ Q̃h − Γh = (B̂hV̂h+1)− Γh.

Since we have proved (BhV̂h+1)(ω, a)− Q̂h(ω, a) ≥ 0, we derive

(BhV̂h+1)(ω, a)− Q̂h(ω, a) ≤ (BhV̂h+1)(ω, a)− (B̂hV̂h+1)(ω, a) + Γh(ω, a) ≤ 2Γh(ω, a).

The proof is complete.

C.4 Proof of Lemma 3

Proof. We denote

g(ω̂m, a) = ∥µ(ω̂m, a)− µ(ω, a)∥H .

Consider two meta states ω̂m = s0 × d̂s and ω̂′ = s0 × d̂′s with only the k-th agent (k ≥ 1) having
distinct states sk and (sk)

′, respectively. We bound the difference in function value:

|g(ω̂m, a)− g(ω̂′
m, a)| = ∥µ(ω̂m, a)− µ(ω, a)∥HK

− ∥µ(ω̂′
m, a)− µ(ω, a)∥H

≤ ∥µ(ω̂m, a)− µ(ω̂′
m, a)∥H

≤ 1

m
∥ψ(s0, sk, a)− ψ(s0, s

′
k, a)∥H

≤ 2

m
.

By Mcdiarmid’s inequality, for any δ0 > 0, we have

g(ω̂m, a) ≤ E[g(ω̂m, a)] + δ0 with probability at least 1− exp

(
−δ

2
0m

2

)
. (24)

It remains to bound E[g(ω̂m, a)]. Some algebraic manipulation gives rise to

E[g(ω̂m, a)]
(i)

≤
√

E
[
∥µ(ω̂m, a)− µ(ω, a)∥2H

]
=

√√√√E

[
1

m

m∑
i=1

ψ(s0, si, a)− µ(ω, a)

]

=

√
1

m
Es∼ds,s′∼d′

s
[k((s0, s, a), (s0, s, a))− k((s0, s, a), (s0, s′, a))]

≤
√
2/m, (25)

where inequality (i) follows from Jensen’s inequality. (A similar computation appears in Theorem 15
of Altun and Smola (2006).) Substituting (25) into the right-hand side of (24), with probability at
least 1− exp

(
− δ20m

2

)
, we have

∥µ(ω̂m, a)− µ(ω, a)∥H ≤
√
2/m+ δ0.

Taking δ0 =
√

2 log(1/δA)
m , we deduce

∥µ(ω̂m, a)− µ(ω, a)∥H ≤
√

2

m
+

√
2 log(1/δA)

m
with probability at least 1− δA.

The proof is complete.
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C.5 Proof of Lemma 4

Proof. Using identity (16), we bound (A) as

|(A)| =
∣∣∣ϕh(ω, a)⊤Λ−1

h

[
r̂1h − r1h, . . . , r̂

N
h − rNh

]⊤∣∣∣
=
∣∣∣〈µ(ω, a),Σ−1

h Φ⊤
h

[
r̂1h − r1h, . . . , r̂

N
h − rNh

]⊤〉∣∣∣
(i)

≤ ∥θh∥H

(√
2

m
+

√
2 log(1/δA)

m

)
N∑

n=1

∣∣〈µ(ω, a),Σ−1
h µ(ω̂n

h , a
n
h)
〉∣∣

(ii)

≤

(√
2

m
+

√
2 log(1/δA)

m

)∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H

√√√√ N∑
n=1

〈
µ(ω̂n

h , a
n
h),Σ

−1
h µ(ω̂n

h , a
n
h)
〉
, (26)

where inequality (i) invokes (11) and holds with probability 1 − δA, inequality (ii) follows from
Cauchy-Schwarz inequality. It remains to bound

∑N
n=1

〈
ψh(µζ̂n

h
),Σ−1

h ψh(µζ̂n
h
)
〉
H

. By Lemma 11
in Abbasi-Yadkori et al. (2011) (see also Lemma E.3 in Yang et al. (2020b)), we have

N∑
n=1

〈
µ(ω̂n

h , a
n
h),Σ

−1
h µ(ω̂n

h , a
n
h)
〉
H ≤ 2 log det (I +Kh/λ) . (27)

Substituting (27) into (26), we obtain

|(A)| ≤ 2

(√
1

m
+

√
log(1/δA)

m

)√
log det(I +Kh/λ)

∥∥∥Σ−1/2
h µ(ω, a)

∥∥∥
H

with probability 1− δA.

C.6 Proof of Lemma 5

Proof. The proof is based on concentration of measure in self-normalizing sequences. Let Fh,τ

be the σ-algebra generated by data {(snh, anh, rnh)}τn=1. By the Markov property and definition of
Bellman operator, we have E[∆τ (Vh+1) | Fh,τ−1] = 0. Moreover, ∆n(Vh+1) ≤ H , since the reward
function is bounded by 1 in Assumption 3. By Theorem 1 in Chowdhury and Gopalan (2017), with
probability at least 1− δ, for any η > 0, we have

∆(Vh+1)
⊤((Kh + ηI)−1 + I)−1∆(Vh+1) ≤ 2H2 log det((1 + η)I +Kh) + 2H2 log

1

δ
, (28)

where ∆(Vh+1) = [∆1(Vh+1), . . . ,∆
N (Vh+1)]

⊤. In the remaining of the proof, we take η = λ− 1
and show∥∥∥∥∥Σ−1/2

h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(Vh+1)

∥∥∥∥∥
2

H

≤ ∆(Vh+1)
⊤((Kh + (λ− 1)I)−1 + I)−1∆(Vh+1).

As a consequence, (28) is an upper bound of
∥∥∥Σ−1/2

h

∑N
n=1 µ(ω̂

n
h , a

n
h)∆

n(Vh+1)
∥∥∥2
H

, which is the
desired result.

Using vector notations, we rewrite Σ
−1/2
h

∑N
n=1 µ(ω̂

n
h , a

n
h)∆

n(Vh+1) as Σ−1/2
h Φ⊤

h∆(Vh+1). Then
we derive∥∥∥∥∥Σ−1/2

h

N∑
n=1

µ(ω̂n
h , a

n
h)∆

n(Vh+1)

∥∥∥∥∥
2

H

=
∥∥∥Σ−1/2

h Φ⊤
h∆(Vh+1)

∥∥∥2
H

= ∆(Vh+1)
⊤ 〈Φh,Σ

−1
h Φ⊤

h

〉
∆(Vh+1)

(i)
= ∆(Vh+1)

⊤ 〈Φh,Φ
⊤
h

〉
(λI +Kh)

−1∆(Vh+1)

= ∆(Vh+1)
⊤Kh(λI +Kh)

−1∆(Vh+1),
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where equality (i) invokes the identity in (13). Now we need to show ∆(Vh+1)
⊤((Kh + (λ −

1)I)−1 + I)−1∆(Vh+1) ≥ ∆(Vh+1)
⊤Kh(λI +Kh)

−1∆(Vh+1). Indeed, by the matrix inversion
lemma, we have

∆(Vh+1)
⊤((Kh + (λ− 1)I)−1 + I)−1∆(Vh+1) = ∆(Vh+1)

⊤(I − (Kh + λI)−1)∆(Vh+1)

≥ ∆(Vh+1)
⊤(I − λ(Kh + λI)−1)∆(Vh+1)

= ∆(Vh+1)
⊤Kh(λI +Kh)

−1∆(Vh+1).

The proof is complete.

C.7 Proof of Lemma 6

Proof. We reduce the covering of Vh(R,B, λ) to Cartesian product of coverings on θ, β, and Σ.
Specifically, let f1, f2 be two elements in Hh. We denote

f1(ω, a) = max
a∈A

[
min

{
⟨µ(ω, a), θ1⟩ − β1

√
⟨µ(ω, a),Σ1µ(ω, a)⟩, H − h+ 1

}+
]

and

f2(ω, a) = max
a∈A

[
min

{
⟨µ(ω, a), θ2⟩ − β2

√
⟨µ(ω, a),Σ2µ(ω, a)⟩, H − h+ 1

}+
]
.

We evaluate the difference between f1 and f2:

∥f1 − f2∥∞
(i)

≤ sup
(ω,a)

∣∣∣∣⟨µ(ω, a), θ1 − θ2⟩ −
(
β1

√〈
µ(ω, a),Σ−1

1 µ(ω, a)
〉
− β2

√〈
µ(ω, a),Σ−1

2 µ(ω, a)
〉)∣∣∣∣

≤ sup
(ω,a)

|⟨µ(ω, a), θ1 − θ2⟩|+ sup
(ω,a)

|β1 − β2|
√
⟨µ(ω, a),Σ1µ(ω, a)⟩

+ sup
(ω,a)

β2

∣∣∣√⟨µ(ω, a),Σ1µ(ω, a)⟩ −
√
⟨µ(ω, a),Σ2µ(ω, a)⟩

∣∣∣
(ii)

≤ ∥θ1 − θ2∥H + λ−1/2|β1 − β2|

+B sup
(ω,a)

∣∣∣√⟨µ(ω, a),Σ1µ(ω, a)⟩ −
√
⟨µ(ω, a),Σ2µ(ω, a)⟩

∣∣∣
≤ ∥θ1 − θ2∥H + λ−1/2|β1 − β2|

+B sup
(ω,a)

√
|⟨µ(ω, a), (Σ1 − Σ2)µ(ω, a)⟩|, (29)

where inequality (i) removes the truncation operation in f1, f2, and inequality (ii) follows from
σ1 ⪰ λIHK

. Decomposition (29) suggests that an ϵ-covering of Vh can be constructed from the
Cartesian product of an ϵ/3-covering on F1 = {θ : ∥θ∥H ≤ R}, an ϵ

√
λ/3-covering on F2 = {β :

0 ≤ β ≤ B}, and an ϵ/(3B)-covering on F3 = {Σ : λ−1IHK
⪰ Σ ⪰ 0}. Correspondingly, the

covering number of Vh is the product

N (ϵ,Vh(R,B, λ), ∥·∥∞) = N (ϵ/3,F1, ∥·∥∞) · N (ϵ
√
λ/3,F2, ∥·∥∞) · N (ϵ/(3B),F3, ∥·∥∞).

By Lemma 8, we have

logN (ϵ/3,F1, ∥·∥∞) ≤


γ log(1 + 6R/ϵ), (Finite Spectrum)

C3 (log(3R/ϵ) + C4)
1+1/γ

, (Exponential Decay)

C5(3R/ϵ)
2/(γ−1) log(1 + 12R/ϵ), (Polynomial Decay)

.

A direct discretization yields

logN (ϵ
√
λ/3,F2, ∥·∥∞) ≤ log

(
1 +

3B

ϵ
√
λ

)
.
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By Lemma 9, we have

logN (ϵ/(3B),F3, ∥·∥∞)

≤


γ2 log(1 + 6B

√
γ/(λϵ)), (Finite Spectrum)

C6 (log(3B/ϵ) + log log(3B/ϵ) + C7)
1+2/γ

, (Exponential Decay)

C8(3B/ϵ)
4/(γ−1) (log(3B/ϵ) + C9) , (Polynomial Decay)

.

Combining all these covering numbers, we deduce

logN (ϵ,Vh(R,B, λ), ∥·∥∞)

≤


γ log(1 + 6R/ϵ) + γ2 log(1 + 6B

√
γ/ϵ), (Finite Spectrum)

C3

(
log 3R

ϵ + C4

) 1+γ
γ + C6

(
log 3B

ϵ + log log 3B
ϵ + C7

) γ+2
γ , , (Exponential Decay)

C5

(
3R
ϵ

) 2
γ−1 log

(
1 + 12R

ϵ

)
+ C8

(
3B
ϵ

) 4
γ−1

(
log 3B

ϵ + C9

)
, (Polynomial Decay)

+ log

(
1 +

3B

ϵ
√
λ

)
.

The proof is complete.

C.8 Proof of Lemma 7

Proof. We observe rnh + V̂h+1 uniformly bounded by H . For any f with ∥f∥H ≤ 1, similar to the
proof of Lemma 4, we have

∥ŵh∥H = sup
∥f∥H≤1

⟨f, ŵh⟩

= sup
∥f∥H≤1

〈
f,Σ−1

h Φ⊤
h [r

1
h + V̂h+1(ω̂

1
h+1), . . . , r

N
h + V̂h+1(ω̂

N
h+1)]

⊤
〉

≤ sup
∥f∥H≤1

Hλ−1/2 ∥f∥H

√√√√ N∑
i=1

〈
µ(ω̂n

h , a
n
h),Σ

−1
h µ(ω̂n

h , a
n
h)
〉

≤ Hλ−1/2
√
log det(I +Kh/λ),

where the second last inequality follows from Cauchy-Schwarz inequality and the last inequality
invokes Lemma 11 in Abbasi-Yadkori et al. (2011).

D Technical Results in RKHS

D.1 Covering Number of RKHS

Lemma 8 (Restatement of Lemma D.2 in Yang et al. (2020b)). Suppose Assumptions 1 and 2 hold.
Let HK(R) = {f ∈ HK : ∥f∥H ≤ R} be a norm ball in the reproducing kernel Hilbert space HK .
For any ϵ > 0, the covering number N (ϵ,HK(R), ∥·∥∞) is bounded by

logN (ϵ,HK(R), ∥·∥∞) ≤


γ log(1 + 2R/ϵ), (Finite Spectrum)

C3 (log(R/ϵ) + C4)
1+1/γ

, (Exponential Decay)

C5(R/ϵ)
2/(γ−1) log(1 + 4R/ϵ), (Polynomial Decay)

,

where C3, C4 are positive constants depending on C1, C2, logR, and constant C5 depends on
C, logR, γ.

Proof. The idea is to transform the covering of HK(R) to a proper covering on a Euclidean ball,
whose dimension is determined by the spectrum of kernel K.

Case 1: (Finite Spectrum). For any function f ∈ HK(R), we have

f =

γ∑
i=1

wi
√
σiνi with

γ∑
i=1

w2
i ≤ R2.

29



Consider two functions f =
∑γ

i=1 wi
√
σiνi and f ′ =

∑γ
i=1 w

′
i

√
σiνi satisfying

∑γ
i=1(wi−w′

i)
2 ≤

ϵ20. Then we have

∥f − f ′∥∞ =

∥∥∥∥∥
γ∑

i=1

(wi − w′
i)
√
σiνi

∥∥∥∥∥
∞

(i)

≤ sup
µ

√√√√ γ∑
i=1

σiν2i (µ)

√√√√ γ∑
i=1

(wi − w′
i)

2

=

√√√√sup
µ
K(µ, µ) ·

γ∑
i=1

(wi − w′
i)

2

≤ ϵ0,

where inequality (i) uses the Cauchy-Schwarz inequality. The above inequality establishes the
equivalence between an ϵ0-covering on Bγ(R) = {w ∈ Rγ : ∥w∥2 ≤ R} and an ϵ0-covering on
HK(R). By the volume ratio argument, we know

N (ϵ,Bγ(R), ∥·∥2) ≤ (1 + 2R/ϵ)γ .

Therefore, we immediately obtain

logN (ϵ,HK(R), ∥·∥∞) ≤ γ log(1 + 2R/ϵ).

Case 2: (Exponential Decay). In both Case 2 and Case 3, we properly truncate the spectrum of
kernel K, which reduces to Case 1. Thanks to the specific spectrum decay, we are able to estimate
the truncation error. Specifically, let M be a positive integer to be determined. We denote ΠM as
the projection operator onto the eigenspace spanned by ν1, . . . , νM . Now for any f ∈ HK(R) and

M ≥
(

1−γ
C2γ

)1/γ
for γ ∈ (0, 1), we bound

∥f −ΠMf∥∞ =

∥∥∥∥∥
∞∑

i=M+1

wi
√
σiνi

∥∥∥∥∥
∞

≤

√√√√ ∞∑
i=M+1

w2
i

√√√√sup
µ

∞∑
i=M+1

σiν2i (µ)

(i)

≤ R

√√√√ ∞∑
i=M+1

C1 exp (−C2iγ)

(ii)

≤ R

√∫ ∞

M

C1 exp (−C2xγ) dx

(iii)

≤

R
√

C1

C2
exp(−C2Mγ) γ ≥ 1

R
√

C1M1−γ

C2γ
exp(−C2Mγ) γ ∈ (0, 1)

. (30)

where inequality (i) follows from the uniform upper bound on νi, inequality (ii) uses the monotonicity
of exponential function, and inequality (iii) is valid due to the following computation. For γ ≥ 1, we
derive ∫ ∞

M

C1 exp (−C2x
γ) dx ≤

∫ ∞

M

C1x
γ−1 exp (−C2x

γ) dx =
C1

C2
exp (−C2M

γ) .
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When γ ∈ (0, 1), and M sufficiently large, we can also bound the truncation error using a slightly
more complicated argument. Indeed, using integration by parts, we have∫ ∞

M

C1 exp (−C2x
γ) dx

=

∫ ∞

Mγ

C1 exp(−C2u)
1

γ
u1/γ−1du

=
C1

C2γ
M1−γ exp(−C2M

γ) +
C1

C2

∫ ∞

Mγ

1

γ

(
1

γ
− 1

)
u1/γ−2 exp(−C2u)du

≤ C1

C2γ
M1−γ exp(−C2M

γ) +
C1

C2Mγ

∫ ∞

Mγ

1

γ

(
1

γ
− 1

)
u1/γ−1 exp(−C2u)du

=
C1

C2γ
M1−γ exp(−C2M

γ) +
1

C2Mγ

(
1

γ
− 1

)∫ ∞

M

C1 exp (−C2x
γ) dx,

which implies, for M ≥
(

1−γ
C2γ

)1/γ
,∫ ∞

M

C1 exp (−C2x
γ) dx ≤ C1M

1−γ

C2γ − (1− γ)M−γ
exp(−C2M

γ)

≤ C1M
1−γ

C2γ
exp(−C2M

γ).

To this end, we construct an ϵ0-covering on ΠMHK(R) = {ΠMf : f ∈ HK(R)}, whose covering
number is given in Case 1,

N (ϵ0,ΠMHK(R), ∥·∥∞) ≤ (1 + 2R/ϵ0)
M .

For a given ϵ, and a proper absolute constant c0, we choose M to be the smallest integer satisfying

R

√∫ ∞

M

C1 exp (−C2xγ) dx ≤ ϵ/2 =⇒ M = c0

⌈(
2

C2
log

2R

ϵ
+

1

C2
log

C1

C2

)1/γ
⌉

(31)

and ϵ0 = ϵ/2. We claim that the ϵ/2-covering of ΠMHK(R) with M chosen in (31) is also an
ϵ-covering of HK(R). To see this, for any given f ∈ HK(R), there exists f̄M in the covering of
ΠMHK(R) such that

∥∥f̄M −ΠMf
∥∥
∞ ≤ ϵ/2. Then we have∥∥f − f̄M

∥∥
∞ ≤ ∥f −ΠMf∥∞ +

∥∥ΠMf − f̄M
∥∥
∞ ≤ ϵ.

This implies the ϵ-covering number of HK(R) is

logN (ϵ,HK(R), ∥·∥∞) ≤M log(1 + 4R/ϵ)

= c0

⌈(
2

C2
log

2R

ϵ
+

1

C2
log

C1

C2

)1/γ
⌉
log(1 + 4R/ϵ)

= C3 (log(R/ϵ) + C4)
1+1/γ

,

where constants C3, C4 depend on C1, C2, R.

Case 3: (Polynomial Decay). The idea is the same as in Case 2, except a different upper bound on
the truncation error. Specifically, for polynomial decay spectrum and any f ∈ HK(R), we have

∥f −ΠMf∥∞ =

∥∥∥∥∥
∞∑

i=M+1

wi
√
σiνi

∥∥∥∥∥
∞

≤ R

√∫ ∞

M

Cx−γdx

≤ R
√
(γ − 1)−1CM−γ+1. (32)
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By letting M be the smallest integer satisfying R
√
(γ − 1)−1CM−γ+1 ≤ ϵ/2, i.e.,

M =

⌈(
4R2C

ϵ2(γ − 1)

) 1
γ−1

⌉
,

we have

logN (ϵ,HK(R), ∥·∥∞) ≤M log(1 + 4R/ϵ) =

⌈(
4R2C

ϵ2(γ − 1)

) 1
γ−1

⌉
log(1 + 4R/ϵ)

= C5

(
R

ϵ

) 2
γ−1

log(1 + 4R/ϵ),

where constant C5 depends on C,R, γ. The proof is complete.

Lemma 9. Suppose Assumption 1 and 2 hold. Let FK(λ) = {Σ : ∥Σ∥op
△
= sup∥f∥H≤1 ⟨f,Σf⟩H ≤

λ−1} be a collection of operators of bounded operator norm defined on the RKHS HK . For any
ϵ > 0, the covering number N (ϵ,FK(λ), ∥·∥op) is bounded by

logN (ϵ,FK(λ), ∥·∥op) ≤


γ2 log(1 + 2

√
γ/(λϵ)), (Finite Spectrum)

C6 (log(1/ϵ) + log log(1/ϵ) + C7)
1+2/γ

, (Exponential Decay)

C8(1/ϵ)
4/(γ−1) (log(1/ϵ) + C9) , (Polynomial Decay)

,

where C6, C7 are positive constants depending on C1, C2, λ, and constants C8, C9 depend on C, λ, γ.

Proof. Similar to the proof of Lemma 8, the idea here is to transform the covering of FK(λ) to a
proper matrix covering, whose dimension is determined by the spectrum of kernel K.

Case 1: (Finite Spectrum). We show an equivalence between operator Σ and square matrix M ∈
Rγ×γ . For any unit norm eigenfunction

√
σiνi ∈ HK , we denote

Σ(
√
σiνi) =

γ∑
j=1

wij
√
σjνj .

Let matrix Wij = wij . Then for any f ∈ HK , we write f =
∑γ

j=1 aj
√
σjνj . Some algebra gives

rise to

⟨f,Σf⟩H = a⊤Wa with a = [a1, . . . , aγ ]
⊤.

This yields a one-to-one correspondence between FK(λ) and Wγ(λ) = {W ∈ Rγ×γ : λ−1I ⪰
W ⪰ 0}. Therefore, it suffices to find the covering number of Wγ(λ). By vectorize a γ-by-γ
matrix as a γ2-dimensional vector, we obtain the covering number of Wγ(λ) using the volume ratio
argument:

logN (ϵ,Wγ(λ), ∥·∥F) ≤ γ2 log(1 + 2
√
γ/(λϵ)),

where ∥·∥F denotes the Frobenius norm. Accordingly, we have

logN (ϵ,FK(λ), ∥·∥op) ≤ γ2 log(1 + 2
√
γ/(λϵ)).

Case 2: (Exponential Decay). We truncate the spectrum of kernel K again. Let M be a positive
integer to be determined. We denote ΠM as the projection operator onto the eigenspace spanned by
ν1, . . . , νM . For any f ∈ HK with ∥f∥H ≤ 1, the truncation error is bounded by (30):

∥f −ΠMf∥∞ ≤


√

C1

C2
exp(−C2Mγ) γ ≥ 1√

C1M1−γ

C2γ
exp(−C2Mγ) γ ∈ (0, 1)

.

By the linearity, we have

⟨f,Σf⟩ = ⟨ΠMf,Σ(ΠMf)⟩+ ⟨f −ΠMf,Σ(ΠMf)⟩+ ⟨f,Σ(f −ΠMf)⟩ . (33)
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The last two terms in (33) can be bounded by the truncation error:

⟨f −ΠMf,ΣΠMf⟩+ ⟨f,Σ(f −ΠMf)⟩ ≤ 2λ−1


√

C1

C2
exp(−C2Mγ) γ ≥ 1√

C1M1−γ

C2γ
exp(−C2Mγ) γ ∈ (0, 1)

.

Given an ϵ > 0, by choosing M to be the smallest integer satisfying

2λ−1

√
C1

C2
exp(−C2Mγ) ≤ ϵ/2 =⇒ M = c0

⌈(
2

C2
log

4

λϵ
+

1

C2
log

C1

C2

)1/γ
⌉
, (34)

for some absolute constant c0, we only need to find an ϵ/2-covering of Σ evaluated on ΠMHK . This
reduces to Case 1, and the covering number is bounded by (1 + 2

√
M/(λϵ))M

2

. With the choice of
M in (34), we obtain

logN (ϵ,FK(λ), ∥·∥op) ≤M2 log(1 + 4
√
M/(λϵ))

= c0

⌈(
2

C2
log

4

λϵ
+

1

C2
log

C1

C2

)1/γ
⌉2

log(1 + 4
√
M/(λϵ))

= C6

(
log

(
log 1/ϵ

ϵ

)
+ C7

)1+2/γ

,

where constants C6, C7 depend on C1, C2, λ.

Case 3: (Polynomial Decay). The idea is the same as in Case 2. For polynomial decay spectrum and
any f ∈ HK with ∥f∥H ≤ 1, by (32), the truncation error is bounded by

∥f −ΠMf∥∞ ≤
√

(γ − 1)−1CM−γ+1.

By letting M be the smallest integer satisfying 2
√
(γ − 1)−1CM−γ+1 ≤ ϵ/2, i.e.,

M =

⌈(
16C

ϵ2(γ − 1)

) 1
γ−1

⌉
,

we have

logN (ϵ,FK(λ), ∥·∥op) ≤M2 log(1 + 4
√
M/(λϵ)) =

⌈(
16C

ϵ2(γ − 1)

) 1
γ−1

⌉2

log(1 + 4
√
M/(λϵ))

= C8

(
1

ϵ

) 4
γ−1

(log(1/ϵ) + C9) ,

where constants C8, C9 depend on C, λ, γ. The proof is complete.

D.2 Effective Dimension of RKHS

Lemma 10. Suppose that Assumptions 1 and 2 hold. Recall that the Gram matrix [Kh]ℓ,ℓ′ =

K((ω̂ℓ
h, a

ℓ
h), (ω̂

ℓ′

h , a
ℓ′

h )) defined on dataset DN,H . For any h = 1, . . . ,H and fixed λ > 0, we have

log det(I +Kh/λ) ≤


Ceff-FS ·max{d, γ} logN (Finite Spectrum)

Ceff-ED · d(logN)1+1/γ (Exponential Decay)

Ceff-PD · dN
d+1
γ+d logN (Polynomial Decay)

,

where d is the dimension of mete state-action space S × S × A, constant Ceff-FS depends λ and
Lebesgue measure of meta state-action space Ξ, constant Ceff-ED depends on C1, C2, λ, and Lebesgue
measure of meta state-action space Ξ, and constant Ceff-PD depends on C, λ, γ, and Lebesgue measure
of meta state-action space Ξ.
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Proof. Each entry in the Gram matrix Kh ∈ RN×N can be written as [Kh]ℓ,ℓ′ =

Es1∼d̂ℓ
h,s2∼d̂ℓ′

h
[K((sℓh,0, s1, a

ℓ
h), (s

ℓ′

h,0, s2, a
ℓ′

h ))]. Correspondingly, we define K̃h ∈ RN×N as

[K̃h]ℓ,ℓ′ = K((sℓh,0, s
ℓ
h,1, a

ℓ
h), (s

ℓ′

h,0, s
ℓ′

h,1, a
ℓ′

h )), which can be viewed as only sampling a single
agent from the mean-field state distribution. Observe that log det is a concave function. By Jensen’s
inequality, we have

log det(I +Kh/λ) ≤ E[log det(I + K̃h/λ)] ≤ sup
K̃h

log det(I + K̃h/λ),

where the expectation is taken over the empirical states of m agents. To bound log det(I +Kh/λ),
we only need to bound supK̃h

log det(I + K̃h/λ). We introduce several notations. For fixed τ > 0,
we denote Cτ = 2µ(Ξ)(2τ + 1) with µ(Ξ) being the Lebesgue measure of Ξ and nτ = Nτ logN .
Moreover, we denote d as the dimension of Ξ and Bσ(N⋆) =

∑∞
i=N⋆+1 σi as the tail spectrum of

kernel K.

By Theorem 8 in Srinivas et al. (2009), for any positive integer N⋆ ≤ nτ , we have

sup
K̃h

log det(I + K̃h/λ) ≤ N⋆ log(λN
1+τ ) + Cτλ logN(Nτ+1Bσ(N⋆) + 1) +O(N1−τ/d).

(35)

We choose N⋆ and τ according to the spectrum of kernel K.

Case 1: (Finite Spectrum). We set N⋆ = γ, which implies Bσ(N⋆) = 0, and τ = d. Plugging into
(35), we have

sup
K̃h

log det(I + K̃h/λ) ≤ γ log(λN1+τ ) + Cτλ logN +O(1) = Ceff−FS ·max{d, γ} logN,

where Ceff-FS depends on λ, µ(Ξ).

Case 2: (Exponential Decay). We first bound the tail spectrum Bσ(N⋆). By the computation in (30),
we have

Bσ(N⋆) ≤

{
C1

C2
exp(−C2N

γ
⋆ ) γ ≥ 1

C1N
1−γ
⋆

C2γ
exp(−C2N

γ
⋆ ) γ ∈ (0, 1)

.

By setting τ = d again, substituting the upper bound of Bσ(N⋆) into (35), and further choosing
N⋆ = c0

C2
(d+ 1)(logN)1/γ , for some absolute constant c0, we deduce

sup
K̃h

log det(I + K̃h/λ) ≤
1

C2
(d+ 1)(logN)1/γ log(λN1+d) + Cτλ logN

(
1 +

C1

C2

)
+O(1)

= Ceff-ED · d(logN)1+1/γ ,

where constant Ceff-ED depends on C1, C2, λ, µ(Ξ).

Case 3: (Polynomial Decay). Similar to Case 2, we bound Bσ(N⋆) using (32) as

Bσ(N⋆) ≤ (γ − 1)−1CN−γ+1
⋆ .

Substituting the upper bound of Bσ(N⋆) into (35), we obtain

sup
K̃h

log det(I + K̃h/λ)

≤ N⋆ log(λN
1+τ ) + Cτλ logN

(
1 +Nτ+1(γ − 1)−1CN−γ+1

⋆

)
+O(N1−τ/d).

Choosing N⋆ = N (τ+1)/γ , we deduce

sup
K̃h

log det(I + K̃h/λ)

≤ N (τ+1)/γ log(λN1+τ ) + Cτλ logN
(
1 +N (τ+1)/γ(γ − 1)−1C

)
+O(N1−τ/d).
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Now we set τ = γ−1
1+γ/d so that N (τ+1)/γ = N1−τ/d, which further gives rise to

sup
K̃h

log det(I + K̃h/λ)

≤ N
d+1
d+γ log(λN

(d+1)γ
d+γ ) + Cτλ logN

(
1 +N

d+1
d+γ (γ − 1)−1C

)
+O(N

d+1
d+γ )

= Ceff-PD · dN
d+1
d+γ logN,

where constant Ceff-PD depends on C, λ, γ, µ(Ξ). In this case, we need to verify N⋆ ≤ nτ , which
implies γ ≥ 2 + 1/d.

E More Details on Experiment Implementation

We follow the implementation given by Liu et al. (2020a) for all experiments on this scenario.
However, we fix the number of observable agents and landmarks, k, to 2, resulting in an observation
space of 14. The environment then uses a discrete action space, corresponding to [NO-OP, LEFT,
RIGHT, UP, DOWN], with movement in each direction being applied as a noisy force on the agent.

Figure 3: Training reward on the 30 agent
environment.

Note that we discretize the state space before episodes
are used to train SAFARI by truncating continuous
measurements to three significant figures. This al-
lows us to sample fewer trajectories and shorten the
length of the dataset, which in turn reduces the train-
ing time of the algorithm. As evidenced by Figure 2,
performance of SAFARI is still comparable to the
“expert” COMA even with a lower granularity in the
representation of the state. We use the normal Gaus-
sian kernel for the implementation here.

We provide in Figure 3 the performance of COMA,
COMA-O, and IAC on 20 evaluation episodes during
training in the 30 agent environment. The same trend
follows as with the 15 agent environment: COMA-O
performs slight worse than COMA but still clearly
better than IAC. The final convergence reward is also
reflected in Figure 2. For the 100 agent case, we use
the policies trained for 15 agents (a single network due to parameter sharing), as the exponential
growth of the state-action space has greatly reduced the sample efficiency of COMA and significantly
increased training time.

Hyperparameters All hyperparameters are tuned by logarithmic random search over the ranges
given below:

Table 1: Algorithm Hyperparameters

Parameters Value

COMA, VDN

Discount γ 0.95
Exploration Rate (0.1, 0.3)
Exploration Anneal 0.998
Policy learning rate (0.0001, 0.01)
Critic learning rate (0.001, 0.01)
Optimizer Adam

SAFARI

β (0.1, 1)
λ (0.1, 0.99)
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