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ABSTRACT

It is not fully understood why adversarial examples can deceive neural net-
works and transfer between different networks. To elucidate this, several stud-
ies have hypothesized that adversarial perturbations, while appearing as noises,
contain class features. This is supported by empirical evidence showing that net-
works trained on mislabeled adversarial examples can still generalize well to cor-
rectly labeled test samples. However, a theoretical understanding of how per-
turbations include class features and contribute to generalization is limited. In
this study, we provide a theoretical framework for understanding learning from
perturbations using a one-hidden-layer network trained on mutually orthogonal
samples. Our results highlight that various adversarial perturbations, even per-
turbations of a few pixels, contain sufficient class features for generalization.
Moreover, we reveal that the decision boundary when learning from perturba-
tions matches that from standard samples except for specific regions under mild
conditions. The code is available at https://github.com/s-kumano/
learning-from-adversarial-perturbations.

1 INTRODUCTION

It is well known that a small malicious perturbation, or an adversarial perturbation, can change a
classifier’s prediction from the correct class to an incorrect class (Szegedy et al., 2014). An inter-
esting observation by Ilyas et al. (2019) has shown that a neural network, trained on adversarial
examples labeled by such incorrect classes, can generalize to correctly labeled test samples. Specif-
ically, the training procedure is as follows:1

Definition 1.1 (Learning from adversarial perturbations (later redefined) (Ilyas et al., 2019)). Let
D := {(xn, yn)}Nn=1 be a training dataset, where xn denotes an input (e.g., an image) and yn
denotes the corresponding label. Let f be a classifier trained on D. For each n, an adversarial
example xadv

n is produced by imposing an adversarial perturbation on xn to increase the probability
for a target label yadvn ̸= yn given by f , constructing Dadv := {(xadv

n , yadvn )}Nn=1. Training a
classifier from scratch on Dadv is called learning from adversarial perturbations.

Notably, a training sample xadv appears almost identical to x to humans, but is always labeled
as a different class yadv ̸= y (e.g., an adversarially perturbed, yet semantically unchanged, horse
image with a cat label). Counterintuitively, networks can learn to classify correctly labeled test
samples (e.g., a cat image with a cat label) from such mislabeled adversarial samples.

The unexpected success of training on mislabeled adversarial examples suggests that adversarial
perturbations may contain label-aligned features. For example, frog adversarial images labeled as
horses have perturbations that appear as noises to humans but contain horse features. This feature

1This is neither adversarial training nor training with (partially) noisy labels (cf. Appendix A).
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hypothesis not only explains the counterintuitive generalization of learning from perturbations, but
also sheds light on several puzzling phenomena of adversarial examples, such as why adversarial
examples can fool classifiers and transfer among them (cf. Section 2).

While the feature hypothesis is considered a potential explanation for adversarial perturbations, a
theoretical understanding of this hypothesis and its empirical foundation, learning from perturba-
tions, remains limited. For example, it is still unknown how adversarial perturbations contain class
features. The similarity in decision boundaries between the network trained on clean and mislabeled
adversarial samples is also unknown.

In this study, we provide the first theoretical validation of the learnability from adversarial perturba-
tions. Using recent results on the decision boundary of a one-hidden-layer neural network trained on
mutually orthogonal samples (Frei et al., 2023), we show that perturbations contain sufficient class
features for generalization. In addition, we demonstrate that the decision boundary when learn-
ing from perturbations is consistent with that from natural samples except for specific regions under
mild conditions. While Ilyas et al. (2019) empirically considered only the case whereL2-constrained
perturbations were superimposed on natural data, our theory covers broader settings. We reveal that
even sparse perturbations, perturbations of a few pixels, contain class features and enable gener-
alization. Moreover, we show that the alignment of decision boundaries derived from adversarial
perturbations and natural samples becomes stronger when perturbations are superimposed on ran-
dom noises. The main contributions are summarized as follows:

• We theoretically justified the feature hypothesis and learning from perturbations with one-
hidden-layer neural networks trained on mutually orthogonal training samples.

• We showed that various adversarial perturbations including sparse perturbations can be rep-
resented by the weighted sum of benign training samples. This suggests that perturbations,
yet apparently uninterpretable, contain sufficient class features for generalization.

• We demonstrated that classifiers learning from mislabeled adversarial samples produce
consistent predictions with those from clean samples under mild conditions. Moreover,
classifiers trained on random noises with perturbations provide accurate predictions for
natural data even though the classifiers do not see any natural data during training.

2 RELATED WORK

Ilyas et al. (2019) first claimed that an adversarial perturbation contains class features, called non-
robust features. These features are highly predictive and generalizable, yet brittle and incomprehen-
sible to humans. This idea is supported by neural networks that learn from perturbations (cf. Def-
inition 1.1) achieving good test accuracies on standard datasets (Ilyas et al., 2019). The hypothesis
that perturbations contain features elucidates several phenomena of adversarial examples (Szegedy
et al., 2014). For example, models misclassify adversarial examples because they react to features in
perturbations. Transferability (Szegedy et al., 2014; Goodfellow et al., 2015) is also explained: dif-
ferent models respond to the same features in perturbations. Moreover, adversarially robust models
focus on robust (semantic) features and ignore highly predictive non-robust (non-semantic) features,
providing insights into the trade-off between robustness and accuracy (Su et al., 2018; Tsipras et al.,
2019; Raghunathan et al., 2019; 2020; Yang et al., 2020), the human-aligned image gradients of
robust models (Engstrom et al., 2019b; Kaur et al., 2019; Santurkar et al., 2019; Tsipras et al., 2019;
Augustin et al., 2020), and the enhanced transfer learning ability of robust models (Aggarwal et al.,
2020; Salman et al., 2020; Deng et al., 2021; Utrera et al., 2021).

Subsequent studies deepened the discussion of non-robust features. While Ilyas et al. (2019) con-
sidered robust and non-robust features separately, Springer et al. (2021b) claimed their potential
entanglement. Some studies have attempted to separate robust and non-robust features using the
information bottleneck (Kim et al., 2021) and neural tangent kernel (Tsilivis & Kempe, 2022). En-
gstrom et al. (2019a) provided a broad discussion about robust neural style transfer and feature
leakage. Other studies have used the feature hypothesis to generate highly transferable adversarial
examples (Springer et al., 2021a;b;c), understand the behavior of batch normalization in adversar-
ial training (Benz et al., 2021), and degrade the robustness of adversarially trained models (Tao
et al., 2022). However, the nature of adversarial perturbations as class features and the theoretical
explanation for the counterintuitive success of learning from perturbations remain unclear.
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In this study, we justify learning from perturbations, which is an essential foundation of the fea-
ture hypothesis. Our results support the above studies based on the feature hypothesis. We do not
consider whether adversarial perturbations are robust or non-robust. We discuss the nature of per-
turbations as class features and why classifiers can obtain generalization ability from perturbations.

3 PRELIMINARY

3.1 SETTINGS

Notations. For a positive integer n ∈ N, let [n] := {1, . . . , n}. For a vector x ∈ Rd, we denote the
Euclidean norm by ∥x∥. We use Ω( · ), Θ( · ), and O( · ) for the standard big Omega, big Theta, and
big O notation. To hide polylogarithmic factors, we use Ω̃( · ), Θ̃( · ), and Õ( · ).
Network. Our network settings follow Frei et al. (2023). Let f : Rd → R be a one-hidden-layer
neural network. The number of hidden neurons is even and is denoted by m. We assume that the
hidden layer is trainable and the last layer is frozen to constant weights a ∈ Rm. The first half
elements of a are 1/

√
m and the latter half are −1/

√
m. Let W := (w1, . . . ,wm)⊤ ∈ Rm×d be

the weights of the hidden layer. Let ϕ(z) := max(z, γz) be the element-wise leaky ReLU for a
constant γ ∈ (0, 1). Namely, f(x) := a⊤ϕ(Wx). The assumption that the positive and negative
values of a are equal is introduced for notational simplicity and is fundamentally unnecessary. In
Appendix G, we derive some results without this assumption.

Training. Let D := {(xn, yn)}Nn=1 ⊂ Rd × {±1} be a training dataset. With the exponential loss
ℓ(z) = exp(−z) or logistic loss ℓ(z) = ln(1 + exp(−z)), a loss over D is defined as L(W ;D) :=∑N

n=1 ℓ(ynf(xn;W ))/N . The network parameters are updated by gradient flow, gradient descent
with an infinitesimal step size, as dW (t)/dt = −∇WL(W (t);D), where t ≥ 0 is a continuous
training step. Finally, we summarize the training setting.

Setting 3.1 (Training). Consider training a one-hidden-layer neural network f on a dataset D. The
network parameter W is updated by minimizing the exponential or logistic loss over the dataset,
L(W ;D), using gradient flow. The training runs for a sufficiently long time, i.e., t→ ∞.

Learning from Adversarial Perturbations. We formalize and extend Definition 1.1.

Definition 3.2 (Learning from adversarial perturbations). Let D := {(xn, yn)}Nn=1 ⊂ Rd × {±1}
be a training dataset. Let f : Rd → R be a one-hidden-layer neural network trained on D following
Setting 3.1. Let Nadv ∈ N be the number of samples with perturbations. For each n ∈ [Nadv], a
perturbed sample xadv

n ∈ Rd targeting a new label yadvn ∈ {±1} is produced as either:
(a) (Perturbation on natural sample) Nadv = N and xadv

n := xn + ηn.
(b) (Perturbation on uniform noise) xadv

n := Xn+ηn, where Xn is sampled from the uniform
distribution U([−1, 1]d). For any n ̸= k, Xn and Xk are independent. The target label
yadvn is randomly sampled from {±1}.

The perturbation ηn is given by an adversarial attack. Training a classifier from scratch on a new
dataset {(xadv

n , yadvn )}Nadv

n=1 following Setting 3.1 is called learning from adversarial perturbations.

This definition has two differences from Definition 1.1. First, we added a noise data case. In this
scenario, we can justify learning from perturbations under milder conditions than in the natural
sample scenario. Second, we removed the restriction of yadvn ̸= yn to consider broader cases. In
addition to the uniform noise case, we examine the sub-Gaussian noise case in Appendix F.

3.2 DECISION BOUNDARY OF ONE-HIDDEN-LAYER NEURAL NETWORK

To understand learning from perturbations, we employ the following result on the implicit bias of
gradient flow (Frei et al., 2023).

Theorem 3.3 (Rearranged from Frei et al. (2023)). Let {(xn, yn)}Nn=1 ⊂ Rd × {±1} be a train-
ing dataset. Let Rmax := maxn ∥xn∥, Rmin := minn ∥xn∥, and pmax := maxn̸=k |⟨xn,xk⟩|.
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A one-hidden-layer neural network f : Rd → R is trained on the dataset with Setting 3.1.
If γ3R4

min/(3NR
2
max) ≥ pmax, then sgn(f(z)) = sgn(fbdy(z)) holds with t → ∞, where

fbdy(z) :=
∑N

n=1 λnyn⟨xn, z⟩ and λn ∈
(

1
2R2

max
, 3
2γ2R2

min

)
for every n ∈ [N ].

Appendix B provides a more detailed background. This theorem claims that the binary decision of
f(z) equals that of the linear function fbdy(z); namely, f(z) has a linear decision boundary. This
theorem requires training samples to be nearly orthogonal, which is a common property of high-
dimensional data. Although this theorem is not related to learning from perturbations, we utilize it
to easily observe the decision boundary of learning from perturbations as follows:

Corollary 3.4 (Decision Boundary when learning from perturbations). Let {(xadv
n , yadvn )}Nadv

n=1 be
a mislabeled training dataset with adversarial perturbations (cf. Definition 3.2). Let Radv

max :=
maxn ∥xadv

n ∥, Radv
min := minn ∥xadv

n ∥, and padvmax := maxn ̸=k |⟨xadv
n ,xadv

k ⟩|. A one-hidden-layer
neural network f is trained on the dataset with Setting 3.1. If γ3Radv

min
4
/(3NadvRadv

max
2
) ≥ padvmax,

then sgn(f(z)) = sgn(fbdyadv (z)) holds with t→ ∞, where fbdyadv (z) :=
∑Nadv

n=1 λadvn yadvn ⟨xadv
n , z⟩

and λadvn ∈
(

1
2Radv

max
2 ,

3
2γ2Radv

min
2

)
for every n ∈ [N ].

4 THEORETICAL RESULTS

4.1 PERTURBATION AS CLASS FEATURES

Recall that a one-hidden-layer network trained on orthogonal samples with Setting 3.1 has a linear
decision boundary (cf. Theorem 3.3). We focus on adversarial attacks on this boundary rather than
the network itself, called geometry-inspired attacks (Moosavi-Dezfooli et al., 2016; Croce & Hein,
2020), which simplify notation.2 Let ϵ > 0 be the perturbation constraint. A geometry-inspired
adversarial example xadv

n maximizes yadvn fbdy(xadv
n ) under ∥xadv

n − xn∥ ≤ ϵ as follows:3

xadv
n := xn + ηn, ηn := ϵyadvn

∇xn
fbdy(xn)

∥∇xn
fbdy(xn)∥

= ϵyadvn

∑N
k=1 λkykxk

∥
∑N

k=1 λkykxk∥
. (1)

Without loss of generality, we consider a single step of the gradient calculation because multiple
steps also produce the same perturbation form due to the linearity of fbdy. The perturbation ηn

is represented as a weighted sum of the training samples. Since the training samples {xn}Nn=1 are
nearly orthogonal (i.e., xn and xk do not negate each other for n ̸= k), the perturbation contains
class features of the training samples. This observation supports the hypothesis that adversarial
perturbations contain class features, enabling generalization from them.

4.2 LEARNING FROM ADVERSARIAL PERTURBATIONS ON NATURAL SAMPLES

We consider learning from geometry-inspired perturbations on natural samples. Appendix C pro-
vides the proofs of the theorems. Using Corollary 3.4, the decision boundary can be derived as:

Theorem 4.1 (Decision boundary when learning from geometry-inspired perturbations on natural
samples). Let f be a one-hidden-layer neural network trained on geometry-inspired perturbations
on natural samples (cf. Eq. (1) and Definition 3.2(a)) with Setting 3.1. If N > C2/R2

min and

γ3(R2
min − 2 C√

N
ϵ+ ϵ2)2

3N(R2
max + 2 C√

N
ϵ+ ϵ2)

− 2
C√
N
ϵ− ϵ2 ≥ pmax (2)

2In Appendix E, we discuss geometry-inspired L0 and L∞ attacks and a gradient-based L2 attack that
targets the network itself, such as fast gradient sign method (Goodfellow et al., 2015) and projected gradient
descent (Madry et al., 2018).

3Geometry-inspired perturbations Eq. (1) can be defined only if λn can be determined by Eq. (A11). If
training samples satisfy γ3R4

min/(3NR2
max) ≥ pmax, Eq. (A11) is always consistent; thus, the definition

is valid. Note that Eq. (A11) is consistent for some sample sets that do not satisfy γ3R4
min/(3NR2

max) ≥
pmax (cf. the proof of Lemma C.1).
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with C :=
3R4

max+γ3R4
min

γ2R3
min

√
1−γ

, then, with t→ ∞, the decision boundary of f is given by

fbdyadv (z) :=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n︸ ︷︷ ︸

Effect of learning from mislabeled natural samples

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynxn∥︸ ︷︷ ︸
Effect of learning from perturbations

. (3)

The decision boundary, Eq. (3), includes two components that explain the effects of mislabeled
samples and geometry-inspired perturbations. The sign of the first term is determined by the sum of
the weighted inner products,

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩. Because yadvn is mislabeled, the sign (binary

decision) of the first term is not always consistent with human perception. The sign of the second
term depends only on the sign of the standard decision boundary fbdy(z). When the magnitude
of the second term is dominant, sgn(fbdyadv (z)) matches sgn(fbdy(z)). This suggests that although
the dataset appears mislabeled to humans, the classifier can still provide a reasonable prediction. A
more general version of Theorem 4.1, without assuming N > C2/R2

min is given in Theorem C.2.

Perturbation Constraint. The assumption, Ineq. (2), requires mutually orthogonal adversarial sam-
ples, which restricts the perturbation constraint to ϵ = O(

√
d/N). The perturbation constraint

ϵ linearly increases the dominance of the perturbation effect. If we ignore the restriction, then
sgn(fbdyadv (z)) = sgn(fbdy(z)) holds for any z with ϵ → ∞. This aligns with the intuition that
large perturbations restore the standard decision boundary.

Consistent Growth of Two Effects. Here, we provide a short summary of the limiting behavior
of Eq. (3). A detailed analysis can be found in Proposition C.4. Let g(N, d) and h(N, d) be pos-
itive functions of the number of training samples N and input dimension d. In addition, let T1(z)
and T2(z) be the first and second terms of Eq. (3), respectively. Given the labels yn and yadvn
freely selected from {±1}, estimating the growth rate for T1(z) and T2(z) is challenging. There-
fore, we assume that |

∑N
n=1 λnyn⟨xn, z⟩| = Θ(g(N, d)) if

∑N
n=1 λn|⟨xn, z⟩| = Θ(g(N, d)) and

instead estimate the growth rate of
∑N

n=1 λn|⟨xn, z⟩| rather than |
∑N

n=1 λnyn⟨xn, z⟩|. A simi-
lar assumption applies to |

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩|. Note that these assumptions are removed in

noise data scenarios. Interestingly, under these conditions, for any z, |T1(z)| = Θ(h(N, d)) ⇔
|T2(z)| = Θ(h(N, d)) holds, indicating consistent growth of the two terms. For example, if a
test sample is weakly correlated with all the training samples, e.g., z =

∑N
n=1 Θ(1/

√
N)xn, then

|T1(z)| = Θ(d/
√
N) and |T2(z)| = Θ(d/

√
N). Note that the scaling factor Θ(1/

√
N) ensures

Θ(∥z∥) =
√
d. This consistent growth implies that the effect of mislabeled data, T1(z), is not dom-

inant even with a large input dimension d and sample size N . Thus, learning from perturbations is
feasible for high-dimensional datasets with numerous samples.

Random Label Learning. Next, we consider the limiting behavior of T1(z) and T2(z) when yadvn is
randomly sampled from {±1}. A detailed analysis is provided in Proposition C.8. Intuitively, if yadvn
randomly takes ±1 independently of the sample xn and its original label yn, the magnitude of the nu-
merator of T1(z) does not increase significantly, while the denominator consistently increases as the
sample sizeN increases. Consequently, the growth rate of |T1(z)| is lower than that of |T2(z)|. Fol-
lowing this reasoning, we can demonstrate that |T2(z)| surpasses |T1(z)| except for a specific z. For
example, if z is weakly correlated with all the training samples, e.g., z =

∑N
n=1 Θ(1/

√
N)xn, then

|T1(z)| = O(d/N) and |T2(z)| = Θ(d/
√
N). With enough training samples, |T2(z)| > |T1(z)|

and sgn(fbdyadv (z)) = sgn(fbdy(z)) hold. That is, classifiers trained on an apparently mislabeled
dataset produce reasonable decisions for samples that are weakly correlated with the training sam-
ples. In contrast, if a test sample has a strong correlation with particular training samples, e.g.,
z = Θ(1)x1, the consistent growth of |T1(z)| = O(d/N) and |T2(z)| = Θ(d/N) persists. These
results can be summarized and generalized as follows:

Theorem 4.2 (Consistent decision of learning from geometry-inspired perturbations on natu-
ral samples). Suppose that Ineq. (2) holds. Assume ∥xn∥ = Θ(

√
d) for any n ∈ [N ] and

∥z∥ = Θ(
√
d). Suppose that yadvn is randomly sampled from {±1} for each n. Assume

|
∑N

n=1 λnyn⟨xn, z⟩| = Θ(g(N, d)) if
∑N

n=1 λn|⟨xn, z⟩| = Θ(g(N, d)), where g is a positive
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function of N and d. If there is no n such that |⟨xn, z⟩| = Θ(d) or
∑

n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| =
O(d) does not hold, with N, d→ ∞, then sgn(fbdyadv (z)) = sgn(fbdy(z)) holds with probability at
least 99.99%.

This theorem suggests that classifiers trained on an apparently mislabeled dataset can produce de-
cisions consistent with standard classifiers, except for specific inputs that satisfy the following two
conditions: (A) there exists n such that |⟨xn, z⟩| = Θ(d), and (B)

∑
n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| =

O(d) holds. Such exceptional inputs could be, for example, z = x1, x1 + x2 + x3, and
x1 + O(1/N)1, where 1 denotes an all-ones vector. Condition (A) represents a strong correla-
tion with a few samples. Note that a strong correlation with many samples is invalid due to the
orthogonality of {xn}Nn=1 and ∥z∥ = Θ(

√
d) (cf. Lemma C.5). Condition (B) indicates that z has

no weak correlation with many samples. For such z, the impact of learning from mislabeled sam-
ples, T1(z), becomes dominant, and the decisions are not always aligned. Essentially, for inputs that
do not strongly correlate with a few samples or weakly correlate with many samples, the network
decisions align with those of a standard network. Because test datasets typically exclude samples
similar to the training samples, a network learning from perturbations is expected to produce rea-
sonable predictions for many test samples. This confirms the high test accuracy of learning from
perturbations (Ilyas et al., 2019).

Others. In Appendix E, we derive similar results for other perturbation forms. In Appendix G, we
establish Theorem 4.1 without the assumption on the last layer of a network. Moreover, Theorem 4.2
explains the success of learning from perturbations using random labels. In Appendix H, we attempt
to delve into a flipped label scenario (i.e., yadvn = −yn) through an empirically supported assumption
that standard classifiers focus on non-robust features (Etmann et al., 2019; Tsipras et al., 2019; Zhang
& Zhu, 2019; Chalasani et al., 2020).

4.3 LEARNING FROM ADVERSARIAL PERTURBATIONS ON UNIFORM NOISES

In this section, we consider a noise data scenario in which adversarial perturbations are superim-
posed on uniform noises. The proofs of the theorems can be found in Appendix D. This scenario
provides two advantages. First, this scenario prevents the unintentional leakage of useful features.
For example, a frog image labeled as a horse may contain horses in the background. Second,
this scenario can justify learning from perturbations without assuming |

∑Nadv

n=1 λnyn⟨xn, z⟩| =

Θ(g(N, d)) if
∑Nadv

n=1 λn|⟨xn, z⟩| = Θ(g(N, d)). Similarly to Theorem 4.1, we can derive the
following decision boundary in the noise data scenario:4

Theorem 4.3 (Decision boundary when learning from geometry-inspired perturbations on uniform
noises). Assume γ3R4

min/(3NR
2
max) ≥ pmax. Let f be a one-hidden-layer neural network trained

on geometry-inspired perturbations on natural data (cf. Eq. (1) and Definition 3.2(b)) with Set-
ting 3.1. For any n ̸= k, if

d

3
−

√
Cd

2
≤ ∥Xn∥2 ≤ d

3
+

√
Cd

2
, |⟨Xn,Xk⟩| ≤

√
2Cd, |⟨Xn,η/ϵ⟩| ≤

√
2C, (4)

γ3(2d− 3
√
Cd− 12

√
2Cϵ+ 6ϵ2)2

18Nadv(2d+ 3
√
Cd+ 12

√
2Cϵ+ 6ϵ2)

≥
√
2Cd+ 2

√
2Cϵ+ ϵ2 (5)

with C := ln 1000Nadv, then, with t→ ∞, the decision boundary of f is given by:

fbdyadv (z) :=

∑Nadv

n=1 λadvn yadvn ⟨Xn, z⟩∑Nadv

n=1 λadvn︸ ︷︷ ︸
Effect of learning from uniform noises

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynxn∥︸ ︷︷ ︸
Effect of learning from perturbations

. (6)

4In Theorem 4.3, we assume γ3R4
min/(3NR2

max) ≥ pmax to define geometry-inspired perturbations. To
derive the decision boundary Eq. (6), we require only Ineqs. (4) and (5) and need not assume the orthogonality
of natural training samples.
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Figure 1: Decision boundaries of classifiers trained on multidimensional artificial datasets. The axis
vectors v and u are defined in Theorem B.1. Left: Boundaries from standard data and noises with
and without adversarial perturbations (d = 10, 000). The blue circles and orange crosses indicate
standard data projections onto this plane. Right: Boundaries across varying input dimensions (fix
Nadv = 10, 000) and number of noise samples (fix d = 10, 000). First row: results from standard
data; second and third rows: results from noises with and without adversarial perturbations, respec-
tively. Percentages indicate the classification accuracy for the standard data.

Similar to Eq. (3), the decision boundary, Eq. (6), consists of two terms, representing the effects of
uniform noises and geometry-inspired perturbations. Although we assume Ineq. (4), each inequal-
ity holds with probability at least 99.8% (cf. Lemma D.1). Similarly to Ineq. (2), the assumption,
Ineq. (5), requires the training adversarial samples to be nearly orthogonal and restricts the pertur-
bation constraint to ϵ = Õ(

√
d/Nadv) if d > Nadv2. Next, we examine the growth rate of the two

terms in Eq. (6) and the alignment between the decision boundaries.

Theorem 4.4 (Consistent decision of learning from geometry-inspired perturbations on uniform
noises). Assume γ3R4

min/(3NR
2
max) ≥ pmax. Suppose that Ineqs. (4) and (5) hold. Assume

∥z∥ = Θ(
√
d), |fbdy(z)| = Ω(1), and d > Nadv2. Then, the following equations hold with

probability at least 99.99%:∣∣∣∣∣
∑Nadv

n=1 λadvn yadvn ⟨Xn, z⟩∑Nadv

n=1 λadvn

∣∣∣∣∣ =O

( √
d

Nadv

)
, ϵ

|fbdy(z)|
∥
∑N

n=1 λnynxn∥
=Ω̃

(
d√

NadvN

)
. (7)

In addition, if d and Nadv are sufficiently large and Nadv ≥ N holds, then for any z ∈ Rd,
sgn(fbdyadv (z)) = sgn(fbdy(z)) holds with probability at least 99.99%.

This theorem indicates a strong alignment between the decision boundaries derived from natural
samples and adversarial perturbations on uniform noises. Recall that in the natural sample scenario,
consistent decisions are obtained, except for samples that are strongly correlated with a few training
samples and not weakly correlated with many training samples (cf. Theorem 4.2). In contrast,
Theorem 4.4 claims that consistent decisions can be obtained for any input with high probability. A
large input dimension d and number of adversarial samples Nadv make the alignment stronger with
the speed of Ω̃(

√
Nadvd) at least.

The assumption |fbdy(z)| = Ω(1) is mild due to its definition fbdy(z) =
∑N

n=1 λnyn⟨xn, z⟩. We
introduce this assumption because the order of fbdy(z) cannot be determined owing to the uncer-
tainty of yn. Note that we assume |

∑Nadv

n=1 λnyn⟨xn, z⟩| = Θ(g(N, d)) if
∑Nadv

n=1 λn|⟨xn, z⟩| =
Θ(g(N, d)) in the natural sample scenario. Interestingly, even though we underestimate the order of
fbdy(z), the effect of learning from perturbations still grows faster than that from uniform noises.

The theorem fails in at most 0.01% of cases where the randomly generated Xn and the input z are
strongly correlated. For example, the theorem does not hold if Xn is identical to z. However, these
cases are rare if d is sufficiently large.

In addition, as a corollary of Theorem 4.4, we can derive the following theorem:

7
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Figure 2: Accuracy of classifiers trained on uniform noises with or without adversarial perturbations
for standard data in artificial dataset. The blue solid and orange dashed lines represent the results
from noises with and without perturbations (i.e., pure noises), respectively. We fix Nadv = 10, 000
on the left and d = 10, 000 on the right.

Corollary 4.5 (Complete classification for natural training samples when learning from geome-
try-inspired perturbations on uniform noises). Assume γ3R4

min/(3NR
2
max) ≥ pmax. Suppose that

Ineqs. (4) and (5) hold. If d and Nadv are sufficiently large and d > Nadv2 ≥
√
N holds, then

a one-hidden-layer neural network trained on geometry-inspired perturbations on uniform noises
with Setting 3.1 can completely classify the natural dataset {(xn, yn)}Nn=1 with probability at least
99.99%.

This corollary claims that a classifier learning from perturbations on uniform noises can accurately
classify the natural training samples even though the classifier does not see any natural data during
training. This result highlights abundant class features in adversarial perturbations and justifies
learning from them.

5 EXPERIMENTAL RESULTS

In this section, we empirically verify our theoretical results. Detailed experimental settings and
additional results for other norms (L0 and L∞) and Gaussian noises can be found in Appendix I.

5.1 ARTIFICIAL DATASET

In this section, we validate Theorem 4.4 and Corollary 4.5 using one-hidden-layer neural networks
on artificial datasets. The standard dataset D := {(xn, yn)}Nn=1 consists of xn and yn sam-
pled from U([−1, 1]d) and U({±1}), respectively. Our theorems only require the orthogonality
of training samples; thus, using uniform noises as training samples poses no problem. The noise
data {Xn}N

adv

n=1 , on which perturbations were superimposed, were also uniformly distributed, i.e.,
Xn ∼ U([−1, 1]d). Using a network trained on D and L2-constrained attack, we generated the
adversarial dataset Dadv := {(xadv

n , yadvn )}Nadv

n=1 with random target labels yadvn ∈ {±1}. Visual-
izations of xn, Xn, and xadv

n can be found in Fig. A3.

In Fig. 1, the decision boundaries for each scenario are shown in a two-dimensional space spanned
by the vectors v ∈ Rd and u ∈ Rd (cf. Theorem B.1). Theoretically, v and u draw the stan-
dard classifier’s boundary diagonally from the top right to bottom left.5 The left panel shows the
boundaries of the networks trained on various datasets with d = 10, 000. Although the boundary
derived from pure noises (orange) differed significantly from the standard boundary (light blue), the
boundary derived from adversarial perturbations (blue, green, and red for Nadv = 10, 20, and 100,
respectively) became more aligned with the standard boundary as the number of samples increased.
The right panel shows the decision boundaries across various input dimensions and numbers of
noise samples. While the boundaries from noises deviated markedly from the standard, those from
perturbations closely mirrored the standard. As the input dimension and adversarial noise samples
increased, the alignment became stronger. This boundary alignment is consistent with Theorem 4.4.

5The standard boundary deviates from the theoretical prediction when d = 100 because Theorem 3.3 is
difficult to hold in low-dimensional data.
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Table 1: Accuracy in each scenario. “R” denotes random selection of adversarial target labels, while
“D” denotes deterministic selection. In the noise data scenario, yadvn is always chosen randomly
from ten labels. Accuracies above 15% are highlighted in bold. The underlined scenarios were also
considered in Ilyas et al. (2019).

On natural samples On noise data

L0 (R) L0 (D) L2 (R) L2 (D) L∞ (R) L∞ (D) L0 L2 L∞

MNIST 28.4 0.71 92.9 38.4 89.1 10.3 33.2 27.9 31.9
FMNIST 10.5 1.31 54.8 25.1 61.4 22.9 26.2 30.2 26.2
CIFAR-10 54.9 16.8 77.1 42.8 77.2 51.5 9.87 10.2 9.74

In Fig. 2, we illustrate the accuracy of classifiers learning from perturbations on uniform noises for
standard data. The accuracy improved as the input dimensions or number of adversarial samples
increased. Given enough of these values, the classifiers could achieve near-perfect classification
even though they had not seen any standard data. This counterintuitive success of learning from
perturbations aligns with Corollary 4.5.

5.2 MNIST/FASHION-MNIST/CIFAR-10

Table 1 shows accuracy in each scenario for MNIST (Deng, 2012), Fashion-MNIST (Xiao et al.,
2017), and CIFAR-10 (Krizhevsky, 2009). We used a six-layer convolutional neural network for
MNIST and Fashion-MNIST and WideResNet (Zagoruyko & Komodakis, 2016) for CIFAR-10.
Examples of adversarial images are shown in Figs. A16 to A18. In the table, “R” indicates that a
target label was randomly chosen from the nine labels that differ from an original label and “D”
indicates that a target label was deterministically chosen as the next sequential label after an original
label. Random selection eliminates feature-label correlations, clarifying the learning impact from
perturbations. Under deterministic selection, an anti-correlation between features and labels exists,
and high test accuracy emphasizes that perturbations contain label-aligned features.

Table 1 indicates that classifiers learning from perturbations can achieve high test accuracy, beyond
the cases in Ilyas et al. (2019). Remarkably, even L0 perturbations, which appear to lack natural
data structures, enable network generalization. These results support our theory that even sparse
perturbations contain class features. Furthermore, successful learning in the noise data scenario is
not limited to the artificial datasets in Section 5.1 but also extends to natural data distributions such
as MNIST and Fashion-MNIST, supporting the validity of Theorem 4.3.

Consider counterexamples. For Fashion-MNIST, learning from L0 perturbations was successful in
the noise data scenario, but not in the natural sample scenario. This may be due to the nature of
Fashion-MNIST, where a few pixels may not sufficiently overwrite the inherent features of objects
spanning large regions of an image. For CIFAR-10, the noise data scenarios were challenging,
possibly because of the domain gap between noise data and natural images, and the classifier’s
inability to extract generalizable features for natural data from noises.

6 CONCLUSION AND LIMITATION

We provided the first theoretical justification for learning from adversarial perturbations for one-
hidden-layer networks trained on mutually orthogonal samples. We revealed that various perturba-
tions, even sparse perturbations, contain sufficient class features for generalization. Moreover, we
demonstrated that in natural sample and noise data scenarios, networks learning from perturbations
produce decisions consistent with those of normally trained networks, except for specific inputs.

Our major limitations are the assumptions of a simple model, i.e., a one-hidden-layer neural net-
work, and orthogonal training samples. In particular, the orthogonality assumptions, Ineqs. (2)
and (5), restrict the perturbation constraint ϵ to O(

√
d/N). However, in practice, ϵ is typically set to

O(
√
d). Relaxing these conditions enhances the applicability of our theorems. Nevertheless, our re-

search provides the first fundamental insight and justification of learning from perturbations, which
supports the feature hypothesis and various puzzling phenomena of adversarial examples.
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A LEARNING FROM ADVERSARIAL PERTURBATIONS

In this study, we provide theoretical insights into learning from adversarial perturbations (cf. Defi-
nitions 1.1 and 3.2). Here, we clarify our research focus in comparison with adversarial training and
training with noisy labels, and delve into the implications of learning from perturbations.

A.1 COMPARISON WITH ADVERSARIAL TRAINING

Learning from perturbations, which aims to verify the feature hypothesis that perturbations contain
class features, is not related to adversarial training, which aims to train classifiers to be robust against
adversarial attacks. Learning from perturbations does not focus on (adversarial) robustness. Their
concepts and procedures are summarized as follows:

Learning from adversarial perturbations (Ilyas et al., 2019): Given a dataset D := {(xn, yn)}
and a classifier f trained on D, we create adversarial examples xadv

n such that f ’s prediction
becomes yadvn ̸= yn, i.e., f(xn) = yn and f(xadv

n ) = yadvn , thereby forming a new dataset
Dadv := {(xadv

n , yadvn )}. These adversarial examples xadv
n appear indistinguishable from natu-

ral images x to the human eye, making Dadv seemingly mislabeled. However, a classifier g trained
from scratch on Dadv surprisingly yields high test accuracy on standard datasets that are correctly
labeled from a human perspective. This counterintuitive generalization suggests that adversarial
perturbations, while appearing as noises, contain label-aligned features.

Adversarial training (Madry et al., 2018): Given a dataset D := {(xn, yn)} and an initialized
classifier f , adversarial training updates f ’s parameters to minimize losses over {(xadv

n , yn)}, which
is regenerated at each training iteration. The trained classifier f achieves high test accuracy on
standard datasets under adversarial attacks.

Although both methods use adversarial examples, their goals and procedures are different. Our
work attempts to provide a theoretical explanation for the success of learning from perturbations.
This is a novel endeavor that differs from extensive studies on adversarial training. To the best of
our knowledge, the reasons for the success of learning from adversarial perturbations have not been
explained theoretically.

A.2 COMPARISON WITH TRAINING WITH NOISY LABELS

Learning from perturbations is not training with noisy labels with adversarial examples. While in
training with noisy labels, labels are partially mislabeled (e.g., 20% labels of whole data are misla-
beled), in learning from perturbations, all labels are mislabeled. In this study, we do not focus on
obtaining classifiers with high accuracy under mislabeled adversarial examples. Our study provides
a theoretical explanation for why classifiers can obtain generalization ability to correctly labeled test
samples from completely mislabeled adversarial examples.

A.3 IMPLICATIONS OF LEARNING FROM ADVERSARIAL PERTURBATIONS

In this section, we introduce the implications of learning from adversarial perturbations using simple
examples. The training, test, and adversarial datasets are defined as follows:

D :={(frog img, frog), (horse img,horse), (cat img, cat)}, (A8)

Dtest :={(frog img∗, frog), (horse img∗,horse), (cat img∗, cat)}, (A9)

Dadv :={(frog img+,horse), (horse img+, cat), (cat img+, frog)}. (A10)

A trained classifier f can predict the correct labels for natural images (e.g., f(frog img) = frog
and f(frog img∗) = frog) but not for adversarial examples (e.g., f(frog img+) = horse). Note
that frog img+ still appears to be a frog to humans. Counterintuitively, another classifier g trained
from scratch on Dadv can correctly predict the classes of the natural test images in Dtest (e.g.,
g(frog img∗) = frog).

Ilyas et al. (2019) hypothesized that adversarial perturbations contain imperceptible class features
to humans. For example, frog img+ contains not only visible frog features but also invisible horse
features.
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Table A2: Example of adversarial dataset.
Data index Visible features Invisible features Label

1 Frog Horse Horse
2 Horse Cat Cat
3 Cat Frog Frog
4 Frog Cat Cat
5 Horse Frog Frog
6 Cat Horse Horse
· · · · · · · · · · · ·

Consider training on the adversarial dataset Dadv defined as Table A2. Through training, a clas-
sifier g ignores visible features that are uncorrelated with labels and learns invisible features that
are correlated with labels. Since natural test images contain invisible features of the correspond-
ing classes (e.g., a frog image contains human-invisible frog features), this classifier can provide
correct predictions for them. As a result, the classifier trained on a dataset that appears completely
mislabeled to humans achieves high accuracy on natural test datasets.

B DECISION BOUNDARY OF ONE-HIDDEN-LAYER NEURAL NETWORK

B.1 STANDARD TRAINING

To formulate learning from adversarial perturbations, we use the theorems presented in Frei et al.
(2023) (similar results are shown in Sarussi et al. (2021)), which addresses the implicit bias of
one-hidden-layer neural networks under gradient flow with an exponential loss. This theorem does
not directly address adversarial attacks, adversarial examples, or learning from perturbations. We
leverage this because of the tractable form of a decision boundary. The main results of their study
are summarized as follows:

Theorem B.1 (Rearranged from Frei et al. (2023)). Let D := {(xn, yn)}Nn=1 ⊂ Rd × {±1}
be a training dataset. Let Rmax := maxn ∥xn∥, Rmin := minn ∥xn∥, and pmax :=
maxn ̸=k |⟨xn,xk⟩|. A one-hidden-layer neural network f : Rd → R is trained on D with Set-
ting 3.1. If γ3R4

min/(3NR
2
max) ≥ pmax, then gradient flow on f converges to limt→∞

W (t)
∥W (t)∥F

=

W std

∥W std∥F
, where W std := (v1, . . . ,vm/2,u1, . . . ,um/2)

⊤ satisfies

∀n ∈ [N ] : ynf(xn;W
std) = 1, (A11)

v1 = · · · = vm/2 = v :=
1√
m

∑
n:yn=+1

λnxn − γ√
m

∑
n:yn=−1

λnxn, (A12)

u1 = · · · = um/2 = u :=
1√
m

∑
n:yn=−1

λnxn − γ√
m

∑
n:yn=+1

λnxn, (A13)

where λn ∈
(

1
2R2

max
, 3
2γ2R2

min

)
for every n ∈ [N ]. The binary decision of f(z;W std) is also given

by:

sgn
(
f
(
z;W std

))
= sgn

(
fbdy(z)

)
, where fbdy(z) :=

N∑
n=1

λnyn⟨xn, z⟩. (A14)

The theorem provides three insights: (i) Although there might be many possible directions
W /∥W ∥F that can accurately classify the training dataset, gradient flow consistently converges
in direction to W std regardless of initial weight configurations. (ii) Given that W std consists of a
maximum of two unique row vectors, its rank is constrained to two or less, highlighting the implicit
bias of the gradient flow. (iii) The binary decision of f(z;W std) is the same as the sign of the linear
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function fbdy(z), indicating that f(z;W std) has a linear decision boundary. This theorem requires
nearly orthogonal data, which is a typical characteristic of high-dimensional data.

Note that in Frei et al. (2023), the binary decision boundary is given by:

fbdyalt(z) =

√
m

2
v −

√
m

2
u. (A15)

To derive Eq. (A14), we rearrange the above equation as follows:

fbdyalt(z) =

√
m

2

(
1√
m

∑
n:yn=+1

λnxn − γ√
m

∑
n:yn=−1

λnxn

)
(A16)

−
√
m

2

(
1√
m

∑
n:yn=−1

λnxn − γ√
m

∑
n:yn=+1

λnxn

)
(A17)

=
1 + γ

2

( ∑
n:yn=+1

λnxn −
∑

n:yn=−1

λnxn

)
(A18)

=
1 + γ

2

N∑
n=1

λnynxn. (A19)

Thus,

sgn
(
f
(
z;W std

))
= sgn

(
fbdyalt(z)

)
= sgn

(
N∑

n=1

λnynxn

)
. (A20)

B.2 LEARNING FROM ADVERSARIAL PERTURBATIONS

Theorem B.1 does not impose any assumptions on training dataset other than orthogonality. Thus,
it can be adapted to a dataset with adversarial perturbations as follows:

Corollary B.2 (Learning from adversarial perturbations). Let Dadv := {(xadv
n , yadvn )}Nadv

n=1 ⊂
Rd × {±1} be a training dataset. Let Radv

max := maxn ∥xadv
n ∥, Radv

min := minn ∥xadv
n ∥, and

padvmax := maxn ̸=k |⟨xadv
n ,xadv

k ⟩|. A one-hidden-layer neural network f : Rd → R is trained on the
dataset with Setting 3.1. If γ3Radv

min
4
/(3NRadv

max
2
) ≥ padvmax, then gradient flow on f converges to

limt→∞
W (t)

∥W (t)∥F
= W adv

∥W adv∥F
, where W adv := (vadv

1 , . . . ,vadv
m/2,u

adv
1 , . . . ,uadv

m/2)
⊤ satisfies

∀n ∈ [N ] : yadvn f(xadv
n ;W adv) = 1, (A21)

vadv
1 = · · · = vadv

m/2 =
1√
m

∑
n:yadv

n =+1

λadvn xadv
n − γ√

m

∑
n:yadv

n =−1

λadvn xadv
n , (A22)

uadv
1 = · · · = uadv

m/2 =
1√
m

∑
n:yadv

n =−1

λadvn xadv
n − γ√

m

∑
n:yadv

n =+1

λadvn xadv
n , (A23)

where λadvn ∈
(

1
2Radv

max
2 ,

3
2γ2Radv

min
2

)
for every n ∈ [N ]. The binary decision of f(z;W adv) is also

given by:

sgn
(
f
(
z;W adv

))
= sgn

(
fbdyadv (z)

)
, where fbdyadv (z) :=

N∑
n=1

λadvn yadvn ⟨xadv
n , z⟩. (A24)

This theorem establishes the foundation for learning from adversarial perturbations. The orthog-
onality assumption, model weights, and decision boundary depend on a definition of adversarial
perturbations.
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C PROOFS OF THEOREMS IN SECTION 4.2

C.1 DECISION BOUNDARY OF LEARNING FROM GEOMETRY-INSPIRED PERTURBATIONS ON
NATURAL SAMPLES

In this section, we derive the decision boundary when learning from geometry-inspired perturba-
tions on natural samples, Theorem C.2. Theorem 4.1 is a special case of Theorem C.2 with the
assumption of many training samples. Lemma C.1 shows an orthogonality condition of training
samples with geometry-inspired perturbations, which is required to derive the decision boundary
using Corollary 3.4.

Lemma C.1 (Orthogonality condition for learning from geometry-inspired perturbations on natural
samples). Consider the geometry-inspired perturbations defined in Eq. (1). Let

C :=
3R4

max + γ3R4
min

γ2R3
min

√
1− γ

. (A25)

Suppose that the following inequalities hold:
γ3(Rmin−ϵ)4

3N(Rmax+ϵ)2 − 2ϵRmax − ϵ2 ≥ pmax

(
N ≤ C2

R2
max

)
γ3(Rmin−ϵ)4

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
C2

R2
max

< N ≤ C2

R2
min

)
γ3(R2

min−2 C√
N

ϵ+ϵ2)2

3N(R2
max+2 C√

N
ϵ+ϵ2)

− 2 C√
N
ϵ− ϵ2 ≥ pmax

(
N > C2

R2
min

) . (A26)

Then, the following inequality holds for any {(xn, yn)}Nn=1 and {yadvn }Nn=1:

γ3Radv
min

4

3NRadv
max

2 ≥ padvmax. (A27)

Proof. The proof flow is as follows:

1. Ineq. (A27) does not hold for some {(xn, yn)}Nn=1 and {yadvn }Nn=1 if ϵ > Rmin.

2. Ineq. (A27) does not hold for some {(xn, yn)}Nn=1 and {yadvn }Nn=1 if pmax >
γ3R4

min

3NR2
max

.

3. Ineq. (A27) holds for any {(xn, yn)}Nn=1 and {yadvn }Nn=1 if Ineq. (A26), ϵ ≤ Rmin, and
pmax ≤ γ3R4

min

3NR2
max

hold.

4. Ineq. (A26) includes ϵ ≤ Rmin.

5. Ineq. (A26) includes pmax ≤ γ3R4
min

3NR2
max

.

With q :=
∑N

n=1 λnynxn, we can represent the geometry-inspired adversarial example as follows:

xadv
n := xn + ϵyadvn

q

∥q∥
. (A28)

1. Assume ϵ > Rmin. Let l := argminn ∥xn∥. We show that Ineq. (A27) does not hold if
yn = yk = yadvn = yadvk , yadvl := − sgn(⟨xl, q⟩) = −yl, and pmax = 0.6 A lower bound of the
maximum inner product is

padvmax ≥ ⟨xadv
n ,xadv

k ⟩ = ϵyadvn

〈
xk,

q

∥q∥

〉
+ ϵyadvk

〈
xn,

q

∥q∥

〉
+ ϵ2yadvn yadvk ≥ ϵ2. (A29)

6For example, x1 := (2, 0, 0, 0), x2 := (0, 2, 0, 0), x3 := (0, 0, 1, 0), x4 := (0, 0, 0, 2), y1 := 1, y2 := 1,
y3 := 1, y4 := −1, yadv

1 := 1, yadv
2 := 1, yadv

3 := −1, yadv
4 := −1, n = 1, k = 2, and l = 3.

15
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Note that

sgn

(〈
xn,

q

∥q∥

〉)
= sgn(λnyn∥xn∥) = yn. (A30)

An upper bound of the minimum norm is

Radv
min

2 ≤ ∥xadv
l ∥2 = R2

min − 2ϵ

∣∣∣∣〈xl,
q

∥q∥

〉∣∣∣∣+ ϵ2 ≤ R2
min + ϵ2. (A31)

We can rearrange Ineq. (A27) using the above two bounds as follows:

γ3Radv
min

4

3NRadv
max

2 − padvmax ≤ Radv
min

2

3
− padvmax ≤ R2

min + ϵ2

3
− ϵ2 < −ϵ

2

3
< 0. (A32)

2. Assume pmax > γ3R4
min/3NR

2
max. Note that the decision boundary of a classifier trained on

such samples does not always converge to fbdy(z) :=
∑N

n=1 λnyn⟨xn, z⟩ since the assumption
of Theorem C.2 is not satisfied. However, for the definition of geometry-inspired perturbations, it
is irrelevant whether the decision boundary converges to fbdy. We can define geometry-inspired
perturbations as long as λn is (uniquely) determined by Eq. (A11).

Let x1 := 1, x2 := −1, y1 := 1, and y2 := −1, which satisfy pmax > γ3R4
min/3NR

2
max. As

defined in Theorem C.2,

v :=
λ1 + γλ2√

m
, u :=− λ2 + γλ1√

m
. (A33)

Thus,

f(x) =
ϕ((λ1 + γλ2)x)

2
− ϕ(−(λ2 + γλ1)x)

2
. (A34)

As defined in Theorem C.2, λ1 and λ2 satisfy the following simultaneous equations:{
ϕ(λ1+γλ2)

2 − ϕ(−(λ2+γλ1))
2 = 1

ϕ(−(λ1+γλ2))
2 − ϕ(λ2+γλ1)

2 = −1
. (A35)

Solving this,

λ1 = λ2 = 2

(
1− γ

1− γ2

)2

. (A36)

Note that these satisfy λ1, λ2 ∈ (1/2R2
max, 3/2γ

2R2
min). Let yadv1 := −1 and yadv2 := 1. Then,

q/∥q∥ = 1, xadv1 := 1− ϵ, xadv2 := −1 + ϵ, Radv
min = Radv

max = |1− ϵ|, and padvmax = (1− ϵ)2. In this
situation, Ineq. (A27) does not hold for any ϵ > 0.

3. Assume ϵ ≤ Rmin and pmax ≤ γ3R4
min/3NR

2
max. We write the lower and upper bounds of λn

as λmin := 1/2R2
max and λmax := 3/2γ2R2

min, respectively (cf. Theorem B.1).

(Preliminary) A lower bound of the norm of q is

∥q∥ =

√√√√√ N∑
n=1

λn

λn∥xn∥2 +
∑
k ̸=n

λkynyk⟨xn,xk⟩

 (A37)

≥
√
Nλmin(λminR2

min −Nλmaxpmax) (A38)

=
Rmin

√
(1− γ)N

2R2
max

. (A39)

An upper bound of the inner product between xn and q is

⟨xn, q⟩ =
N∑

k=1

λkyk⟨xn,xk⟩ ≤λmax(R
2
max +Npmax) =

3R2
max

2γ2R2
min

+
γR2

min

2R2
max

. (A40)
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A naive upper bound of the inner product between xn and q/∥q∥ is〈
xn,

q

∥q∥

〉
≤ Rmax. (A41)

That can be also obtained as follows:〈
xn,

q

∥q∥

〉
≤ 3R4

max + γ3R4
min

γ2R3
min

√
(1− γ)N

=:
C√
N
. (A42)

Note that 
C√
N

≥ Rmax

(
N ≤ C2

R2
max

)
Rmin ≤ C√

N
< Rmax

(
C2

R2
max

< N ≤ C2

R2
min

)
C√
N
< Rmin

(
N > C2

R2
min

) . (A43)

Thus, 〈
xn,

q

∥q∥

〉
≤

{
Rmax

(
N ≤ C2

R2
max

)
C√
N

(otherwise)
. (A44)

(Upper bound of inner product) An upper bound of the inner product is

⟨xadv
n ,xadv

k ⟩ ≤pmax + 2ϵ

〈
xn,

q

∥q∥

〉
+ ϵ2 (A45)

≤

{
pmax + 2ϵRmax + ϵ2 (N ≤ C2

R2
max

)

pmax + 2 C√
N
ϵ+ ϵ2 (otherwise)

. (A46)

(Lower and upper bounds of norm) The norm of the geometry-inspired adversarial example is

∥∥xadv
n

∥∥ =

√
∥xn∥2 + 2ϵyadvn

〈
xn,

q

∥q∥

〉
+ ϵ2. (A47)

Under ϵ ≤ Rmin, trivial lower and upper bounds of the above norm are

Rmin − ϵ ≤
∥∥xadv

n

∥∥ ≤ Rmax + ϵ. (A48)

Now, we have the following three lower bounds of the norm of xn: (i)
√
R2

min − 2ϵRmax + ϵ2

for N ≤ C2

R2
max

. (ii)
√
R2

min − 2 C√
N
ϵ+ ϵ2 for N > C2

R2
max

. (iii) Rmin − ϵ for ϵ ≤ Rmin. Since

(Rmin − ϵ)2 − (R2
min − 2ϵRmax + ϵ2) ≥ 0, (iii) is always tighter than (i). In addition, since

(Rmin − ϵ)2 − (R2
min − 2 C√

N
ϵ+ ϵ2) ≥ 0 under C2

R2
max

< N ≤ C2

R2
min

, (iii) is always tighter than (ii).
Thus, under ϵ ≤ Rmin,

∥∥xadv
n

∥∥ ≥

Rmin − ϵ (N ≤ C2

R2
min

)√
R2

min − 2 C√
N
ϵ+ ϵ2 (otherwise)

. (A49)

An upper bound of the norm is

∥∥xadv
n

∥∥ ≤

Rmax + ϵ (N ≤ C2

R2
max

)√
R2

max + 2 C√
N
ϵ+ ϵ2 (otherwise)

. (A50)

(Orthogonality condition) Using the above bounds, we can derive Ineq. (A26) where Ineq. (A27)
always holds for any {(xn, yn)}Nn=1 and {yadvn }Nn=1.

4. We prove that Ineq. (A26) implies ϵ ≤ Rmin. A common upper bound of the left term of
Ineq. (A26) is γ3(R2

min + ϵ2)/3N − ϵ2. This bound monotonically decreases with ϵ and is below
zero at ϵ = Rmin. Thus, Ineq. (A26) does not hold for ϵ > Rmin.

17



Published as a conference paper at ICLR 2024

5. Here, we prove that Ineq. (A26) implies pmax ≤ γ3R4
min/3NR

2
max. From the above discussion,

we assume ϵ ≤ Rmin. In this case,Rmin−ϵ ≤ Rmin,Rmax ≤ Rmax+ϵ,R2
max ≤ R2

max+2 C√
N
ϵ+ϵ2,

pmax ≤ pmax+2ϵmax+ϵ2, and pmax ≤ pmax+2 C√
N
ϵ+ϵ2 are trivial. Thus, the first two inequalities

include pmax ≤ γ3R4
min/3NR

2
max. Then, we consider the following inequality:

γ3R4
min

3NR2
max

≥
γ3(R2

min − 2 C√
N
ϵ+ ϵ2)2

3N(R2
max + 2 C√

N
ϵ+ ϵ2)

− 2
C√
N
ϵ− ϵ2. (A51)

With A := 2 C√
N
ϵ+ ϵ2(≥ 0),

γ3R4
min

3NR2
max

≥ γ3(R2
min +A)2

3N(R2
max +A)

−A ≥
γ3(R2

min − 2 C√
N
ϵ+ ϵ2)2

3N(R2
max +A)

−A. (A52)

Rearranging this,

γ3R4
min + (3NR2

max − 2γ3R2
min)R

2
max + (3N − γ3)R2

maxA > 0. (A53)

Thus, the above inequality holds. Finally, the claim is established.

We have represented an upper bound of ⟨xn, q/∥q∥⟩ as C/
√
N . Alternatively, we can use pmax to

represent an upper bound of ⟨xn, q/∥q∥⟩ as follows:〈
xn,

q

∥q∥

〉
≤ 3R2

max(R
2
max +Npmax)

γRmin

√
N(γ2R4

min − 3NR2
maxpmax)

=: C ′. (A54)

Using this bound, for a sufficiently large N , we can obtain a similar result as follows:

γ3(R2
min − 2C ′ϵ+ ϵ2)2

3N(R2
max + 2C ′ϵ+ ϵ2)

− 2C ′ϵ− ϵ2 ≥ pmax. (A55)

As Ineq. (A54) is tighter than Ineq. (A42), Ineq. (A55) is tighter than Ineq. (A26). However, to
interpret the restriction on pmax, we employ Ineq. (A26), which contains pmax only in the right
term. The left and right terms of Ineq. (A55) include pmax, and it is more complex to determine the
constraint on pmax.

Theorem C.2 (Decision boundary when learning from geometry-inspired perturbations on natural
samples). Let f be a one-hidden-layer neural network trained on geometry-inspired perturbations
on natural samples (cf. Eq. (1) and Definition 3.2(a)) with Setting 3.1. If Ineq. (A26) holds, then,
with t→ ∞, the decision boundary of f is given by Eq. (3).

Proof. By Lemma C.1, if Ineq. (A26) holds, we can use Corollary 3.4. The decision boundary is

sgn(f(z;W adv)) = sgn

(
N∑

n=1

λadvn yadvn ⟨xadv
n , z⟩

)
(A56)

=sgn

(
N∑

n=1

λadvn yadvn ⟨xn, z⟩+
N∑

n=1

λadvn yadvn ϵyadvn

〈
q

∥q∥
, z

〉)
(A57)

=sgn

(
N∑

n=1

λadvn yadvn ⟨xn, z⟩+

(
N∑

n=1

λadvn

)
ϵ

〈
q

∥q∥
, z

〉)
(A58)

=sgn

(∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ
⟨q, z⟩
∥q∥

)
(A59)

=sgn

(∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ
fbdy(z)

∥q∥

)
. (A60)
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Theorem 4.1 (Decision boundary when learning from geometry-inspired perturbations on natural
samples). Let f be a one-hidden-layer neural network trained on geometry-inspired perturbations
on natural samples (cf. Eq. (1) and Definition 3.2(a)) with Setting 3.1. If N > C2/R2

min and

γ3(R2
min − 2 C√

N
ϵ+ ϵ2)2

3N(R2
max + 2 C√

N
ϵ+ ϵ2)

− 2
C√
N
ϵ− ϵ2 ≥ pmax (2)

with C :=
3R4

max+γ3R4
min

γ2R3
min

√
1−γ

, then, with t→ ∞, the decision boundary of f is given by

fbdyadv (z) :=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n︸ ︷︷ ︸

Effect of learning from mislabeled natural samples

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynxn∥︸ ︷︷ ︸
Effect of learning from perturbations

. (3)

Proof. This is the special case of Theorem C.2 for N > C2/R2
min.

C.2 LIMITING BEHAVIOR OF LEARNING FROM GEOMETRY-INSPIRED PERTURBATIONS ON
NATURAL SAMPLES WITH DETERMINISTIC LABELS

In this section, we consider learning from geometry-inspired perturbations on natural samples with
deterministic adversarial labels. In Proposition C.4, we show that the effects of perturbations and
mislabeled natural samples grow at the same speed with respect to an input dimension and the num-
ber of training samples, suggesting that learning from perturbations is feasible on a high-dimensional
dataset with many samples. To prove Proposition C.4, we first prepare Lemma C.3.

Lemma C.3 (Order of norm of weighted sum of training data). Assume γ3R4
min/3NR

2
max ≥ pmax

and ∥xn∥ = Θ(
√
d) for any n ∈ [N ]. Then,∥∥∥∥∥

N∑
n=1

λnynxn

∥∥∥∥∥ = Θ

(√
N

d

)
. (A61)

Proof. By definition in Theorem 3.3, λn = Θ(1/d). By the assumption, pmax = O(d/N). A lower
bound is ∥∥∥∥∥

N∑
n=1

λnynxn

∥∥∥∥∥ =

√√√√√ N∑
n=1

λn

λn∥xn∥2 +
∑
k ̸=n

λkynyk⟨xn,xk⟩

 (A62)

≥

√√√√√ N∑
n=1

λn

λn∥xn∥2 −
∑
k ̸=n

λkpmax

 (A63)

=Ω

(√
N

d

)
. (A64)

Similarly, an upper bound is O(
√
N/d). Note that the radicand of the lower bound is positive

because the following inequality holds:

λn∥xn∥2 −
∑
k ̸=n

λkpmax ≥ R2
min

2R2
max

− γR2
min

2R2
max

≥ (1− γ)R2
min

2R2
max

> 0. (A65)

Proposition C.4 (Limiting behavior of learning from geometry-inspired perturbations on natural
samples (deterministic label)). Suppose that Ineq. (2) holds. Assume ∥xn∥ = Θ(

√
d) for any
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n ∈ [N ] and ∥z∥ = Θ(
√
d). Assume

N∑
n=1

λn|⟨xn, z⟩| = Θ(g1(N, d)) ⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g1(N, d)), (A66)

N∑
n=1

λn|⟨xn, z⟩| = Θ(g2(N, d)) ⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g2(N, d)). (A67)

where g1 and g2 are positive functions of N and d. Then, the following statements hold:

(a) For any z, |T1(z)| = Θ(g3(N, d)) ⇔ |T2(z)| = Θ(g3(N, d)), where g3 is a positive
function of N and d.

(b) For z =
∑N

n=1 Θ(1/
√
N)xn, |T1(z)| = Θ(d/

√
N) and |T2(z)| = Θ(d/

√
N).

(c) For z = Θ(1)x1, |T1(z)| = Θ(d/N) and |T2(z)| = Θ(d/N).

Proof. Under Ineq. (2), ϵ = O(
√
d/N). Because we can set ϵ freely under Ineq. (2), we consider

ϵ = Θ(
√
d/N) which maximizes the effect of learning from perturbations.

(a) By λn = Θ(1/d) and λadvn = Θ(1/d) (cf. Theorem 3.3 and Corollary 3.4),
N∑

n=1

λn|⟨xn, z⟩| = Θ(g(N, d)) ⇔
N∑

n=1

λadvn |⟨xn, z⟩| = Θ(g(N, d)). (A68)

Under the assumption,
N∑

n=1

λn|⟨xn, z⟩| = Θ(g(N, d)),

N∑
n=1

λadvn |⟨xn, z⟩| = Θ(g(N, d)) (A69)

⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g(N, d)),

∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣ = Θ(g(N, d)). (A70)

By ∥
∑N

n=1 λnynxn∥ = Θ(
√
N/d) (cf. Lemma C.3)

|T1(z)| =
Θ(g(N, d))

Θ
(
N
d

) = Θ

(
dg(N, d)

N

)
, (A71)

|T2(z)| =Θ

(√
d

N

)
Θ(g(N, d))

Θ
(√

N
d

) = Θ

(
dg(N, d)

N

)
. (A72)

(b) Since
∑N

n=1 λn|⟨xn, z⟩| = Θ(
√
N) and

∑N
n=1 λ

adv
n |⟨xn, z⟩| = Θ(

√
N), T1(z) = Θ(d/

√
N)

and T2(z) = Θ(d/
√
N).

(c) Since
∑N

n=1 λn|⟨xn, z⟩| = Θ(1) and
∑N

n=1 λ
adv
n |⟨xn, z⟩| = Θ(1), T1(z) = Θ(d/N) and

T2(z) = Θ(d/N).

C.3 LIMITING BEHAVIOR OF LEARNING FROM GEOMETRY-INSPIRED PERTURBATIONS ON
NATURAL SAMPLES WITH RANDOM LABELS

In this section, we consider learning from geometry-inspired perturbations on natural samples with
random adversarial labels yadvn ∼ U(±1). To prove the key theorem, Proposition C.8, we prepare
Lemmas C.6 and C.7. In addition, we consider Lemma C.5 to prove Lemma C.6. Finally, based
on Proposition C.8, we demonstrate the matching of decision boundaries between learning from
standard samples and adversarial perturbations, Theorem 4.2.

First, we show that assumptions ∥z∥ = Θ(
√
d) and |⟨xn,xk⟩| = O(d/N) restrict the correla-

tion between z and {xn}Nn=1. In other words, z cannot be strongly correlated with many training
samples. This lemma is used to prove Lemma C.6.
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Lemma C.5 (Restriction on correlation). For any n, k ∈ [N ], n ̸= k, assume ∥xn∥ = Θ(
√
d),

∥z∥ = Θ(
√
d), and |⟨xn,xk⟩| = O(d/N). Then, there exist at most O(min(N−2α, N)) instances

of n that satisfy |⟨xn, z⟩| = Θ(Nαdβ) with α ≤ 0 and β ≤ 1.

Proof. For each n, let ψn := sgn(⟨xn, z⟩). For α ≤ 0 and β ≤ 1, denote the number of samples
such that |⟨xn, z⟩| = Θ(Nαdβ) holds by [N ]α,β := {n ∈ [N ] : |⟨xn, z⟩| = Θ(Nαdβ)}. We define
δ ≤ 1 such that |[N ]α,β | = Θ(Nδ). Then,∑

n∈[N ]α,β

|⟨xn, z⟩| =
∑

n∈[N ]α,β

⟨ψnxn, z⟩ =
∑

n∈[N ]α,β

Θ(Nαdβ) = Θ(Nα+δdβ). (A73)

By the Cauchy–Schwarz inequality,

∑
n∈[N ]α,β

⟨ψnxn, z⟩ =

〈 ∑
n∈[N ]α,β

ψnxn, z

〉
≤

∥∥∥∥∥∥
∑

n∈[N ]α,β

ψnxn

∥∥∥∥∥∥∥z∥. (A74)

Note that ∥∥∥∥∥∥
∑

n∈[N ]α,β

ψnxn

∥∥∥∥∥∥ =

√ ∑
n∈[N ]α,β

∥xn∥2 +
∑

n∈[N ]α,β

∑
k ̸=n

ψnψk⟨xn,xk⟩ (A75)

=

√
Θ(Nδd)±Θ(N2δ)O

(
d

N

)
(A76)

=Θ(
√
Nδd). (A77)

Thus,
∑

n∈[N ]α,β
⟨ψnxn, z⟩ = O(

√
Nδd). Comparing this with Eq. (A73), α + δ ≤ δ/2 ⇔ δ ≤

−2α.

Then we compare the growth rates of
∑N

n=1 |⟨xn, z⟩| and
∑N

n=1⟨xn, z⟩2 to evaluate the growth
rates of |T1(z)| and |T2(z)| in Proposition C.8.

Lemma C.6 (Comparison between sums of absolute and squared inner products). For any n, k ∈
[N ], n ̸= k, assume ∥xn∥ = Θ(

√
d), ∥z∥ = Θ(

√
d), and |⟨xn,xk⟩| = O(d/N). Then, the growth

rates of
∑N

n=1 |⟨xn, z⟩| and Θ(1/d)
∑N

n=1⟨xn, z⟩2 are the same if and only if |⟨xn, z⟩| = 0 for
every n, or there exists n such that |⟨xn, z⟩| = Θ(d) and

∑
n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| = O(d).

Otherwise,
∑N

n=1 |⟨xn, z⟩| grows faster than Θ(1/d)
∑N

n=1⟨xn, z⟩2.

Proof. First, we summarize the content of this proof as follows:

(A) If |⟨xn, z⟩| = 0 for every n, then
∑N

n=1 |⟨xn, z⟩| = Θ(1/d)
∑N

n=1⟨xn, z⟩2 = 0.

(B) Assume that there exists n such that |⟨xn, z⟩| > 0.

(B-a) If there is no n such that |⟨xn, z⟩| = Θ(d), then
∑N

n=1 |⟨xn, z⟩| grows faster than
Θ(1/d)

∑N
n=1⟨xn, z⟩2.

(B-b) Assume that there exists n such that |⟨xn, z⟩| = Θ(d).

(B-b-I) If
∑

n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| > Ω(d), then
∑N

n=1 |⟨xn, z⟩| grows faster than

Θ(1/d)
∑N

n=1⟨xn, z⟩2.

(B-b-II) If
∑

n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| = O(d), then
∑N

n=1 |⟨xn, z⟩| = Θ(d) and

Θ(1/d)
∑N

n=1⟨xn, z⟩2 = Θ(d).
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We use [N ]α,β in the proof of Lemma C.5. Denote the number of elements in [N ]α,β by C(α, β) :=
|[N ]α,β |. Denote the set of (α, β) by S := {(α, β) : C(α, β) > 0}. We can write

∑N
n=1 |⟨xn, z⟩|

and Θ(1/d)
∑N

n=1⟨xn, z⟩2 as follows:
N∑

n=1

|⟨xn, z⟩| =
∑

(α,β)∈S

C(α, β)Θ(Nαdβ), (A78)

Θ

(
1

d

) N∑
n=1

⟨xn, z⟩2 =
∑

(α,β)∈S

C(α, β)Θ(N2αd2β−1). (A79)

(A) This is trivial.

(B-a) Assume that there exists n such that |⟨xn, z⟩| > 0. Because Nαdβ grows faster than
or equal to N2αd2β−1 for α ≤ 0 and β ≤ 1,

∑N
n=1 |⟨xn, z⟩| grows faster than or equal to

Θ(1/d)
∑N

n=1⟨xn, z⟩2. The growth rates of Nαdβ and N2αd2β−1 are consistent if and only if
α = 0 and β = 1. Thus, if there is no n such that |⟨xn, z⟩| = Θ(d), i.e., C(0, 1) > 0, then∑N

n=1 |⟨xn, z⟩| grows faster than Θ(1/d)
∑N

n=1⟨xn, z⟩2.

(B-b-I and -II) Assume that there exists n such that |⟨xn, z⟩| = Θ(d). By Lemma C.5, C(0, 1) =
Θ(1). Let S′ := S \ {(0, 1)}. The above equations can be rearranged as follows:

N∑
n=1

|⟨xn, z⟩| =Θ(d) +
∑

(α,β)∈S′

C(α, β)Θ(Nαdβ), (A80)

Θ

(
1

d

) N∑
n=1

⟨xn, z⟩2 =Θ(d) +
∑

(α,β)∈S′

C(α, β)Θ(N2αd2β−1). (A81)

Since Nαdβ grows faster than N2αd2β−1 for α < 0 and β < 1,
∑

(α,β)∈S′ C(α, β)Θ(Nαdβ)

grows faster than
∑

(α,β)∈S′ C(α, β)Θ(N2αd2β−1). If
∑

(α,β)∈S′ C(α, β)Θ(Nαdβ) determines

the growth rate of
∑N

n=1 |⟨xn, z⟩|, i.e.,
∑

(α,β)∈S′ C(α, β)Θ(Nαdβ) > Ω(d), then
∑N

n=1 |⟨xn, z⟩|
grows faster than Θ(1/d)

∑N
n=1⟨xn, z⟩2. In contrast, if

∑
(α,β)∈S′ C(α, β)Θ(Nαdβ) does not

change the growth rate of
∑N

n=1 |⟨xn, z⟩|, i.e.,
∑

(α,β)∈S′ C(α, β)Θ(Nαdβ) = O(d), then∑N
n=1 |⟨xn, z⟩| = Θ(d) and Θ(1/d)

∑N
n=1⟨xn, z⟩2 = Θ(d); namely, their growth rates are the

same.

Then we prepare a concentration inequality to evaluate an upper bound of T1(z) in Proposition C.8.

Lemma C.7 (Concentration inequality). Let {xn}Nn=1 be N ∈ N independent random variables.
Assume that xn is sampled from [an, bn] and E[xn] = 0 for each n ∈ [N ]. Then, for t > 0,

P

[∣∣∣∣∣
N∑

n=1

xn

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
1

8

N∑
n=1

(bn − an)
2 − t

)
. (A82)

Proof. By Markov’s inequality, for t > 0,

P

[
N∑

n=1

xn ≥ t

]
≤

E
[
exp
(∑N

n=1 xn

)]
et

=

∏N
n=1 E[exp(xn)]

et
. (A83)

By Hoeffding’s lemma,

P

[
N∑

n=1

xn ≥ t

]
≤
∏N

n=1 exp
(
(bn − an)

2/8
)

et
= exp

(
1

8

N∑
n=1

(bn − an)
2 − t

)
. (A84)

We can derive the same inequality for P[−
∑N

n=1 xn ≥ t].
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While the concentration inequality, Lemma C.7, is weaker than Hoeffding’s inequality, we use it for
a simple proof of Proposition C.8. The proof of Proposition C.8 requires us to consider the probabil-
ity P[|

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩| >

∑N
n=1 λn|⟨xn, z⟩|]. Using Lemma C.7, this can be represented

as follows:

P

[∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣ >
N∑

n=1

λn|⟨xn, z⟩|

]

≤2 exp

(
1

2

N∑
n=1

λadvn

2⟨xn, z⟩2 −
N∑

n=1

λn|⟨xn, z⟩|

)
. (A85)

Using Hoeffding’s inequality, it can also be represented as follows:

P

[∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣ >
N∑

n=1

λn|⟨xn, z⟩|

]
≤ 2 exp

(
−

(
∑N

n=1 λn|⟨xn, z⟩|)2

2
∑N

n=1 λ
adv
n

2⟨xn, z⟩2

)
. (A86)

In the former case, the growth rates of
∑N

n=1 λ
adv
n

2⟨xn, z⟩2 and
∑N

n=1 λn|⟨xn, z⟩| are the main
concern (cf. Lemma C.6). In the latter case, the focus is on the growth rates of

∑N
n=1 λ

adv
n

2⟨xn, z⟩2

and (
∑N

n=1 λn|⟨xn, z⟩|)2, which present a more complex scenario than the former. Thus, we use
Lemma C.7 to prove Proposition C.8.

Proposition C.8 describes the limiting behavior of the two components of the decision boundary:
the effect of learning from mislabeled natural samples T1(z) and from perturbations T2(z).

Proposition C.8 (Limiting behavior of learning from geometry-inspired perturbations on natural
samples (random label)). Suppose that Ineq. (2) holds. Assume ∥xn∥ = Θ(

√
d) for any n ∈ [N ]

and ∥z∥ = Θ(
√
d). Suppose that yadvn is randomly sampled from {±1} for each n. Assume

N∑
n=1

λn|⟨xn, z⟩| = Θ(g(N, d)) ⇒

∣∣∣∣∣
N∑

n=1

λnyn⟨xn, z⟩

∣∣∣∣∣ = Θ(g(N, d)). (A87)

where g is a positive function of N and d. Then, the following statements hold with probability at
least 99.99%:

(a) Assume that there exists n such that |⟨xn, z⟩| > 0. If there is no n such that |⟨xn, z⟩| =
Θ(d) or

∑
n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| = O(d) does not hold, with N, d → ∞, then

|T2(z)| > |T1(z)|.
(b) For z =

∑N
n=1 Θ(1/

√
N)xn, |T1(z)| = O(d/N) and |T2(z)| = Θ(d/

√
N).

(c) For z = Θ(1)x1, |T1(z)| = O(d/N) and |T2(z)| = Θ(d/N).

Proof. Similarly to the proof of Proposition C.4, if
∑N

n=1 λn|⟨xn, z⟩| = Θ(g(N, d)),

|T1(z)| = Θ

(
d

N

)∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣, |T2(z)| = Θ

(
dg(N, d)

N

)
. (A88)

(a) By Lemma C.7,

P

[∣∣∣∣∣
N∑

n=1

λadvn yadvn ⟨xn, z⟩

∣∣∣∣∣ > t

]
≤ 2 exp

(
1

2

N∑
n=1

λadvn

2⟨xn, z⟩2 − t

)
. (A89)

Thus, |
∑N

n=1 λ
adv
n yadvn ⟨xn, z⟩| = O(h(N, d)) if

∑N
n=1 λ

adv
n

2⟨xn, z⟩2 = O(h(N, d)), where
h(N, d) is a positive function of N and d, with sufficiently high probability. By Lemma C.6, if
there is no n such that |⟨xn, z⟩| = Θ(d) or

∑
n:|⟨xn,z⟩|̸=Θ(d) |⟨xn, z⟩| = O(d) does not hold,

g(N, d) grows faster than h(N, d). Thus, |T2(z)| grows faster than |T1(z)|; namely, if N, d → ∞,
|T2(z)| becomes larger than |T1(z)|.
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(b) The proof of |T2(z)| = Θ(d/
√
N) can be found in the proof of Proposition C.4. For

z =
∑N

n=1 Θ(1/
√
N)xn,

∑N
n=1 λ

adv
n

2⟨xn, z⟩2 = O(1). Thus, h(N, d) = O(1), and |T1(z)| =
O(d/N).

(c) The proof of |T2(z)| = Θ(d/N) can be found in the proof of Proposition C.4. For z = Θ(1)x1,∑N
n=1 λ

adv
n

2⟨xn, z⟩2 = O(1). Thus, h(N, d) = O(1), and |T1(z)| = O(d/N).

In Proposition C.8, we show that if N, d → ∞, the effect of learning from perturbations |T2(z)|
exceeds that from mislabeled samples |T1(z)| except for specific inputs. Consequently, we can
justify learning from perturbations on natural samples as follows:

Theorem 4.2 (Consistent decision of learning from geometry-inspired perturbations on natu-
ral samples). Suppose that Ineq. (2) holds. Assume ∥xn∥ = Θ(

√
d) for any n ∈ [N ] and

∥z∥ = Θ(
√
d). Suppose that yadvn is randomly sampled from {±1} for each n. Assume

|
∑N

n=1 λnyn⟨xn, z⟩| = Θ(g(N, d)) if
∑N

n=1 λn|⟨xn, z⟩| = Θ(g(N, d)), where g is a positive
function of N and d. If there is no n such that |⟨xn, z⟩| = Θ(d) or

∑
n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| =

O(d) does not hold, with N, d→ ∞, then sgn(fbdyadv (z)) = sgn(fbdy(z)) holds with probability at
least 99.99%.

Proof. If |⟨xn, z⟩| = 0 for every n, then fbdyadv (z) = |T1(z)| = |T2(z)| = fbdy(z) = 0. As-
sume that there exists n such that |⟨xn, z⟩| > 0. By Proposition C.8, if there is no n such that
|⟨xn, z⟩| = Θ(d) or

∑
n:|⟨xn,z⟩|≠Θ(d) |⟨xn, z⟩| = O(d), with N, d → ∞, then |T2(z)| > |T1(z)|

with sufficiently high probability; thus, sgn(fbdyadv (z)) = sgn(fbdy(z)).

D PROOFS OF THEOREMS IN SECTION 4.3

In this section, we prove Theorems 4.3 and 4.4 and Corollary 4.5. The proof flows of Theorems 4.3
and 4.4 follow Appendix C. In addition, we derive Corollary 4.5 as a natural consequence of Theo-
rem 4.2.

First, we summarize the properties of uniform random variables, which are required to consider the
orthogonality condition of perturbations on uniform noises.

Lemma D.1 (Properties of uniform random vectors). Let {Xn}Nn=1 ⊂ [−1, 1]d be N ∈ N inde-
pendent random variables sampled from the uniform distribution U([−1, 1]d). Let z ∈ Rd be a
constant vector. Then, for a positive constant t > 1/N , the following inequalities hold:

(a) P

[
max
n

∣∣∣∣∥Xn∥2 −
d

3

∣∣∣∣ ≤
√
d ln tN

2

]
≥
(
1− 2

tN

)N

, (A90)

(b) P
[
max
n

|⟨Xn,Xk⟩| ≤
√
2d ln tN

]
≥
(
1− 2

tN

)N

, (A91)

(c) P
[
max
n

|⟨Xn, z⟩| ≤
√
2 ln tN∥z∥

]
≥
(
1− 2

tN

)N

. (A92)

Proof. Let a > 0 be a positive constant.

(a) By Hoeffding’s inequality with E[X2
n,i] = 1/3,

P
[∣∣∣∣∥Xn∥2 −

d

3

∣∣∣∣ ≥ a

]
≤ 2 exp

(
−2a2

d

)
. (A93)

Thus,

P
[
max
n

∣∣∣∣∥Xn∥2 −
d

3

∣∣∣∣ ≤ a

]
=

(
P
[∣∣∣∣∥Xn∥2 −

d

3

∣∣∣∣ ≤ a

])N

(A94)
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=

(
1− P

[∣∣∣∣∥Xn∥2 −
d

3

∣∣∣∣ ≥ a

])N

(A95)

≥
(
1− 2 exp

(
−2a2

d

))N

. (A96)

For a =
√
d ln(tN)/2 with t > 1/N ,

P
[
max
n

∣∣∣∣∥Xn∥2 −
d

3

∣∣∣∣ ≤ √
d ln tN

]
≥
(
1− 2

tN

)N

. (A97)

(b) Similarly to (i),

P[|⟨Xn,Xk⟩| ≥ a] ≤2 exp

(
−a

2

2d

)
, (A98)

P
[
max
n

|⟨Xn,Xk⟩| ≤ a
]
≥
(
1− 2 exp

(
−a

2

2d

))N

, (A99)

P
[
max
n

|⟨Xn,Xk⟩| ≤
√
2d ln tN

]
≥
(
1− 2

tN

)N

. (A100)

(c) Similarly to (i),

P[|⟨Xn, z⟩| ≥ a] ≤ 2 exp

(
− a2

2∥z∥2

)
, (A101)

P
[
max
n

|⟨Xn, z⟩| ≤ a
]
≥

(
1− 2 exp

(
− a2

2∥z∥2

))N

, (A102)

P
[
max
n

|⟨Xn, z⟩| ≤
√
2 ln tN∥z∥

]
≥
(
1− 2

tN

)N

. (A103)

Theorem 4.3 (Decision boundary when learning from geometry-inspired perturbations on uniform
noises). Assume γ3R4

min/(3NR
2
max) ≥ pmax. Let f be a one-hidden-layer neural network trained

on geometry-inspired perturbations on natural data (cf. Eq. (1) and Definition 3.2(b)) with Set-
ting 3.1. For any n ̸= k, if

d

3
−

√
Cd

2
≤ ∥Xn∥2 ≤ d

3
+

√
Cd

2
, |⟨Xn,Xk⟩| ≤

√
2Cd, |⟨Xn,η/ϵ⟩| ≤

√
2C, (4)

γ3(2d− 3
√
Cd− 12

√
2Cϵ+ 6ϵ2)2

18Nadv(2d+ 3
√
Cd+ 12

√
2Cϵ+ 6ϵ2)

≥
√
2Cd+ 2

√
2Cϵ+ ϵ2 (5)

with C := ln 1000Nadv, then, with t→ ∞, the decision boundary of f is given by:

fbdyadv (z) :=

∑Nadv

n=1 λadvn yadvn ⟨Xn, z⟩∑Nadv

n=1 λadvn︸ ︷︷ ︸
Effect of learning from uniform noises

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynxn∥︸ ︷︷ ︸
Effect of learning from perturbations

. (6)

Proof. Let q :=
∑N

n=1 λnynxn. The norm and inner product are∥∥xadv
n

∥∥2 =∥Xn∥2 + 2ϵyadvn

〈
Xn,

q

∥q∥

〉
+ ϵ2, (A104)

⟨xadv
n ,xadv

k ⟩ =⟨Xn,Xk⟩+ ϵyadvn

〈
Xk,

q

∥q∥

〉
+ ϵyadvk

〈
Xn,

q

∥q∥

〉
+ ϵ2yadvn yadvk . (A105)
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Thus, under Ineq. (4),

Radv
min

2 ≥d
3
−

√
Cd

2
− 2

√
2Cϵ+ ϵ2, Radv

max

2 ≤d
3
+

√
Cd

2
+ 2

√
2Cϵ+ ϵ2, (A106)

padvmax ≤
√
2Cd+ 2

√
2Cϵ+ ϵ2. (A107)

Using these bounds, we can rearrange γ3Radv
min

4
/3NadvRadv

max
2 as follows:

γ3Radv
min

4

3NadvRadv
max

2 ≥ γ3(2d− 3
√
Cd− 12

√
2Cϵ+ 6ϵ2)2

18Nadv(2d+ 3
√
Cd+ 12

√
2Cϵ+ 6ϵ2)

. (A108)

Thus, if Ineq. (5) holds, then γ3Radv
min

4
/3NadvRadv

max
2 ≥ padvmax holds, and we can use Corollary 3.4.

The decision boundary can be derived similarly to Theorem C.2.

Lemma D.2 is used in the proof of Theorem 4.4.

Lemma D.2 (Upper bound of sum of squared inner products). If ∥xn∥ = Θ(
√
d), ∥z∥ = Θ(

√
d),

and |⟨xn,xk⟩| = O(d/N) for any n, k ∈ [N ], n ̸= k, then
∑N

n=1⟨xn, z⟩2 = O(d2).

Proof. With ψn := sgn(⟨xn, z⟩), by the Cauchy–Schwarz inequality,
N∑

n=1

|⟨xn, z⟩| =
N∑

n=1

⟨ψnxn, z⟩ (A109)

≤

∥∥∥∥∥
N∑

n=1

ψnxn

∥∥∥∥∥∥z∥ (A110)

=

√√√√ N∑
n=1

∥xn∥2 +
N∑

n=1

∑
k ̸=n

ψnψk⟨xn,xk⟩∥z∥ (A111)

=O(
√
Nd). (A112)

By the Cauchy–Schwarz inequality,
N∑

n=1

⟨xn, z⟩2 =

N∑
n=1

⟨⟨xn, z⟩xn, z⟩ (A113)

=

〈
N∑

n=1

⟨xn, z⟩xn, z

〉
(A114)

≤

√√√√ N∑
n=1

⟨xn, z⟩2∥xn∥2 +
N∑

n=1

∑
k ̸=n

⟨xn, z⟩⟨xk, z⟩⟨xn,xk⟩∥z∥. (A115)

Now,
N∑

n=1

∑
k ̸=n

⟨xn, z⟩⟨xk, z⟩⟨xn,xk⟩ ≤
N∑

n=1

N∑
k=1

|⟨xn, z⟩||⟨xk, z⟩||⟨xn,xk⟩| (A116)

=O
(
d

N

)( N∑
n=1

|⟨xn, z⟩|

)2

(A117)

=O(d3). (A118)

Thus,

N∑
n=1

⟨xn, z⟩2 =

√√√√Θ(d2)

N∑
n=1

⟨xn, z⟩2 +O(d4). (A119)

26



Published as a conference paper at ICLR 2024

Let
∑N

n=1⟨xn, z⟩2 = O(Nζd2) for a constant ζ ∈ Rd. Using this,

N∑
n=1

⟨xn, z⟩2︸ ︷︷ ︸
O(Nζd2)

= O(max(Nζ/2d2, d2)). (A120)

If ζ > 0, the left term grows faster than the right term, which contradicts the equation. Thus,
ζ ≤ 0.

Theorem 4.4 (Consistent decision of learning from geometry-inspired perturbations on uniform
noises). Assume γ3R4

min/(3NR
2
max) ≥ pmax. Suppose that Ineqs. (4) and (5) hold. Assume

∥z∥ = Θ(
√
d), |fbdy(z)| = Ω(1), and d > Nadv2. Then, the following equations hold with

probability at least 99.99%:∣∣∣∣∣
∑Nadv

n=1 λadvn yadvn ⟨Xn, z⟩∑Nadv

n=1 λadvn

∣∣∣∣∣ =O

( √
d

Nadv

)
, ϵ

|fbdy(z)|
∥
∑N

n=1 λnynxn∥
=Ω̃

(
d√

NadvN

)
. (7)

In addition, if d and Nadv are sufficiently large and Nadv ≥ N holds, then for any z ∈ Rd,
sgn(fbdyadv (z)) = sgn(fbdy(z)) holds with probability at least 99.99%.

Proof. By the definition in Theorem 3.3 and Corollary 3.4, λn = Θ(1/d) and λadvn = Θ(1/d).

Left term. Consider the limiting behavior of |
∑Nadv

n=1 λadvn yadvn ⟨Xn, z⟩|. First, we provide an
incorrect idea for clarity. By Hoeffding’s inequality with respect to {yadvn }Nadv

n=1 and {Xn}N
adv

n=1 , for
t > 0,

P

∣∣∣∣∣∣
Nadv∑
n=1

λadvn yadvn ⟨Xn, z⟩

∣∣∣∣∣∣ ≥ t

 ≤2 exp

(
− t2

2
∑Nadv

n=1

∑d
i=1 λ

adv
n

2
z2i

)
(A121)

=2 exp

(
− t2

2
∑Nadv

n=1 λadvn
2∥z∥2

)
(A122)

=O
(
exp

(
− dt2

Nadv

))
. (A123)

From this inequality, one might consider that |
∑Nadv

n=1 λadvn yadvn ⟨Xn, z⟩| = O(
√
Nadv/d) holds

with sufficiently high probability. This is incorrect because the above rearrangement does not take
into account the orthogonality assumption on {Xn}N

adv

n=1 , i.e., |⟨Xn,Xk⟩| = O(d/N) for n ̸= k.
We then provide a correct estimation. By Hoeffding’s inequality with respect to {yadvn }Nadv

n=1 ,

P

∣∣∣∣∣∣
Nadv∑
n=1

λadvn yadvn ⟨Xn, z⟩

∣∣∣∣∣∣ ≥ t

 ≤2 exp

(
− t2

2
∑Nadv

n=1 λadvn
2⟨Xn, z⟩2

)
. (A124)

By Lemma D.2 with the assumptions,
∑Nadv

n=1 λadvn
2⟨Xn, z⟩2 = O(1/d). Thus, we obtain

|
∑Nadv

n=1 λadvn yadvn ⟨Xn, z⟩| = O(1/
√
d) with sufficiently high probability. Because the growth

rate of |
∑Nadv

n=1 λadvn | is Θ(Nadv/d), the claim is established.

Right term. Under Ineq. (5) and d > Nadv2, ϵ = Õ(d/Nadv). Since we can set ϵ freely under ϵ =
Õ(d/Nadv), we consider ϵ = Θ̃(d/Nadv). By Lemma C.3 and the assumption |fbdy(z)| = Ω(1),
the claim is established.

Consistent decision. This is trivial by the growth rate of two terms.
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Corollary 4.5 (Complete classification for natural training samples when learning from geome-
try-inspired perturbations on uniform noises). Assume γ3R4

min/(3NR
2
max) ≥ pmax. Suppose that

Ineqs. (4) and (5) hold. If d and Nadv are sufficiently large and d > Nadv2 ≥
√
N holds, then

a one-hidden-layer neural network trained on geometry-inspired perturbations on uniform noises
with Setting 3.1 can completely classify the natural dataset {(xn, yn)}Nn=1 with probability at least
99.99%.

Proof. We can rearrange fbdy(xn) as follows:

fbdy(xn) =

N∑
k=1

λkyk⟨xk,xn⟩ = λnyn∥xn∥2 −
∑
l ̸=n

λlyl⟨xl,xn⟩. (A125)

By Ineq. (A65), |fbdy(xn)| = Θ(1). By Theorem 4.4, the claim is established.

E OTHER PERTURBATIONS

In the main text, we consider learning from geometry-inspired L2 perturbations, which simplify
notation. In this section, we consider learning from geometry-inspired L0 and L∞ and gradient-
based L2 perturbations.

E.1 GEOMETRY-INSPIRED L0 PERTURBATIONS

Let dδ ∈ N≤d be the number of modified pixels. An adversarial example is restricted to ∥xadv
n −

xn∥0 ≤ dδ . Following one pixel attack (Su et al., 2019) and SparseFool (Modas et al., 2019), we do
not constrain the distance between original and perturbed pixels. We define a geometry-inspired L0

perturbation as follows:

ηn := ϵyadvn

∇xn
fbdy(xn)⊙Mn

∥∇xn
fbdy(xn)⊙Mn∥

= ϵyadvn

∑N
k=1 λkykxk ⊙Mk

∥
∑N

k=1 λkykxk ⊙Mk∥
, (A126)

where ⊙ denotes the Hadamard product and Mn ∈ {0, 1}d denotes a mask vector. Let Sn be the set
of the top-dδ elements where |∇xn,i

fbdy(xn)| is the largest. The i-th element of Mn is set to one if
i is contained in Sn and zero otherwise. Since ∇xn

fbdy(xn) does not depend on n, Mn does not
depend on n. Thus, we denote M := M1 = · · · = MN . Rearranging the above equation,

ηn = ϵyadvn

∑N
k=1 λkykxk ⊙M

∥
∑N

k=1 λkykxk ⊙M∥
. (A127)

Similar to Eq. (1), this perturbation is represented as the weighted sum of benign training samples,
and thus contains class features. This result indicates that even sparse perturbations, which seem to
lack natural data structures, enable networks to generalize.

Consider the decision boundary when learning from L0 perturbations. To employ Corollary 3.4, we
first construct an orthogonality condition for L0 perturbations. As a preliminary, refer to the proof
of Lemma C.1. The norm is

∥xadv
n ∥2 =∥xn∥2 + 2ϵyadvn

∑N
k=1 λkyk⟨xk ⊙M ,xn⟩
∥
∑N

k=1 λkykxk ⊙M∥
+ ϵ2 (A128)

=Θ(d)±Θ

(√
dδ
N

)
ϵ+ ϵ2. (A129)

Note that∥∥∥∥∥
N∑

n=1

λnynxn ⊙M

∥∥∥∥∥
2

=

N∑
n=1

λ2n∥xn ⊙M∥2 +
N∑

n=1

∑
k ̸=n

λnλkynyk⟨xn ⊙M ,xk ⊙M⟩ (A130)
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=Θ

(
Ndδ
d2

)
. (A131)

In addition,
N∑

k=1

λkyk⟨xk ⊙M ,xn⟩ =λnyn⟨xn ⊙M ,xn⟩+
∑
k ̸=n

λkyk⟨xk ⊙M ,xn⟩ = Θ

(
dδ
d

)
. (A132)

The inner product is

⟨xadv
n ,xadv

k ⟩

=⟨xn,xk⟩+ ϵyadvn

∑N
l=1 λlyl⟨xl ⊙M ,xk⟩
∥
∑N

l=1 λlylxl ⊙M∥
+ ϵyadvk

∑N
l=1 λlyl⟨xl ⊙M ,xn⟩
∥
∑N

l=1 λlylxl ⊙M∥
+ ϵ2 (A133)

=O
(
d

N

)
±Θ

(√
dδ
N

)
ϵ+ ϵ2. (A134)

The orthogonality condition can be rearranged as follows:

(Θ(d)−Θ(
√
dδ/N)ϵ+ ϵ2)2

Θ(N)(Θ(d) + Θ(
√
dδ/N)ϵ+ ϵ2)

−O
(
d

N

)
−Θ

(√
dδ
N

)
ϵ− ϵ2 ≥ 0. (A135)

Thus, ϵ is constrained to O(
√
d/N). Moreover, similarly to Theorem 4.2, the following decision

boundary can be derived using Corollary 3.4:

fbdyadv (z) =

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ

∑N
n=1 λnyn⟨xn ⊙M , z⟩

∥
∑N

n=1 λnynxn ⊙M∥
. (A136)

Finally, under the condition of Theorem 4.2, we consider the limiting behavior of this boundary
for z :=

∑N
n=1 Θ(1/

√
N)xn. Since the left term of this boundary equals that of Eq. (3), the

left term grows with O(d/N). Similarly to Lemma C.3, the right term grows with Θ(
√
ddδ/N).

If d/dδ = Θ(1), the right term grows faster than the left; namely, the effect of learning from
perturbations dominates the classifier decision. Thus, learning from L0 perturbations succeeds for
samples that are weakly correlated with many training samples.

E.2 GEOMETRY-INSPIRED L∞ PERTURBATIONS

Similar to fast gradient sign method (Goodfellow et al., 2015) and projected gradient descent (Madry
et al., 2018), we define an L∞ adversarial perturbation as follows:

ηn := ϵyadvn sgn(∇xnf
bdy(xn)) = ϵyadvn sgn

(
N∑

k=1

λkykxk

)
. (A137)

Assume ⟨sgn(
∑N

k=1 λkykxk),xn⟩ = Θ(
√
d) for any n. Similarly to the above discussion, the

orders of the norm and inner product are∥∥xadv
n

∥∥2 =Θ(d)±Θ(
√
d)ϵ+Θ(d)ϵ2, ⟨xadv

n ,xadv
k ⟩ =O

(
d

N

)
±Θ(

√
d)ϵ+Θ(d)ϵ2. (A138)

Assuming d/N = Θ(1), the orthogonality condition requires ϵ = O(1/
√
d). The decision boundary

is

fbdyadv (z) :=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ

〈
sgn

(
N∑

k=1

λkykxk

)
, z

〉
. (A139)

Consider the limiting behavior of this boundary for z := Θ(d/
√
N)
∑N

k=1 λkykxk. Similarly to
the discussion above, the left and right terms grow with O(d/N)(= O(1)) and Θ(

√
d), respectively.

Note that ⟨sgn(
∑N

k=1 λkykxk),
∑N

k=1 λkykxk⟩ = Θ(
√
N). Thus, learning from L∞ perturbations

succeeds for samples that are weakly correlated with many training samples.
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E.3 GRADIENT-BASED L2 PERTURBATIONS

In the main text, we consider geometry-inspired perturbations that target the decision boundary fbdy
instead of the network f itself. In this section, we consider L2 gradient-based perturbations that
target the network f itself. Similar concepts are employed in fast gradient sign method (Goodfellow
et al., 2015) and projected gradient descent (Madry et al., 2018).

Attack on Network Directly. First, we consider an attack on the network f . Since gradient flow on
f converges in direction to W std (cf. Theorem B.1), with t → ∞, we can represent the network as
f(z; cW std) with c > 0. Note that ⟨v,xn⟩ > 0 and ⟨u,xn⟩ < 0 if yn = 1, and ⟨u,xn⟩ > 0 and
⟨v,xn⟩ < 0 if yn = −1 (Frei et al., 2023). By Theorem B.1, if yn = 1,

f(xn; cW
std) =

m/2∑
k=1

1√
m
⟨cvk,xn⟩ −

m/2∑
k=1

γ√
m
⟨cuk,xn⟩ (A140)

=

√
m

2
⟨cv,xn⟩ −

γ
√
m

2
⟨cu,xn⟩ (A141)

=
c(1 + γ2)

2

∑
k:yk=+1

λkyk⟨xk,xn⟩ −
cγ

2

∑
k:yk=−1

λkyk⟨xk,xn⟩. (A142)

Thus,

∇xn
f(xn; cW

std)

∥∇xn
f(xn; cW std)∥

=
(1 + γ2)

∑
k:yk=+1 λkykxk − γ

∑
k:yk=−1 λkykxk

∥(1 + γ2)
∑

k:yk=+1 λkykxk − γ
∑

k:yk=−1 λkykxk∥
. (A143)

We denote this by s+. Similarly, for negatively labeled samples, we define s−. An adversarial
example targeting the network can be represented as follows:

xadv
n := xn +

{
ϵyadvn s+ (yn = 1)

ϵyadvn s− (yn = −1)
. (A144)

To consider the orthogonality condition, we evaluate the order of ⟨s+,xn⟩. Similarly to Lemma C.3,
the denominator of s+ grows with Θ(

√
N/d). In addition, the inner product between the numerator

and xn grows with Θ(1) (cf. Lemma C.1). Thus, similar to Lemma C.1, the orthogonality condition
requires ϵ = O(

√
d/N). By Corollary 3.4, the decision boundary is

fbdyadv (z)

=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ

∑
n:yn=+1 λ

adv
n ⟨s+, z⟩+

∑
n:yn=−1 λ

adv
n ⟨s−, z⟩∑N

n=1 λ
adv
n

. (A145)

Consider the limiting behavior of this boundary for z =
∑N

n=1 Θ(1/
√
N)xn. Because the left term

of this boundary equals Eq. (3), it grows with O(d/N). Since λadv = Θ(1/d) (cf. Corollary 3.4)
and ⟨s+, z⟩ =

√
Nd, the right term grows with O(d/

√
N). Thus, learning from L2 perturbations

that target the network itself also succeeds for samples that are weakly correlated with many training
samples.

Attack on Network with Loss Function. Then, we consider an attack on the network f with the
exponential loss. The gradients of the exponential loss for xn can be calculated as follows:

∇xn
exp
(
−ynf(xn; cW

std)
)
=− yn exp

(
−ynf(xn; cW

std)
)
∇xn

f(xn; cW
std) (A146)

=− yn exp(−c)∇xn
f(xn; cW

std). (A147)

This indicates that the normalized gradients with the exponential loss are consistent with those of
the network without a loss function. Thus, the case of the direct attack on the network can be applied
to the case of the exponential loss. The same discussion applies to the logistic loss.

F SUB-GAUSSIAN NOISE SCENARIO

In this section, we consider learning from perturbations on sub-Gaussian noises. A sub-Gaussian
random variable is defined as follows:
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Definition F.1 (Sub-Gaussian). A random variable X is called sub-Gaussian if there exists some
σ2 > 0 such that for every s ∈ R, X satisfies E[es(X−E[X])] ≤ eσ

2s2/2.

We write a sub-Gaussian random variable as X ∼ subG(σ2). Sub-Gaussian random variables
include Gaussian and any bounded random variables such as Rademacher (or symmetric Bernoulli)
and uniform random variables. In addition, we define a sub-exponential random variable as follows:

Definition F.2 (Sub-exponential). A random variableX is called sub-exponential if there exist some
σ2 > 0 and b > 0 such that for every |s| ≤ 1/b, X satisfies E[es(X−E[X])] ≤ eσ

2s2/2.

We write a sub-exponential random variable as X ∼ subE(σ2, b). Sub-Gaussian and -exponential
have the following properties:

Lemma F.3 (Properties of sub-Gaussian and -exponential).
(a) If X follows subG(σ2), then P[|X − E[X]| > t] ≤ 2 exp

(
−t2/2σ2

)
holds for any t > 0.

(b) If X follows subE(σ2, b), then P[|X − E[X]| > t] ≤ 2 exp
(
−min{t2/σ2, t/b}/2

)
holds

for any t > 0.
(c) If X1 and X2 are independent and follow subG(σ2

1) and subG(σ2
2), respectively, then

α1X1 + α2X2 follows subG(α2
1σ

2
1 + α2

2σ
2
2) for any α1, α2 ∈ R.

(d) If X1 and X2 are independent and follow subE(σ2
1 , b1) and subE(σ2

2 , b2), respectively,
then α1X1+α2X2 follows subE(α2

1σ
2
1+α

2
2σ

2
2 ,max{|α1|b1, |α2|b2}) for any α1, α2 ∈ R.

(e) If X follows subG(σ2), then X2 follows subE(256σ4, 16σ2).
(f) Suppose that (i) X1 and X2 are independent. (ii) X1 and X2 follow subG(σ2

1)
and subG(σ2

2), respectively. (iii) E[X1] = E[X2] = 0. Then, X1X2 follows
subE(8σ2

1σ
2
2 ,
√
2σ1σ2).

Proof. For (a)–(e), refer to Duchi (2023); Rigollet & Hütter (2023). We consider (f). For any s ∈ R,

EX1,X2
[esX1X2 ] =EX2

[EX1
[esX1x2 | X2 = x2]] (A148)

≤EX2
[eσ

2
1X

2
2s

2/2] (A149)

=EX2

[ ∞∑
n=0

(σ2
1X

2
2s

2)n

n!2n

]
. (A150)

By E[X2n
2 ] ≤ 2(2σ2

2)
nn! for any n ∈ N (Rigollet & Hütter, 2023),

E[esX1X2 ] ≤1 + 2

∞∑
n=1

(σ2
1σ

2
2s

2)n. (A151)

For any |s| ≤ 1/
√
2σ1σ2,

E[esX1X2 ] ≤ 1 + 4σ2
1σ

2
2s

2 ≤ e8σ
2
1σ

2
2s

2/2. (A152)

Thus, X1X2 follows subE(8σ2
1σ

2
2 ,
√
2σ1σ2).

Similarly to Lemma D.1, we consider the properties of random vectors with sub-Gaussian entries.

Lemma F.4 (Properties of sub-Gaussian random vectors). Let {Xn}Nn=1 ⊂ Rd beN ∈ N indepen-
dent random variables sampled from the sub-Gaussian distribution subG(1). Assume E[Xn,i] = 0
for any n ∈ [N ] and i ∈ [d]. Let z ∈ Rd be a constant vector. Then, the following statements hold:

(a) If d ≥ 2 ln 1000N ,

P
[
max
n

∣∣∣∥Xn∥2 − d
∣∣∣ ≤ 16

√
2d ln 1000N

]
≥
(
1− 1

500N

)N

. (A153)
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(b) If d ≥ ln(1000N)/4,

P
[
max
n

|⟨Xn,Xk⟩| ≤ 2
√
2d ln 1000N

]
≥
(
1− 1

500N

)N

. (A154)

(c)

P
[
max
n

|⟨Xn, z⟩| ≤
√
2 ln 1000N∥z∥

]
≥
(
1− 1

500N

)N

. (A155)

Proof. As a preliminary, refer to Lemma F.3 and the proof of Lemma D.1.

(a) ∥Xn∥2 follows subE(256d, 16) with mean d. For t > 0,

t2

256d
≤ t

16
⇔ t ≤ 16d. (A156)

If d ≥ 2 ln 1000N ,

P
[∣∣∣∥Xn∥2 − d

∣∣∣ ≥ 16
√
2d ln 1000N

]
≤ 1

500N
. (A157)

Thus,

P
[
max
n

∣∣∣∥Xn∥2 − d
∣∣∣ ≤ 16

√
2d ln 1000N

]
≥
(
1− 1

500N

)N

. (A158)

(b) ⟨Xn,Xk⟩ follows subE(8d,
√
2) with zero mean. For t > 0,

t2

8d
≤ t√

2
⇔ t ≤ 4

√
2d. (A159)

If d ≥ ln(1000N)/4,

P
[
|⟨Xn,Xk⟩| ≥ 2

√
2d ln 1000N

]
≤ 1

500N
. (A160)

(c) ⟨Xn, z⟩ follows subG(∥z∥2) with zero mean. For t =
√
2 ln 1000N∥z∥,

P
[
|⟨Xn, z⟩| ≥

√
2 ln 1000N∥z∥

]
≤ 1

500N
. (A161)

By Lemma F.4, for ∥z∥ = 1, the following inequalities hold with probability at least 99.8%:

∥Xn∥2 = Θ̃(d), ⟨Xn,Xk⟩ = Õ(
√
d), ⟨Xn, z⟩ = Õ(1). (A162)

These orders are consistent with those for uniform noises (cf. Lemma D.1). Thus, similarly to
Theorems 4.3 and 4.4, if ϵ is constrained to ϵ = Õ(

√
d/Nadv), the decision boundary Eq. (6) and

consistent decisions can be obtained for learning from perturbations on sub-Gaussian noises.

G THEOREM 4.1 WITHOUT ASSUMPTION OF LAST LAYER OF NETWORK

In this section, we derive Theorem 4.1 without the assumption that the positive and negative values
of a are equal. Letm+ andm− be the numbers of positive and negative neurons in the hidden layer,
respectively. In this setting, Frei et al. (2023) provides the decision boundary as follows:

fbdy(z) = (m+ + γm−)
∑

n:yn=+1

λnxn − (γm+ +m−)
∑

n:yn=−1

λnxn. (A163)
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With An := (m+ + γm−) if yn = +1 and An := (γm+ +m−) otherwise,

fbdy(z) =

N∑
n=1

Anλnynxn. (A164)

Similar to Eq. (1), a perturbation is defined as follows:

ηn := ϵyadvn

∑N
k=1Akλkykxk∥∥∥∑N
k=1Akλkykxk

∥∥∥ . (A165)

SinceAn = Θ(1), the growth rate of ηn with respect to d andN is the same as the original definition
of ηn. Thus, similarly to Theorem C.2, if ϵ = O(

√
d/N), the decision boundary is

fbdyadv (z) :=

∑N
n=1A

adv
n λadvn yadvn ⟨xn, z⟩∑N
n=1A

adv
n λadvn

+ ϵ

∑N
n=1Anλnyn⟨xn, z⟩

∥
∑N

n=1Anλnynxn∥
, (A166)

where Aadv
n := (m+ + γm−) if yadvn = +1 and Aadv

n := (γm+ +m−) otherwise.

H FLIPPED LABEL LEARNING

In this section, we explain the success of learning from perturbations under the flipped label scenario,
i.e., yadvn = −yn for every n ∈ [N ], with assumptions about a data structure and learning bias. First,
we assume that xn consists of two features: robust and non-robust features, which is based on
the hypothesis from Ilyas et al. (2019). Second, we suppose that standard trained classifiers focus
only on non-robust features, which is empirically supported by Etmann et al. (2019); Tsipras et al.
(2019); Zhang & Zhu (2019); Chalasani et al. (2020). In other words, we assume that the decision
boundary of the classifier consists of the learning effect only from non-robust features. Formally,
these assumptions are summarized as follows:

Assumption H.1. (a) For every n ∈ [N ], a natural sample xn can be represented as xn := xrob
n +

xnon
n . (b) For n ̸= k, ⟨xrob

n ,xrob
k ⟩ = O(d/N), ⟨xrob

n ,xnon
k ⟩ = O(d/N), and ⟨xnon

n ,xnon
k ⟩ =

O(d/N). (c) Under the setting of Theorem 3.3, the decision boundary is given by fbdy(z) :=∑N
n=1 λnyn⟨xnon

n , z⟩.

Consider perturbations to the decision boundary fbdy(z) :=
∑N

n=1 λnyn⟨xnon
n , z⟩. Similarly to

Eq. (1), an adversarial example and perturbation are defined as follows:

xadv
n :=xn + ηn, ηn :=ϵyadvn

∑N
k=1 λkykx

non
k

∥
∑N

k=1 λkykx
non
k ∥

. (A167)

Under these settings,∥∥xadv
n

∥∥2 = Θ(d)±Θ

(√
d

N

)
ϵ+ ϵ2, ⟨xadv

n ,xadv
k ⟩ ≤ pmax +Θ

(√
d

N

)
ϵ+ ϵ2. (A168)

Similarly to Theorem C.2, if ϵ = O(
√
d/N), the decision boundary is

fbdyadv (z) :=

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩∑N
n=1 λ

adv
n

+ ϵ
fbdy(z)

∥
∑N

n=1 λnynx
non
n ∥

(A169)

=Θ

(
d

N

)(
fbdy(z)−

N∑
n=1

λadvn yadvn ⟨xn, z⟩

)
. (A170)

For z =
∑N

n=1 Θ(1/
√
N)xnon

n , |fbdy(z)| = Θ(
√
N) and |

∑N
n=1 λ

adv
n yadvn ⟨xn, z⟩| = Θ(1).

Thus, if N, d → ∞, then sgn(fbdyadv (z)) = sgn(fbdy(z)) holds. Finally, under Assumption H.1,
we can explain why even a flipped learning scenario (corresponding deterministic label scenarios in
Table 1) yields moderately high accuracy on natural test datasets.
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I EXPERIMENTAL SETTINGS AND ADDITIONAL RESULTS

In this section, we present detailed experimental settings and additional empirical results. First, we
introduce the settings that are consistent across experiments on artificial and real-world datasets.

We used an NVIDIA A100 GPU. A scheduler reduced a learning rate to 10% of its original value
if a training loss did not decrease over 10 consecutive epochs. Uniform noises were sampled from
U([−1, 1]d).

As adversarial attacks, we employed projected gradient descent (Madry et al., 2018). The step sizes
of projected gradient descent are 0.3 for L0 attacks and ϵ/5 for L2 and L∞ attacks, respectively.
The number of steps is 100 for L2 and L∞ attacks.

In L0 attacks, the number of modifiable pixels was limited, but the distance between altered and
original pixels was not restricted. Sparse attacks employ the following procedures in each step:
(i) select the pixel with the highest gradient magnitude from the masked region, (ii) remove the mask
for the selected pixel, and (iii) update the perturbations for unmasked pixels. Thus, the number of
steps corresponds to the maximum number of modified pixels. Note that the modified pixels shown
in Figs. A16 to A18 may not always match the number of steps because we selected the adversarial
example with the highest loss over all steps for the final output.

Although we primarily considered geometry-inspired perturbations (cf. Eq. (1)) in the theoretical
discussion, we employ gradient-based perturbations (cf. Eq. (A144)) in the experiments. This is
due to the practical difficulty of obtaining the decision boundary of a one-hidden-layer neural net-
work (cf. Eq. (A14)) and the value of λn (cf. Theorem B.1), making geometry-inspired perturbations
infeasible in practice.

I.1 ARTIFICIAL DATASET

The procedure for generating artificial data based on uniform noises can be found in Section 5.1.
Similarly, a dataset based on the Gaussian noises N (0, Id) was created. Examples of standard, noise,
and adversarial samples are shown in Fig. A3. The experimental settings followed the theoretical
settings, Section 3.1. We used one-hidden-layer neural networks and stochastic gradient descent
with a learning rate of 0.01, momentum of 0.9, and exponential loss. Considering t → ∞, we set
the epochs to 100,000. The vectors v and u used to illustrate the decision boundary are defined
in Theorem 3.3. In practice, these values are incalculable due to the uncomputable nature of λn.
Therefore, we approximated v as the average of the first half of the weights in W and u as the
average of the latter half.

The experimental results for artificial datasets based on uniform and Gaussian noises with L0, L2,
and L∞ adversarial perturbations are provided in Figs. A4 to A15. We can confirm a strong align-
ment between the decision boundaries when learning from standard samples and perturbations (cf.
Theorem 4.4). High classification accuracy for standard training data (cf. Corollary 4.5) was also
observed across a variety of noise and perturbation forms.

I.2 MNIST/FASHION-MNIST/CIFAR-10

Examples of standard and adversarial samples for each dataset are shown in Figs. A16 to A18. A
six-layer convolutional neural network was used for MNIST and Fashion-MNIST. WideResNet-28-
10 with a dropout ratio of 0.3 was used for CIFAR-10. The batch size was set to 128. While no
data augmentation was applied to MNIST and Fashion-MNIST, random cropping and horizontal
flipping were applied to CIFAR-10. We used stochastic gradient descent with Nesterov momentum
of 0.9, weight decay of 5 × 10−4, and cross-entropy loss. The initial learning rates can be found
in Table A3. The perturbation constraint ϵ or number of modifiable pixels dδ was set according
to Table A4. We set the epochs to 100 for MNIST and 200 for Fashion-MNIST and CIFAR-10.
However, in the experiments for Fig. A19, we set the epochs to 300, considering a large number of
training samples.

For MNIST and Fashion-MNIST, Fig. A19 shows the accuracy of learning from perturbations with
various adversarial sample sizes. In several cases, we observed a general increase in the accuracy
as the number of samples increased. However, in some cases, while the accuracy did not decrease,
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Table A3: Initial learning rates in each learning scenario.
On natural samples On noise data

L0 (R) L0 (D) L2 (R) L2 (D) L∞ (R) L∞ (D) L0 L2 L∞

MNIST 0.1 0.1 0.01 0.01 0.01 0.01 0.1 0.1 0.1
FMNIST 0.1 0.1 0.01 0.01 0.01 0.01 0.1 0.1 0.1
CIFAR-10 0.1 0.1 0.1 0.1 0.01 0.1 0.1 0.1 0.1

Table A4: Perturbation constraint ϵ or number of modifiable pixels dδ for MNIST, Fashion-MNIST,
and CIFAR-10.

MNIST Fashion-MNIST CIFAR-10

L0 L2 L∞ L0 L2 L∞ L0 L2 L∞

10 2.0 0.3 35 2.0 0.3 150 0.5 0.1

there was no significant improvement in the accuracy. These inconsistencies could potentially be
resolved through extensive experiments and tuning of learning rates and architectures.
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Figure A3: Artificial data based on uniform noises. Standard images were drawn from the uniform
distribution U([−1, 1]d), and their corresponding labels from U({±1}). We treated them as natural
images. Noise images are similarly drawn from U([−1, 1]d). Adversarial examples were generated
to superimpose adversarial perturbations on the noise images to fool a classifier trained on the stan-
dard (but seemingly noisy) images. The labels below the adversarial examples indicate target labels
that were randomly sampled from {±1}. Those below the noise images were used for comparative
experiments in training classifiers on these noises.
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Figure A4: Decision boundaries of classifiers trained on artificial datasets based on uniform noises
and L0 adversarial perturbations. Each variable was varied based on d = 10, 000, Nadv = 10, 000,
N = 1000, and dδ/d = 0.05. The description is the same as Fig. 1.
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Figure A5: Decision boundaries of classifiers trained on artificial datasets based on Gauss noises
and L0 adversarial perturbations. The description is the same as Fig. A4.
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Figure A6: Decision boundaries of classifiers trained on artificial datasets based on uniform noises
and L2 adversarial perturbations. Each variable was varied based on d = 10, 000, Nadv = 10, 000,
N = 1000, and ϵ = 0.78. The description is the same as Fig. 1.
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Figure A7: Decision boundaries of classifiers trained on artificial datasets based on Gauss noises
and L2 adversarial perturbations. The description is the same as Fig. A6.
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Figure A8: Decision boundaries of classifiers trained on artificial datasets based on uniform noises
and L∞ adversarial perturbations. Each variable was varied based on d = 10, 000, Nadv = 10, 000,
N = 1000, and ϵ = 0.03. The description is the same as Fig. 1.
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Figure A9: Decision boundaries of classifiers trained on artificial datasets based on Gauss noises
and L∞ adversarial perturbations. The description is the same as Fig. A8.
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Figure A10: Accuracy of classifiers trained on artificial datasets based on uniform noises and L0

adversarial perturbations. The description is the same as Figs. 2 and A4.
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Figure A11: Accuracy of classifiers trained on artificial datasets based on Gauss noises and L0

adversarial perturbations. The description is the same as Figs. 2 and A5.
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Figure A12: Accuracy of classifiers trained on artificial datasets based on uniform noises and L2

adversarial perturbations. The description is the same as Figs. 2 and A6.
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Figure A13: Accuracy of classifiers trained on artificial datasets based on Gauss noises and L2

adversarial perturbations. The description is the same as Figs. 2 and A7.
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Figure A14: Accuracy of classifiers trained on artificial datasets based on uniform noises and L∞
adversarial perturbations. The description is the same as Figs. 2 and A8.
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Figure A15: Accuracy of classifiers trained on artificial datasets based on Gauss noises and L∞
adversarial perturbations. The description is the same as Figs. 2 and A9.
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Figure A16: Natural images, perturbations on natural images, and perturbations on uniform noises
for MNIST. Below the natural images and adversarial examples are their respective original and
target labels in adversarial attacks. The “R” indicates that a target label was randomly chosen from
the nine labels that differ from an original label. The “D” indicates that a target label was determin-
istically chosen as the next sequential label after an original label.
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Figure A17: Natural images, perturbations on natural images, and perturbations on uniform noises
for Fashion-MNIST. The description is the same as Fig. A16.
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Figure A18: Natural images, perturbations on natural images, and perturbations on uniform noises
for CIFAR-10. The description is the same as Fig. A16.
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zontal axis represents the number of adversarial samples Nadv.

49


	Introduction
	Related Work
	Preliminary
	Settings
	Decision Boundary of One-Hidden-Layer Neural Network

	Theoretical Results
	Perturbation as Class Features
	Learning from Adversarial Perturbations on Natural Samples
	Learning from Adversarial Perturbations on Uniform Noises

	Experimental Results
	Artificial Dataset
	MNIST/Fashion-MNIST/CIFAR-10

	Conclusion and Limitation
	Learning from Adversarial Perturbations
	Comparison with Adversarial Training
	Comparison with Training with Noisy Labels
	Implications of Learning from Adversarial Perturbations

	Decision Boundary of One-Hidden-Layer Neural Network
	Standard Training
	Learning from Adversarial Perturbations

	Proofs of Theorems in Lg
	Decision Boundary of Learning from Geometry-Inspired Perturbations on Natural Samples
	Limiting Behavior of Learning from Geometry-Inspired Perturbations on Natural Samples with Deterministic Labels
	Limiting Behavior of Learning from Geometry-Inspired Perturbations on Natural Samples with Random Labels

	Proofs of Theorems in Lg
	Other Perturbations
	Geometry-Inspired Lg Perturbations
	Geometry-Inspired Lg Perturbations
	Gradient-based Lg Perturbations

	Sub-Gaussian Noise Scenario
	Lg without Assumption of Last Layer of Network
	Flipped Label Learning
	Experimental Settings and Additional Results
	Artificial Dataset
	MNIST/Fashion-MNIST/CIFAR-10


