
Under review as a conference paper at ICLR 2022

APPENDIX: APOLLO: AN ADAPTIVE PARAMETER-WISE DIAGONAL
QUASI-NEWTON METHOD FOR NONCONVEX STOCHASTIC OPTIMIZATION

A COUPLED STEPSIZE AND CONVEXITY

Before proving Theorem 1, we first define the notations.

Let α = η′

η = σ′

σ be the ratio of the two sets of learning rates. Letm′t, d
′
t andB′t be the corresponding

terms of parameter θ′t at step t for (η′, σ′).

Proof of Theorem 1

Proof. Induction on the step of updates t, we attempt to prove that at each step t:

mt = m′t, B′t = αBt, and θt = θ′t, ∀t (15)

Initial step: when t = 1, since θ0 = θ′0, we have m1 = m′1. With d0 = d′0 = 0 and (8), we have
B1 = B′1 = 0 and:

D1 = rectify(B1, σ) = σ

D′1 = rectify(B′1, σ
′) = σ′

Then, D′1 = αD1 and

θ′1 = θ′0 − η′D′−11 m′1 = θ0 − ηα(D−11 /α)m1 = θ0 − ηD−11 m1 = θ1.

Thus, the statement (15) is true.

Induction on step t: Suppose that the statement (15) is true for all the previous t steps. Now we
prove the case t+ 1. From the inductive assumption and (9), we have,

B′t = αBt, d′t =
1

α
dt and mt+1 = m′t+1.

From (8),

B′t+1 = B′t −
d′
T
t y
′
t + d′

T
t B
′
td
′
t

‖d′t‖44
Diag(d′

2
t)

= αBt −
(1
αdt)

T yt + (1
αdt)

T (αBt)(
1
αdt)

‖(1
αdt)‖

4
4

Diag((
1

α
dt)

2)

= αBt − α
dTt yt + dTt Btdt

‖dt‖44
Diag(d2t)

= αBt+1.

Then,

D′t+1 = rectify(B′t+1, σ
′)

= rectify(αBt+1, ασ)

= αrectify(Bt+1, σ)

= αDt+1

and we have θ′t+1 = θt+1.

Finally, to sum up with the induction, we have proven Theorem 1.

14

Under review as a conference paper at ICLR 2022

B CONVERGENCE ANALYSIS

B.1 CONVERGENCE ANALYSIS IN CONVEX OPTIMIZATION

Proof of Theorem 2

Proof. Let θ∗ = argmin
θ∈F

T∑
t=1

ft(θ), where F is the feasible set of θ. As θt+1 − θ∗ = θt − θ∗ −

ηtD
−1
t mt and mt = βtmt−1 + (1− βt)gt, we have the following:

‖D1/2
t (θt+1−θ∗)‖22 ≤ ‖D

1/2
t (θt−θ∗)‖22 +‖ηtD−1/2t mt‖22−2ηt(βtmt−1 + (1−βt)gt)T (θt−θ∗)

Then, we have

gTt (θt − θ∗) ≤
1

2ηt(1− βt)

[
‖D1/2

t (θt − θ∗)‖22 − ‖D
1/2
t (θt+1 − θ∗)‖22

]
+

ηt
2(1− βt)

‖D−1/2t mt‖22 −
βt

1− βt
mT
t−1(θt − θ∗)

≤ 1

2ηt(1− βt)

[
‖D1/2

t (θt − θ∗)‖22 − ‖D
1/2
t (θt+1 − θ∗)‖22

]
+

ηt
2(1− βt)

‖D−1/2t mt‖22 +
ηt

2(1− βt)
‖mt−1‖22 +

β2
t

2ηt(1− βt)
‖θt − θ∗‖22

Using the standard approach of bounding the regret at each step with convexity of the functions

{ft}Tt=1, we have the following bound of RT =
T∑
t=1

ft(θt)− ft(θ∗):

T∑
t=1

ft(θt)− ft(θ∗) ≤
T∑
t=1

gTt (θt − θ∗)

≤
T∑
t=1

1

2ηt(1− βt)

[
‖D1/2

t (θt − θ∗)‖22 − ‖D
1/2
t (θt+1 − θ∗)‖22

]
+

T∑
t=1

ηt
2(1− βt)

‖D−1/2t mt‖22 +
ηt

2(1− βt)
‖mt−1‖22

+

T∑
t=1

β2
t

2ηt(1− βt)
‖θt − θ∗‖22

(16)

As ‖θt − θ∗‖2 ≤ D, βt < β < 1 and ‖Dt‖1/ηt ≥ ‖Dt−1‖1/ηt−1, we have

T∑
t=1

1

2ηt(1− βt)

[
‖D1/2

t (θt − θ∗)‖22 − ‖D
1/2
t (θt+1 − θ∗)‖22

]
=
‖D1/2

1 (θ1 − θ∗)‖22
2η1(1− β1)

+

T∑
t=2

[
‖D1/2

t (θt − θ∗)‖22
2ηt(1− βt)

−
‖D1/2

t−1(θt − θ∗)‖22
2ηt−1(1− βt−1)

]

≤‖D
1/2
1 (θ1 − θ∗)‖22
2η1(1− β)

+
1

2(1− β)

T∑
t=2

[
‖D1/2

t (θt − θ∗)‖22
ηt

−
‖D1/2

t−1(θt − θ∗)‖22
ηt−1

]

≤‖(θ1 − θ
∗)‖22

2η1(1− β)
‖D1/2

1 ‖22 +
1

2(1− β)

T∑
t=2

‖(θt − θ∗)‖22

[
‖D1/2

t ‖22
ηt

−
‖D1/2

t−1‖22
ηt−1

]
(17)

15

Under review as a conference paper at ICLR 2022

Since ‖D1/2
t ‖22 = ‖Dt‖1, we can rewrite the RHS of (17) as:

‖(θ1 − θ∗)‖22
2η1(1− β)

‖D1/2
1 ‖22 +

1

2(1− β)

T∑
t=2

‖(θt − θ∗)‖22

[
‖D1/2

t ‖22
ηt

−
‖D1/2

t−1‖22
ηt−1

]

=
‖(θ1 − θ∗)‖22
2η1(1− β)

‖D1‖1 +
1

2(1− β)

T∑
t=2

‖(θt − θ∗)‖22
[
‖Dt‖1
ηt

− ‖Dt−1‖1
ηt−1

]

≤ D2

2η1(1− β)
‖D1‖1 +

D2

2(1− β)

T∑
t=2

[
‖Dt‖1
ηt

− ‖Dt−1‖1
ηt−1

]

=
D2‖DT ‖1
2ηT (1− β)

=

√
TD2‖DT ‖1
2η(1− β)

(18)

To sum up with (16) and (18), we have

RT =

T∑
t=1

ft(θt)− ft(θ∗) ≤
√
TD2‖DT ‖1
2η(1− β)

+

T∑
t=1

ηt
2(1− βt)

‖D−1/2t mt‖22 +
ηt

2(1− βt)
‖mt−1‖22

+

T∑
t=1

β2
t

2ηt(1− βt)
‖θt − θ∗‖22

(19)

Since the element of Dt is rectified by 1, i.e. Dt,i ≥ 1, and ‖mt‖2 ≤ G, βt < β < 1, we have
T∑
t=1

ηt
2(1− βt)

‖D−1/2t mt‖22 +
ηt

2(1− βt)
‖mt−1‖22 ≤

T∑
t=1

ηt
2(1− βt)

‖mt‖22 +
ηt

2(1− βt)
‖mt−1‖22

≤ G2

1− β

T∑
t=1

ηt =
ηG2

1− β

T∑
t=1

1√
t

≤ ηG2

1− β
(2
√
T − 1)

(20)

The last inequality is due to the following upper bound:
T∑
t=1

1√
t
≤
∫ T

t=1

dt√
t

= 2
√
T − 1

Again, as ‖θt − θ∗‖2 ≤ D and βt < β < 1, we have
T∑
t=1

β2
t

2ηt(1− βt)
‖θt − θ∗‖22 ≤

D2

2(1− β)

T∑
t=1

β2
t

ηt
(21)

Finally, to sum up with (19), (20) and (21), we have

RT ≤
√
TD2‖DT ‖1
2η(1− β)

+
ηG2

1− β
(2
√
T − 1) +

D2

2(1− β)

T∑
t=1

β2
t

ηt

Proof of Corollary 2.1

Proof. Since βt = βλt−1, by sum of arithmetico-geometric series we have
T∑
t=1

λ2(t−1)
√
t ≤

T∑
t=1

λ2(t−1)t ≤ 1

(1− λ2)2
(22)

16

Under review as a conference paper at ICLR 2022

Plugging (22) into (21), we have

RT ≤
√
TD2‖DT ‖1
2η(1− β)

+
ηG2

1− β
(2
√
T − 1) +

D2β2

2η(1− β)(1− λ2)2
.

B.2 CONVERGENCE ANALYSIS IN NONCONVEX STOCHASTIC OPTIMIZATION

To prove Theorem 3 in §3.5, we first describe the Theorem 3.1 in (Chen et al., 2019):

Theorem 3.1 (Chen et al., 2019) For an Adam-type method under the assumptions:
• f is lower bounded and differentiable; ‖∇f(θ)−∇f(θ′)‖2 ≤ L‖θ − θ′‖2, ∀θ, θ′.
• Both the true and stochastic gradient are bounded, i.e. ‖∇f(θt)‖2 ≤ H, ‖gt‖2 ≤ H, ∀t.
• Unbiased and independent noise in gt, i.e. gt = ∇f(θt) + ζt, E[ζt] = 0, and ζi ⊥ ζj , ∀i 6= j.
Assume βt ≤ β ≤ 1 in non-increasing, ‖ηtmt/

√
vt‖2 ≤ G, then:

E

[
T∑
t=1

ηt〈∇f(θt),∇f(θt)/
√
vt〉

]

≤E

[
C1

T∑
t=1

∥∥∥∥ηtgt√vt
∥∥∥∥2
2

+ C2

T∑
t=2

∥∥∥∥ ηt√
vt
− ηt−1√

vt−1

∥∥∥∥
1

+ C3

T−1∑
t=2

∥∥∥∥ ηt√
vt
− ηt−1√

vt−1

∥∥∥∥2
2

]
+ C4 (23)

where C1, C2, C3 are constants independent of d and T , C4 is a constant independent of T , the
expectation is taken w.r.t all the randomness corresponding to {gt}.
Since APOLLO belongs to the family of generalized Adam (Chen et al., 2019) with

√
vt corresponding

to Dt, we have

E

[
T∑
t=1

ηt〈∇f(θt),∇f(θt)/Dt〉

]

≤E

[
C1

T∑
t=1

∥∥∥∥ηtgtDt

∥∥∥∥2
2

+ C2

T∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥
1

+ C3

T−1∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥2
2

]
+ C4 (24)

Note that APOLLO does not specify the bound of each update ‖ηtmt/Dt‖2, because it is straight-
forward to derive the bound with conditions ηt ≤ η, ‖gt‖2 ≤ H and Dt ≥ 1.

Proof of Theorem 3 With (24), we can prove our Theorem 3 with similar derivations in Chen et al.
(2019).

Proof. We first bound non-constant terms in RHS of (24), which is given by

E

[
C1

T∑
t=1

∥∥∥∥ηtgtDt

∥∥∥∥2
2

+ C2

T∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥
1

+ C3

T−1∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥2
2

]
For the term with C1, since Dt ≥ 1, we have

E

[
T∑
t=1

∥∥∥∥ηtgtDt

∥∥∥∥2
2

]
≤ E

[
T∑
t=1

‖ηtgt‖22

]

= E

[
T∑
t=1

∥∥∥∥(η√
t

)
gt

∥∥∥∥2
2

]

≤ η2H2
T∑
t=1

1

t
≤ η2H2(1 + log T)

(25)

17

Under review as a conference paper at ICLR 2022

where the last inequality is due to
∑T
t=1 1/t ≤ 1 + log T .

For the term with C2, we have

E

[
T∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥
1

]
= E

 d∑
j=1

T∑
t=2

(
ηt−1
Dt−1,j

− ηt
Dt,j

)
= E

 d∑
j=1

(
η1
D1,j

− ηT
DT,j

) = E

 d∑
j=1

η1
D1,j

 ≤ dη
(26)

where the first equality is due to Dt−1,j

ηt−1
≤ Dt,j

ηt
, ∀t ∈ [T], j ∈ [d] and the second equality is due to

telescope sum.
For the term with C3, we have

E

[
T−1∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥2
2

]
≤ E

[
η

T−1∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥
1

]
≤ dη2 (27)

where the first inequality is due to |ηt−1/Dt−1,j − ηt/Dt,j | ≤ η.
Then for APOLLO we have

E

[
C1

T∑
t=1

∥∥∥∥ηtgtDt

∥∥∥∥2
2

+ C2

T∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥
1

+ C3

T−1∑
t=2

∥∥∥∥ ηtDt
− ηt−1
Dt−1

∥∥∥∥2
2

]
+ C4

≤C1η
2H2(1 + log T) + C2dη + C3dη

2 + C4

(28)

Now we lower bound the LHS of (24). With the assumption ‖Dt‖∞ ≤ L, we have

(ηt/Dt)j ≥
η

L
√
t

And thus

E

[
T∑
t=1

ηt〈∇f(θt),∇f(θt)/Dt〉

]
≥ E

[
T∑
t=1

η

L
√
t
‖∇f(θt)‖22

]
≥
√
T

L
min
t∈[T]

E
[
‖∇f(θt)‖22

]
(29)

Then, to sum up with (24), (28) and (29), we have
√
T

L
min
t∈[T]

E
[
‖∇f(θt)‖22

]
≤ C1η

2H2(1 + log T) + C2dη + C3dη
2 + C4

which is equivalent to

min
t∈[T]

E
[
‖∇f(θt)‖22

]
≤ L√

T
(C1η

2H2(1 + log T) + C2dη + C3dη
2 + C4)

=
1√
T

(Q1 +Q2 log T)

This completes the proof.

C EXTENSIONS AND FUTURE WORK

Parameter-Wise Gradient Clipping. The standard gradient clipping method (Pascanu et al., 2013)
is to clip the gradients based on the norm computed over gradients of all the parameters together.
A modification of gradient clipping to properly apply it to APOLLO is to clip the gradient of each
parameter individually based on its own norm. Preliminary results are provided in Appendix F.4.

Decoupled Weight Decay in APOLLO. (Loshchilov & Hutter, 2019) demonstrated that L2 regu-
larization is not identical to weight decay for adaptive gradient methods and proposed Adam with
decoupled weight decay (AdamW). The application of decoupled weight decay to APOLLO is slightly
different from AdamW as APOLLO memorizes the update direction of the last iteration dt to update
the diagonal Hessian. The algorithm of APOLLO with decoupled weight decay is in Appendix D.

18

Under review as a conference paper at ICLR 2022

Making APOLLO Scale-Invariant. An important advantage of adaptive optimization methods,
including Adam and its variants, is that they are inherently scale-invariant — invariant with the scale
of the objective function. The property of scale-invariance yields more consistent hyper-parameters
of these adaptive methods than SGD across different machine learning tasks. Unfortunately, APOLLO
does not hold the property of scale-invariance, and we need to ask if it is possible to make APOLLO
scale-invariant. Interestingly, it is quite easy to develop a scale-invariant version of APOLLO by ap-
plying a simple modification. We provide more details about scale-invariant APOLLO in Appendix H.

D APOLLO WITH DECOUPLED WEIGHT DECAY

Algorithm 2: APOLLO with weight decay (L2/Decoupled)
Initial: m0, d0, B0 ← 0, 0, 0 // Initialize m0, d0, B0 to zero
while t ∈ {0, . . . , T} do

for θ ∈ {θ1, . . . , θL} do
gt+1 ← ∇ft(θt)+γθt // Calculate gradient at step t

mt+1 ← β(1−βt)
1−βt+1 mt + 1−β

1−βt+1 gt+1 // Update bias-corrected moving

α← dTt (mt+1−mt)+d
T
t Btdt

(‖dt‖4+ε)4 // Calculate coefficient of B update

Bt+1 ← Bt − α ·Diag(d2t) // Update diagonal Hessian
Dt+1 ← rectify(Bt+1, 0.01) // Handle nonconvexity

dt+1 ← D−1t+1mt+1+γθt // Calculate update direction
θt+1 ← θt − ηt+1dt+1 // Update parameters

end
end
return θT

Algorithm 2 illustrates the algorithm of APOLLO with the standard L2 and the decoupled weight
decay. As APOLLO memorizes the update direction of the last iteration dt to update the diagonal
Hessian Bt+1, the application of decoupled weight decay to APOLLO is slightly different from
AdamW. The weight decay term is added to the update direction dt, instead of directly to the update
of parameters. We conducted experiments to evaluate APOLLO with decoupled weight decay on
image classification tasks. The results are provided in Appendix F.

E EXPERIMENTAL DETAILS

E.1 IMAGE CLASSIFICATION

CIFAR-10 For CIFAR-10 dataset, we use the ResNet-110 architecture in the public implementa-
tion5. Note that ResNet-110 is a modified version of ResNet-18 (He et al., 2016) to adapt the small
image size 32 × 32 in CIFAR-10, and is much smaller than standard ResNet-18. The number of
parameters for ResNet-110 and ResNet-18 are 1.73 M and 11.69 M, respectively. The implementation
of AdaHessian is based on the public implementation6. The training batch size is set to 128. For each
optimizer, we used two learning rate decay strategies. First, we train the model on CIFAR-10 for 164
epochs and decay the learning rate at the end of 80-th and 120-th epochs by 0.1. Second, we also
used the cosine annealing schedule (Loshchilov & Hutter, 2017). For the cosine annealing schedule,
we train a CIFAR-10 model for 200 epochs.

For every optimizer, we comprehensively tuned its hyper-parameters and selected the set of hyper-
parameters with the optimal classification accuracy. Concretely, for SGD, we fixed momentum
at 0.9 and perform grid search of learning rate η ∈ {0.05, 0.1, 0.2, 0.5}, weight decay rate
γ ∈ [1e−4, 1e−3] with step 1e−4. For Adam and RAdam, we fixed β1 = 0.9, β2 = 0.999, ε =
1e−8 and grid search learning rate η ∈ {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}, weight decay rate
γ ∈ [1e−2, 5e−1] with step 1e−2. For AdaBelief, we fixed β1 = 0.9, β2 = 0.999, and grid search

5https://github.com/bearpaw/pytorch-classification
6https://github.com/davda54/ada-hessian

19

https://github.com/bearpaw/pytorch-classification
https://github.com/davda54/ada-hessian

Under review as a conference paper at ICLR 2022

Table 4: Hyper-parameters of each optimizer on CIFAR-10 and ImageNet.

CIFAR-10 ImageNet

SGD η = 0.1, γ = 5e−4, η = 0.1, γ = 1e−4

Adam η = 0.001, γ = 2.5e−1, ε = 1e−8 η = 0.001, γ = 1e−1, ε = 1e−8

RAdam η = 0.001, γ = 2.5e−1, ε = 1e−8 η = 0.001, γ = 1e−1, ε = 1e−8

AdaBelief. η = 0.001, γ = 2.5e−1, ε = 1e−8 η = 0.001, γ = 1e−1, ε = 1e−8

AdaHessian η = 0.15, γ = 1e−3, ε = 1e−2 —

APOLLO η = 0.01, γ = 2.5e−4, ε = 1e−4, η = 0.01, γ = 1e−4, ε = 1e−4

APOLLOW η = 0.01, γ = 2.5e−2, ε = 1e−4, η = 0.01, γ = 1e−2, ε = 1e−4

learning rate η ∈ {1e−4, 5e−4, 1e−3, 5e−3, 1e−2}, and ε ∈ {1e−6, 1e−8, 1e−12}. For weight
decay, we tried both the standard L2 and the decoupled version of weight decay. For L2, we search
weight decay rate γ ∈ [1e−4, 1e−3] with step 1e−4, and for decoupled version we search weight
decay rate γ ∈ [1e−2, 5e−1] with step 1e−2. For AdaHessian, we fixed β1 = 0.9, β2 = 0.999
and grid search η ∈ {0.05, 0.1, 0.15, 0.2}, weight decay rate γ ∈ [5e−4, 5e−3] with step 5e−4

and ε ∈ {1e−2, 1e−4, 1e−6}. For APOLLO, we fixed β = 0.9, ε = 1e−4 and grid search learning
rate η ∈ {0.001, 0.005, 0.01, 0.02}, weight decay rate γ ∈ [5e−5, 1e−3] with step 5e−5. We
explored applying learning rate warmup to all the optimizers and found that APOLLO and AdaHessian
significantly benefit from warmup. The impact of warmup on other optimizers is marginal. Thus,
for APOLLO and AdaHessian, learning rates are warmed up linearly in the first 500 updates. The
selected optimal hyper-parameters for each optimizer are summarized in Table 4 Random cropping
and random horizontal flipping are applied to training data. For each experiment, we conduct training
on one NVIDIA Tesla V100 GPU.

ImageNet For ImageNet, we used the neural architecture of ResNeXt-50 (Xie et al., 2017), with
training batch size 256. For each optimizer, we also used the two learning rate decay strategies
— milestone and cosine. For milestone decay, we train the model for 120 epochs and decay the
learning rate at at the end of 40-th and 80-th epochs by 0.1. For cosine annealing, we also train
each model for 120 epochs with the cosine annealing schedule. For each optimizer, we fixed all the
hyper-parameters selected from CIFAR-10 experiments, except the rate of weight decay γ which is
tuned on the classification accuracy. Random cropping and random horizontal flipping are applied to
training data. For each experiment, we conduct training on eight NVIDIA Tesla V100 GPUs.

E.2 LANGUAGE MODELING

One Billion Words dataset (Chelba et al., 2013) is a publicly available benchmark for measuring
progress of language modeling. It contains about 0.8 billion tokens with a vocabulary of 793,471
words, including sentence boundary markers. Different from Liu et al. (2020) which shrinks the
vocabulary to about 0.64 million words, we used the standard vocabulary7. For the language model,
we used two-layer LSTM with 2048 hidden states with adaptive softmax and 300-dimensional word
embeddings as input. The cut-offs of the adaptive softmax are set to [60000, 100000, 640000], which
is different from Liu et al. (2020). Dropout (Srivastava et al., 2014) is applied to each layer with drop
rate of 0.1. No weight decay is applied to these optimizers. Gradient clips with 1.0 are applied to all
the optimization methods.

For each optimizer, we comprehensively tuned its learning rate. Concretely, for SGD, we searched
the learning rate η ∈ {0.05, 0.1, 0.5, 1.0} and η = 0.5 was selected. For Adam, RAdam and
AdaBelief, we fixed β1 = 0.9, β2 = 0.999, and searched for η ∈ {5e−4, 1e−3, 2e−3, 5e−3}, and
finally η = 1e−3 was selected. In addition, following Zhuang et al. (2020), we also tuned ε for
AdaBelief (for Adam and RAdam, we fixed ε = 1e−8). We searched ε ∈ {1e−8, 1e−12, 1e−16}
and found that ε = 1e−12 worked best. It should be noticed that AdaBelief is very sensitive to the
value of ε. The result in Table 2 is obtained using ε = 1e−12. With other values, e.g. 1e−8 or 1e−16,
the PPL points of AdaBelief are even higher than Adam and RAdam. Thus, we suspected that the

7https://github.com/rafaljozefowicz/lm/blob/master/1b_word_vocab.txt

20

https://github.com/rafaljozefowicz/lm/blob/master/1b_word_vocab.txt

Under review as a conference paper at ICLR 2022

improvement of AdaBelief over Adam or RAdam on LSTM mainly comes from the fine-tuning of ε.
Similar observations were also found in our experiments of image classification, and were reported in
Yuan & Gao (2020). For APOLLO, we fixed β = 0.9, ε = 1e−4, and searched η ∈ {0.01, 0.05, 0.1}.
Finally, η = 0.1 was selected. Each model is trained for 20 epochs, and the learning rate decays at
the end of the 12-th and 18-th epochs by decay rate 0.1. LSTMs are unrolled for 20 steps without
resetting the LSTM states and the batch size is set to 128. Every models is trained on one NVIDIA
Titan RTX GPU.

E.3 NEURAL MACHINE TRANSLATION

Our experiments on WMT 2014 English-German are based on the Transformer-base model (Vaswani
et al., 2017), with implementation from the FairSeq package (Ott et al., 2019). This dataset contains
4.5M parallel sentence pairs for training. We following the standard setting (Vaswani et al., 2017),
using Newstest2013 as the validation set and Newstest2014 as the test set. The dataset is pre-processed
following (Ma et al., 2019), using the scripts from FairSeq package8. Specifically, we use word
embedding with 512 dimension and 6-layer encoder/decoder with 8 multi-head attention and 2048
feed-forward dimensions. We apply 0.1 label smoothing (Szegedy et al., 2016), and perform totally
500, 000 updates to train each model. For Adam, RAdam and AdaBelief, we use start learning rate
0.0005. For Adam we set β = (0.9, 0.98), while for RAdam and AdaBelief we set β = (0.9, 0.999).
For SGD and APOLLO, the start learning rates is 0.1. The momentum of SGD is 0.9. For learning rate
scheduling, we applied linear warm up the learning rate for SGD, Adam, AdaBelief, and APOLLO —
4000 updates for Adam and 1000 updates for SGD, AdaBelief and APOLLO. For RAdam, we did not
apply warm up because RAdam is inherently designed to avoid it. After learning rate warming up, we
applied the inverse square root decay (Vaswani et al., 2017) to Adam. For SGD, RAdam, AdaBelief
and APOLLO, we decayed the learning rate at the 300, 000 and 450, 000 updates by decay rate 0.1.
Gradient clips with 1.0 are applied to all the optimization methods, and the dropout ratio are set to
0.1. Weight decay rates are 1e−4 for Adam-type methods, 1e−6 for SGD, and 1e−8 for APOLLO.
The decoding beam size is set to 5, and the checkpoints of the last 10 epochs are averaged before
evaluation. For each experiment, we conducted distributed training across eight NVIDIA Tesla V100
GPUs with maximum batch size as 8192 tokens per GPU (totally 8192× 8 tokens per batch).

E.4 THE CHOICE OF σ

In our final version, we change σ from 1.0 to 0.01 to make the learning rate η of APOLLO in a suitable
range. Concretely, in the case of σ = 1.0, the optimal η for image classification, language modeling
and machine translation are 1.0, 10.0 and 10.0, respectively. These values are very different from
previous algorithms. After we changed σ = 0.01, the optimal η for the three tasks because 0.01,
0.1 and 0.1, which are in a more acceptable range. Note that we change sigma = 0.01 only for
the consideration of the convenient application of APOLLO. It has no affect on the behavior of the
algorithm.

F DETAILED EXPERIMENTAL RESULTS

In this section, we report the detailed experimental results in Section 4, and the results of investigation
of the effect of weight decay.

F.1 DETAILED RESULTS ON IMAGE CLASSIFICATION

Figure 4 and Table 5 illustrate the details of the experimental results on Image Classification. For
each experiment, we report the mean values with corresponding standard deviations over 5 runs.
Though Loshchilov & Hutter (2019) claimed that the optimal settings of the learning rate and weight
decay factor in Adam with decoupled weight decay is more independent than the original Adam, we
observed that the strength of weight decay regularization is still co-related with the learning rate. To
illustrate the significant effect of weight decay strength on both the performance of convergence and
generalization, we also report the performance of Adam and RAdam with the same weight decay rate
of SGD, named Adam∗ and RAdam∗.

8https://github.com/pytorch/fairseq

21

https://github.com/pytorch/fairseq

Under review as a conference paper at ICLR 2022

Figure 4: Training loss and test accuracy of ResNet-110 on CIFAR-10 and ResNeXt-50 on ImageNet,
with two schedule strategies of learning rate decay.

Table 5: Classification accuracy on CIFAR-10 and ImageNet. For each experiment, we report the
mean and standard variance over 5 runs.

CIFAR-10 ImageNet
Method milestone decay cosine annealing milestone decay cosine annealing

SGD 93.94±0.07 94.53±0.27 77.57±0.07 78.26±0.08

Adam∗ 91.41±0.30 91.56±0.19 71.72±0.13 71.19±0.10
RAdam∗ 91.80±0.04 91.88±0.15 72.37±0.08 71.64±0.14

Adam 93.74±0.15 94.24±0.09 76.86±0.06 77.54±0.16
RAdam 93.88±0.11 94.38±0.25 76.91±0.07 77.68±0.08
AdaBelief 94.03±0.11 94.51±0.07 77.55±0.08 78.22±0.11

AdaHessian 93.97±0.22 94.48±0.17 77.61±0.09 78.02±0.10

APOLLO 94.21±0.08 94.64±0.09 77.85±0.07 78.45±0.06
APOLLOW 94.34±0.12 94.76±0.07 77.86±0.09 78.48±0.07

From Figure 4 and Table 5, we see that Adam∗ and RAdam∗, with the same weight decay rate of
SGD, converge much faster than other optimization methods, while obtaining significantly worse
classification accuracy. After adjusting the weight decay rates, the test accuracy of Adam and
RAdam remarkably improves, with rapid decline of convergence speed. This suggests that the fast
convergence speed of Adam and RAdam results from relatively weak regularization. Thus, the effect
of regularization strength needs to be considered when we analyze the performance of different
optimization methods.

In addition, we also report the results of APOLLO with decoupled weight decay, which is denoted as
APOLLOW. The hyper-parameters of APOLLOW (see Table 4) are exactly the same of the optimal
ones of APOLLO. From Figure 4 and Table 5, we see that APOLLO with the standard L2 regularization
achieves faster convergence speed, while APOLLOW with the decoupled weight decay achieves
slightly better generalization accuracy. Importantly, comparing with Adam-type methods whose
performance is significantly impacted by different weight decay implementations, APOLLO is much
more consistent with the two implementations of weight decay.

F.2 EFFECT OF WEIGHT DECAY RATE ON OPTIMIZATION

To further investigate the effect of weight decay rate on converge speed and generalization perfor-
mance for different optimization methods, we conduct experiments on CIFAR-10 of ResNet-110 with
a range of weight decay rates. Concretely, we use the weight decay rates γ in Table 4 as the base, and
explore different γ that are α times of the base weight decay rate, with α ∈ {0.2, 0.6, 1.0, 1.4, 1.8}.

22

Under review as a conference paper at ICLR 2022

Figure 5: Training loss and test accuracy of ResNet-110 on CIFAR-10 with various rates of weight
decay, with two schedule strategies of learning rate decay.

Figure 5 shows the convergence of different optimization methods with various rates of weight
decay, together with the classification accuracy. APOLLO achieves improvements over all the four
baselines on convergence speed with different rates of weight decay. For classification accuracy,
APOLLO obtains the best accuracy when the weight decay rate ratio α is larger than 0.3. When the
weight decay rate is decreasing, SGD obtains the best accuracy, while APOLLO achieves comparable
performance.

F.3 COMPARISON ON TRAINING SPEED AND MEMORY COST

In this section, we compare the training speed and memory between SGD, Adam, AdaHessian and
APOLLO. Table 6 summarizes the comparison of cost of a single iteration of update. Note that the
cost measured in our experiments includes all aspects of model training, including the forward and
backward pass of DNNs, not only that of updating parameters for an optimizer. For fair comparison,
experiments of CIFAR-10 and One Billion Words are conduced on a single NVIDIA TITAN RTX
GPU, while experiments of ImageNet and WMT are performed with distributed training on 8 NVIDIA
Tesla V100 GPUs.

Table 6: Comparison between different optimization methods on training speed and memory cost.
Cost includes all aspects of model training, not only that of an optimizer.

CIFAR-10 ImageNet 1BW WMT-14
Cost (×SGD) Speed Memory Speed Memory Speed Memory Speed Memory

SGD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Adam 1.16 1.01 1.01 1.03 1.19 1.34 1.13 1.04
Apollo 1.42 1.01 1.23 1.05 1.49 1.62 1.19 1.06
AdaHessian 5.76 2.12 11.78 2.51 3.51 2.78 8.46 2.47

From Table 6, we see that the second-order AdaHessian requires much more computational resource
than first-order methods on both time and memory. In addition, the slow-down of AdaHessian
becomes more significant for larger-scale models with distributed training across multiple GPUS,
such as ResNext-50 on ImageNet and Transformer on WMT.

F.4 EXPERIMENTS ON PARAMETER-WISE GRADIENT CLIPPING

In this section, we provide some preliminary results on parameter-wise gradient clipping, a modifica-
tion of the standard gradient clipping that is inherently proper to APOLLO. Parameter-wise gradient
clipping is to clip the gradient of each parameter individually based on its own norm. It can be
regarded as a trade-off between gradient clipping by global norm and by each value.

We conducted two groups of experiments to compare with the standard gradient clipping method —
language modeling and neural machine translation. The experimental settings for standard gradient
clipping are exactly the same as in section 4, where we clipped the gradient by global norm 1.0 for
each model. For parameter-wise gradient clipping, we clipped each parameter by 0.5 for the LSTM
model in language modeling, and 0.1 for the Transformer-base model in NMT.

23

Under review as a conference paper at ICLR 2022

Table 7: Comparison between APOLLO with standard and parameter-wise gradient clipping on One
Billion Words and WMT-14. We report the mean and standard variance over 5 runs.

1BW WMT-14
Standard 31.94±0.09 28.34±0.10
Parameter-wise 31.75±0.10 28.39±0.11

Table 7 lists the preliminary results. On both the two groups of experiments, parameter-wise gradient
clipping slightly outperforms the standard one.

G EXPERIMENTS WITH SMALL TOY CNN MODELS

In this section, we provide the comparison between SdLBFGS (Wang et al., 2017) and APOLLO
on CIFAR-10 dataset with a small toy CNN model9. The implementation of SdLBFGS is based on
the public PyTorch release10, which includes two important modifications to the original SdLBFGS
algorithm: identity matrix initialization and direction normalization (Li & Liu, 2018). For each
optimizer, we train the CNN model for 50 epochs with batch size equals to 64. After each epoch, the
learning rate is decayed by the rate 0.95. For the start learning rate for each optimizer, we performed
search in a wide range: η ∈ {0.2, 0.1, 0.05, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0002}, and select
the one obtains the optimal performance. The final start learning rates for SdLBFGS and APOLLO
are 0.1 and 0.001, respectively. Following Li & Liu (2018), the memory size of SdLBFGS is set to
100. For APOLLO, we linearly warmed up the learning rate from 0.01 in the first 10 updates. For
other hyper-parameters of each optimizer, we choose the default value.

Figure 6: Training loss and test accuracy of SdLBFGS and APOLLO on CIFAR-10 with the small toy
CNN model.

From Figure 6, we see that APOLLO convergences faster than SdLBFGS and obtains comparable test
accuracy. Note that APOLLO is much faster (more than 10 times for one iteration) than SdLBFGS
and consumes much less memory (SdLBFGS stores 100 previous update directions).

H SCALE-INVARIANT APOLLO

In (10), we rectify the absolute value of Bt with a convexity hyper-parameter σ:

Dt = rectify(Bt, σ) = max(|Bt|, σ)

To make APOLLO scale-invariant, we modify this rectification operation by incorporating a term
similar to the gradient “belief” (Zhuang et al., 2020):

Dt = rectify(Bt, σ) = max(|Bt|, σ‖gt+1 − gt‖∞) (30)

9https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
10https://github.com/harryliew/SdLBFGS

24

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
https://github.com/harryliew/SdLBFGS

Under review as a conference paper at ICLR 2022

It is not hard to prove that APOLLO with the rectification in (30) is scale-invariant. Importantly, after
this modification, σ is still coupled with the stepsize η, and we can set σ = 1 in practice. Thus, we
do not introduce new hyper-parameters.

25

	Coupled Stepsize and Convexity
	Convergence Analysis
	Convergence Analysis in Convex Optimization
	Convergence Analysis in Nonconvex Stochastic Optimization

	Extensions and Future Work
	Apollo with Decoupled Weight Decay
	Experimental Details
	Image Classification
	Language Modeling
	Neural Machine Translation
	The Choice of

	Detailed Experimental Results
	Detailed Results on Image Classification
	Effect of Weight Decay Rate on Optimization
	Comparison on Training Speed and Memory Cost
	Experiments on Parameter-Wise Gradient Clipping

	Experiments with Small Toy CNN Models
	Scale-Invariant Apollo

