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ABSTRACT

Large language models (LLMs) are expensive to deploy. Parameter sharing offers
a possible path towards reducing their size and cost, but its effectiveness in modern
LLMs remains fairly limited. In this work, we revisit “layer tying” as form of param-
eter sharing in Transformers, and introduce novel methods for converting existing
LLMs into smaller “Recursive Transformers” that share parameters across layers,
with minimal loss of performance. Here, our Recursive Transformers are efficiently
initialized from standard pretrained Transformers, but only use a single block of
unique layers that is then repeated multiple times in a loop. We further improve per-
formance by introducing Relaxed Recursive Transformers that add flexibility to the
layer tying constraint via depth-wise low-rank adaptation (LoRA) modules, yet still
preserve the compactness of the overall model. We show that our recursive models
(e.g., recursive Gemma 1B) outperform both similar-sized vanilla pretrained models
(such as TinyLlama 1.1B and Pythia 1B) and knowledge distillation baselines—and
can even recover most of the performance of the original “full-size” model (e.g.,
Gemma 2B with no shared parameters). Finally, we propose Continuous Depth-
wise Batching, a promising new inference paradigm enabled by the Recursive
Transformer when paired with early exiting. In a theoretical analysis, we show that
this has the potential to lead to significant (2-3×) gains in inference throughput.

1 INTRODUCTION

Efficient deployment of large language models (LLMs) demands a balance between performance
and resources (Raposo et al., 2024; Leviathan et al., 2023; Rivière et al., 2024; Wan et al., 2024;
Zhou et al., 2024). While larger models with more parameters consistently demonstrate superior
performance (Rosenfeld et al., 2020; Rae et al., 2021; Hoffmann et al., 2022), their substantial
memory and computational demands are expensive (Pope et al., 2023). Parameter sharing
approaches (e.g. Dehghani et al., 2019; Xia et al., 2019; Lan et al., 2020; Takase & Kiyono, 2023),
wherein weights are reused across model layers, can lower these costs by reducing memory footprint,
and thereby allow for the use of fewer (or lower-grade) accelerators, or larger batch sizes for better
throughput. While parameter sharing has shown encouraging capabilities in previous work (Lan et al.,
2020; Giannou et al., 2023), its application to modern LLMs has yielded limited reported success.

In this work, we revisit parameter sharing for LLMs, and propose novel methodologies to convert
existing, unshared models into smaller, and more efficient, Recursive Transformers. These models use
a single block of unique layers that are recursively reused across multiple loops, yet still achieve im-
pressive performance relative to their reduced size. To mitigate the potential performance degradation
associated with parameter sharing, we first initialize the shared block of layers based on the original
model’s pre-trained parameters, and then finetune the resulting recursive model for a limited number
of “uptraining” steps. Importantly, we show that our initialization strategies allow us to achieve strong
performance with minimal training time. This is aligned with observations that model compression
techniques such as layer skipping (Zhang et al., 2024a; Zeng et al., 2023; Fan et al., 2020; Elhoushi
et al., 2024), pruning (Frankle & Carbin, 2019; Ramanujan et al., 2020) or nesting (Devvrit et al.,
2023) can preserve surprisingly high performance—further motivating our approach of compressing
models to more compact yet performant architectures (here, repeated layers with low-rank adapters).
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Figure 1: Overview of the conversion from a vanilla N-layer Transformer to a Recursive Transformer
with N/K blocks of K shared layers. The Recursive Transformer is obtained by repeating a single
block of K layers multiple times, resulting in a looped architecture. The Recursive Transformer can
also be converted into a Relaxed Recursive Transformer by adding layer-specific LoRA modules.
This preserves many of the advantages of weight sharing, but also allows for better performance.

As depicted in Figure 1, we further propose the Relaxed Recursive Transformer, an extension of the
Recursive Transformer in which the weight tying across repeated layer blocks is slightly relaxed
through the incorporation of multiple layer-specific, low-rank adaptation (LoRA) modules (Hu et al.,
2022). Despite its simplicity, this strategy offers several non-trivial advantages. First, it allows for low-
rank deltas between shared layers, while only adding minimal overhead. Second, the rank of the LoRA
matrices can be adjusted to control the degree of relaxation, which directly influences model capacity.
Furthermore, since the relaxed model has the same overall shape as the original Transformer, we can
efficiently initialize LoRA modules via truncated Singular Value Decomposition (Hansen, 1987) on
the residual matrices between the original layer weights and the shared layer weights. Hence, the rank
values serve as a pivotal hyperparameter, enabling the Relaxed Recursive Transformer to seamlessly
transition between the two extremes of the vanilla and Recursive Transformer architectures.

While the primary focus of this paper lies in how to formulate and train Recursive Transformers,
we also highlight their potential to achieve significant throughput gains via a new batched inference
paradigm, Continuous Depth-wise Batching, that their recursive nature enables. Prior work introduced
continuous sequence-wise batching (Yu et al., 2022; Kwon et al., 2023), which leverages the fact that
the computation performed to compute a new token is functionally the same (and uses the same model
parameters) regardless of the token position within the sequence. This allows new requests to be
continuously scheduled when slots within a batch become available. For example, when one response
is completed, the start of the next response to be formed can immediately take the finished response’s
place in the batch, without waiting for the rest of the batch responses that might be longer. In our
Recursive Transformer, parameter sharing occurs not only across different timesteps, but also across
different depths (loop iterations). This enables an extra dimension of dynamic grouping: jointly com-
puting different iterations of the looped layer blocks per individual responses within the same batch.

Our key contributions are as follows:
• We introduce a framework for initializing and training Relaxed Recursive Transformers and demon-

strate strong performance compared to non-recursive models of comparable size. For example,
when we uptrained a recursive Gemma 1B model converted from a pretrained Gemma 2B (Team
et al., 2024), we observed up to 13.5 absolute accuracy improvement (22% error reduction) on
few-shot tasks compared to a non-recursive Gemma 1B model (pretrained from scratch). Further-
more, we show that by incorporating knowledge distillation (Hinton et al., 2015; Kim & Rush,
2016), our recursive Gemma model, uptrained on 60 billion tokens, achieves performance on par
with the full-size Gemma model trained on a massive 3 trillion token corpus (see §3.3 for details).

• Based on our Relaxed Recursive Transformer, we also evaluate a key use case for continuous
depth-wise batching with early-exiting (Bae et al., 2023; Schuster et al., 2022; Elbayad et al., 2020;
Graves, 2016a), which opportunistically makes predictions for samples with high confidence at
earlier stages. From our simulation, Early Exits reveal a substantial throughput improvement of
up to 2-3× compared to a vanilla Transformer with the same architecture. Notably, the recursive
Gemma model, which outperforms the vanilla Pythia model, can theoretically achieve a nearly
4× increase in throughput (see §3.8 for details).
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Figure 2: Left: An example of unshared, full-size model with 6 layers. Middle: Three proposed
methodologies for initializing looped layers in a Recursive Transformer. Each layer number indicates
the source layer in the full-size model used for initialization. Right: Example of a Relaxed Recursive
Transformer initialized by SVD method. Here, looped layers are initialized using the Average method.

2 EFFECTIVE MODEL COMPRESSION WITH RECURSIVE PATTERNS

In this section, we present the main details of our method for converting a vanilla Transformer model
into a parameter-shared model that outperforms models of equivalent size. We first provide a short
overview of the Transformer architecture (§2.1). Then, we introduce the Recursive Transformer and
present effective techniques to initialize its looped layers by leveraging the weights of the original
pretrained model (§2.2). In §2.3, we relax the parameter-sharing constraint in the model design,
and add a limited set of layer-specific parameters to further improve the model’s accuracy while
maintaining compact representations. Finally, we show how, beyond reduced memory, Recursive
Transformers readily support further throughput optimizations via a novel inference paradigm (§2.4).

2.1 BASIC TRANSFORMER ARCHITECTURE

Large language models (Rivière et al., 2024; Reid et al., 2024; OpenAI, 2023; Dubey et al., 2024)
typically leverage the Transformer architecture (Vaswani et al., 2017). A Transformer consists of L
layers, where the hidden states at each time step t are computed by running through the series of layers:

hℓ
t = f(hℓ−1

t ; Φℓ), ℓ ∈ [1, L], (1)

with h0
t representing the embedding of the token yt−1 from the previous time step, and Φℓ denoting

the trainable parameters of the ℓ-th layer. Each layer has two core components: a multi-head attention
(MHA) mechanism and a feed-forward network (FFN). MHA employs multiple attention heads
to capture diverse relationships within the input sequence via linear attention weights and scaled
dot-product attention mechanisms. The FFN structure typically consists of two linear transformations,
but different models exhibits distinct structural variations. See Appendix C for further details.

2.2 RECURSIVE TRANSFORMER: LOOPED LAYER TYING

In this work, we revisit parameter sharing in the context of LLMs and propose the Recursive
Transformer architecture. Among various looping strategies (refer to Appendix D), we specifically
adopt the CYCLE strategy (Takase & Kiyono, 2023) for Recursive Transformers, wherein a single
block of unique layers is recursively reused. This inherent design aligns seamlessly with early-exiting
mechanisms, potentially offering substantial speedup. The model’s hidden states are computed as:

hℓ
t = f(hℓ−1

t ; Φ′
((ℓ−1) mod L/B)+1), ℓ ∈ [1, L], (2)

where the parameter-shared model is parameterized by Φ′, and B denotes the number of looping blocks
(we restrict B to be a factor of L). For example, Gemma 2B (Team et al., 2024) with 18 layers can be
converted to a recursive variant with 2 blocks by storing weights for only the first 9 layers. The forward
pass will loop twice through these 9 layers. We tie all trainable parameters, including the weights of the
linear layers in the Transformer blocks and the weights of the RMSNorm (Zhang & Sennrich, 2019).

Initialization techniques for looped layers To mitigate the potential performance drop associated
with reduced capacity in parameter-shared models, we propose several novel initialization method-
ologies to facilitate effective knowledge transfer from unshared, pretrained models to Recursive
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Transformers. Figure 2 illustrates three such techniques. The Stepwise method selects intermediate
layers at specific intervals while keeping the first and last layer fixed. This is motivated by prior
work (Liu et al., 2023; Zhang et al., 2024a; Zeng et al., 2023; Fan et al., 2020) showing minimal
impact on generation quality when skipping a few layers in LLMs. The Average method initializes
the shared weights among tied layers by averaging their weight matrices, whereas the Lower method
directly uses weights from the first K layers of the unshared model. We conducted a brief uptraining
on 15 billion tokens to investigate the extent of performance recovery in these initialized models
(§3.4) and found the Stepwise approach to perform best for Recursive Transformers. However, we
found the Average method to perform best for Relaxed Recursive Transformers, discussed next.

2.3 RELAXED RECURSIVE TRANSFORMER: MULTI-LORA LAYERS

While full layer-tying is effective for compressing the model’s size while maintaining strong capa-
bilities, it has two noticeable limitations: (1) the set of possible model sizes is limited to scaling the
number of layers, and (2) each model layer ends up having to serve multiple roles associated with
different depths of the model. To address this, we introduce Relaxed Recursive Transformers in which
we incorporate independent adapter modules (Hu et al., 2022; Houlsby et al., 2019) for each layer,
relaxing the strict parameter sharing. While we experiment with various approaches like layer-specific
prefixes (Liu et al., 2021) (see Appendix K), we find low-rank adaptation (LoRA) modules (Hu et al.,
2022) to efficiently capture the subtle variations between tied layers. Specifically, we modify Eq. 2 to:

hℓ
t = f(hℓ−1

t ; Φ′
((ℓ−1) mod L/B)+1,∆Φ′

ℓ), ℓ ∈ [1, L], (3)

where ∆Φ′ is the (small) set of parameters for the LoRA modules.

In this relaxed model, each looped layer is augmented with multiple LoRA modules. For example, a
recursive model with two loop iterations has a single block of shared layers, and two different LoRA
modules are attached to each layer within this block. The first and second LoRA modules per layer
are used during the first and second loop iterations, respectively. Functionally, these LoRA modules
introduce low-rank deltas to all of the shared, linear weight matrices. More concretely, for a base
transformation h = W′x, our modified forward pass yields h = W′x+∆W′x = W′x+BAx, where
A ∈ R(r×k) and B ∈ R(d×r) denote the weight matrices of LoRA with rank r.

LoRA initialization via truncated SVD Unlike typical LoRA finetuning setups that train only
the LoRA parameters, here we train all model parameters to let the shared parameters learn an
optimal centroid for all of the layer depths that they support. Therefore, instead of following standard
zero initialization for adaptation to the frozen base model, we propose novel initialization methods,
especially designed for Relaxed Recursive Transformers. To effectively match the performance of
the original full-size model after initializing the tied weights as described in §2.2, we aim for the sum
of the tied weights (Φ′) and LoRA weights (∆Φ′) to approximately recover the full-size model’s
weights (Φ). We exploit truncated Singular Value Decomposition (SVD) (Hansen, 1987) on residual
matrices between original weights and tied weights:

Uℓ
r,Σ

ℓ
r,V

ℓ
r = Truncated SVD(Wℓ −W′

((ℓ−1) mod L/B)+1; r), ℓ ∈ [1, L], (4)

where outputs retain the first r columns corresponding to the r largest singular values. W denotes
the weight matrices of the full-size model, and W′ denotes those of the Recursive Transformer. We
initialize the LoRA’s weights with principal components in Eq. 4: B as the product of Ur and Σr,
and A as the transpose of the right singular vectors Vr (see Figure 2). With sufficiently large ranks,
our Relaxed Recursive Transformer (Eq. 3) approximates the full-size vanilla model (Eq. 1):

Wx ≈ W′x + (UrΣr)(V
⊤
r )x = W′x +BAx = W′x +∆W′x, (5)

Meanwhile, setting the rank to zero reduces the model to a Recursive Transformer, as the LoRA
modules contribute no additional parameters, highlighting the flexibility of this relaxation approach.

2.4 CONTINUOUS DEPTH-WISE BATCHING AND EARLY-EXITING

In real-world deployments, user requests arrive sequentially and asynchronously. Recent research
has introduced continuous sequence-wise batching (Yu et al., 2022; Kwon et al., 2023), a serving
strategy that allows new requests to immediately replace completed (terminated) sequence within a
batch. This approach exploits the fact that the computation performed for a new token is functionally
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Figure 3: An illustrative example of a continuous depth-wise batching strategy together with early-
exiting. We assume a maximum batch size of 32, three model “stages” (e.g., layer blocks), and a
stream of batched inputs that arrive sequentially in time. In (a), all three model stages must complete
for the first (non-maximal) batch of 16 before the second batch of 32 examples that arrives next can
be started. In (b), however, half of second batch of 32 examples can share computation with the first
batch of 16 that is still finishing. Finally, (c) demonstrates a situation where some examples within
each batch can early-exit after stage 2; their vacant slots in the batch are then immediately filled.

the same and utilize the same model parameters. By continuously scheduling requests in this manner,
models can operate at their maximum batch capacity, thereby enhancing serving efficiency.

The repetitive structure of Recursive Transformers allows for the same function to be applied not
just across sequences, but also across depths (loop iterations). This introduces a new dimension for
continuous batching, which we call Continuous Depth-wise Batching. This technique enables the
simultaneous computation of different iterations of the looped layer block for different samples (See
Figure 3 for an example with a single forward pass; this easily extends to multiple decode iterations
per request.) With a maximum batch size of 32, a standard Transformer must wait for all model
stages to complete before processing new requests. In contrast, our Recursive Transformer, because it
shares layer functions across all stages, can immediately schedule new incoming requests at timestep
2, maximizing batch size utilization. This strategy can yield a substantial speedup in generation and
reduce the time to first token (Fu et al., 2024; Miao et al., 2023) through faster scheduling.

Throughput improvements from depth-wise batching are further amplified when combined with early-
exiting (Bae et al., 2023; Schuster et al., 2022; Elbayad et al., 2020). As depicted in Figure 3c, once
some samples exit after certain looping iterations, queued requests can then be immediately scheduled.
While Recursive Transformers leverage the speedup from early-exiting, they also inherently address
a key challenge of batched inference in early-exiting approaches: the synchronization issue when
serving large batches, as early-exited tokens might wait for others to complete processing through
the entire model. We demonstrate that Recursive Transformers, equipped with this dynamic sample
scheduling at various depths, can theoretically allow up to 2-3× speedup on evaluated LLMs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluate our method on three popular pretrained LLMs: Gemma 2B (Team et al., 2024), TinyL-
lama 1.1B (Zhang et al., 2024b), and Pythia 1B (Biderman et al., 2023). Table 2 summarizes each
model’s architecture and pretraining recipes, and their few-shot performance is summarized in Ap-
pendix F. After converting to Recursive Transformers, we uptrained models on the SlimPajama
dataset (Soboleva et al., 2023). We used the Language Model Evaluation Harness framework (Gao
et al., 2023) to evaluate accuracy on seven few-shot tasks, and averaged them for performance
comparison. Detailed experimental setup for uptraining or evaluation can be found in Appendix G.

3.2 NON-RECURSIVE MODEL BASELINES

Full-size model Our ultimate goal is for the Recursive Transformer to achieve performance compa-
rable to the original, full-size pretrained model, without much uptraining. However, we observed that
the distribution divergence between the pretraining and uptraining datasets can hinder achieving the
desired performance. In particular, uptraining on new datasets, particularly those of comparatively
lower quality, sometimes led to performance degradation on certain benchmarks. Table 4 summarizes
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Figure 4: Recursive and Relaxed Recursive Transformers achieve comparable performance to full-size
models, and significantly outperform reduced-size models. Recursive models were initialized using
the Stepwise method, while relaxed models utilized Average and SVD methods for looped layers
and LoRA modules. We show the performance of four different rank values: 64, 128, 256, and 512.
Recursive and reduced-size models were either uptrained (recursive model) and pretrained from
scratch (reduced-size model) on 60 billion tokens using a knowledge distillation objective.

the evaluation results of full-size models based on the number of uptraining tokens. For instance,
in the case of Gemma, where the pretraining dataset is unreleased but potentially well-curated (Team
et al., 2024), all few-shot performance metrics gradually decreased after uptraining on the SlimPajama
dataset. This suggests that the achievable upper bound performance with the SlimPajama dataset
might be considerably lower than the original model performance. Therefore, we set the target
performance for Gemma and Pythia models as the performance achieved by uptraining a full-size
pretrained model with an equivalent number of tokens. Since TinyLlama was already pretrained on
SlimPajama—which is the same dataset we use for uptraining (eliminating any distribution shift)—for
slightly longer than our runs, we use the performance of the original checkpoint as reference.

Reduced-size model To demonstrate the performance advantages of Recursive Transformers
compared to models with an equivalent number of parameters, we introduce another baseline:
reduced-size models. These models have either half or one-third the parameters of their full-sized
counterparts, matching the parameter count of our recursive models. However, these reduced models
are pretrained from scratch on the same training recipe (number of training tokens and distillation
from full-size model), but without the benefits of the pretrained weights and the looping mechanism.
This comparison serves to highlight the efficacy of our initialization techniques and the recursive
function itself in attaining strong performance, even with a constrained model size.

3.3 MAIN RESULTS

Figure 4 presents the few-shot performance of Recursive Transformers with two blocks and their
relaxed variants. Recursive Transformers, even without relaxation, demonstrate remarkably high
performance despite having only half the parameters of the full-size model. The Gemma model
achieved a 10%p performance gain compared to the reduced-size model, which was also trained on
60 billion tokens using distillation loss. Remarkably, the recursive TinyLlama model even surpassed
the vanilla model’s performance, even though the latter was pretrained on a larger corpus of 105
billion tokens. Our initialization techniques proved highly effective in achieving this superior result,
along with the benefit of the uptraining dataset (SlimPajama) being the same as its pretraining dataset.

The relaxed models effectively interpolate between the full-size model and the Recursive Transformer,
depending on the LoRA rank. As the model size increases with larger LoRA modules, SVD
initialization methods allow for a more precise approximation of full-rank matrices, resulting in
improved performance. Notably, the relaxed Gemma model with a rank of 512 achieves performance
on par with the original model pretrained on 3 trillion tokens (58.4% vs. 58.6%), despite using fewer
parameters and uptraining on only 60 billion tokens. This trade-off provides flexibility in selecting
the best configuration for various deployment scenarios. We believe that additional uptraining and
higher-quality datasets could yield better performance with even more streamlined models.

In the subsequent sections, we provide a comprehensive overview of extensive ablation studies
conducted prior to achieving this final performance. In §3.4, we delve into the analysis of various
initialization methodologies for Recursive Transformers. Insights into the relaxation model are
detailed in §3.5. Finally, we explore enhanced training strategies like knowledge distillation (§3.6).
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Figure 5: (a) Among the proposed methods, the Stepwise method obtains the lowest training loss
on the SlimPajama dataset. (b) The Stepwise method consistently demonstrate the highest average
few-shot accuracy across three architectures. (c) Recursive Transformers initialized with the Stepwise
method demonstrated significant performance gains compared to non-recursive model baselines.

3.4 INITIALIZATION TECHNIQUES FOR LOOPED LAYERS

Stepwise initialization serves as the best initial point for Recursive Transformers We present
the training loss of Gemma models initialized using three different methods in Figure 5a, and their
few-shot performance in Figure 5b. Our proposed methods significantly outperformed random initial-
ization, which simply adds recursion to a reduced-size model, suggesting that leveraging pretrained
weights in any manner is beneficial for performance boost. Moreover, the Stepwise methodology
consistently demonstrated best performance, aligning with insights that LLMs can preserve perfor-
mance even with a few layers skipped (Raposo et al., 2024; Zhang et al., 2024a; Elhoushi et al.,
2024). Interestingly, as summarized in Table 5, the recursive TinyLlama model, uptrained on only
15 billion tokens, yields few-shot performance comparable to the original model pretrained on 105
billion tokens. This suggests that with sufficient training, even a recursive architecture can match the
performance of a full-size pretrained model (Dehghani et al., 2019; Takase & Kiyono, 2023).

Recursive Gemma 1B outperforms both pretrained TinyLlama 1.1B and Pythia 1B The looped
Gemma 1B model, utilizing our proposed Stepwise method, outperformed reduced-size baselines
with equivalent parameter counts by up to 13.5 percentage points (51.7% vs. 38.2%). Furthermore,
it even outperformed the full-size TinyLlama 1.1B and Pythia 1B models (see Figure 5c). This is a
noteworthy achievement given that Pythia was pretrained on 300 billion tokens, whereas the recursive
Gemma was uptrained on only 15 billion tokens. Consequently, high-performing LLMs serve as a
promising starting point, as their recursive counterparts readily outperform other ordinary vanilla
models of similar size. Further details can be found in Appendix I.

Takeaways for the Recursive Transformer

We find that converting well-pretrained models into Recursive Transformers leads to high-
performing models with minimal uptraining. Notably, initializing looped layers via the
Stepwise method yields the best results. With just 15 billion tokens of uptraining, a recursive
Gemma 1B model outperforms even the full-size pretrained TinyLlama and Pythia models.

3.5 RELAXATION OF STRICT PARAMETER SHARING VIA LORA MODULES

Average initialization for looped layers optimally suits Relaxed Recursive Transformer Fig-
ures 6a and 6b illustrate the effect of relaxing parameter sharing via layer-wise LoRA modules. No-
tably, initializing tied layers in relaxed models with Average method yielded substantial performance
improvements, even outperforming the non-relaxed model initialized with Stepwise. Approximating
residual matrices between averaged weights and their individual weights appears readily achievable
using truncated SVD with low ranks. In contrast, we observed an intriguing phenomenon where our
models initialized with Stepwise occasionally showed performance degradation after relaxation. This
is likely because capturing the nuances between entirely distinct layer weights is challenging with
an insufficient rank, leading to a suboptimal solution. Further details are provided in Appendix J.
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Figure 6: The Relaxed Recursive Transformer, with its looped layer initialized using Average method,
achieved the best performance in terms of both (a) training loss and (b) few-shot accuracy. The
models utilize two blocks, with the LoRA modules initialized using the SVD method at a rank of 512.
(c) SVD initialization method significantly enhanced performance compared to zero initialization.

SVD initialization to approximate pretrained weights outperforms zero initialization LoRA
modules initialized with zero values guarantee that the model begins training from the same point as
the non-relaxed model. Conversely, SVD initialization positions the model closer to either the full-size
model (with full-rank) or the non-relaxed model (with small rank). To emphasize the effectiveness of
initializing near full-size model weights, we compared these two methods at a moderately large rank
of 512, as shown in Figure 6c. Our proposed SVD strategy demonstrated an impressive performance
boost of up to 6.5 points, facilitating faster convergence by updating the principal low-rank matrices
(aligned with findings in Meng et al. (2024)). For results across other architectures, refer to Figure 15.

Higher rank enhances recovery of original pretrained weights At full rank, relaxed models can
perfectly match full-size pretrained models. Consequently, as illustrated in Figure 7a, performance
generally improves with increasing rank, resulting in a clear Pareto frontier between model size and
performance. However, only Stepwise initialization showed a U-shaped performance trend: a middle-
range rank resulted in poor approximation, whereas very low ranks (akin to random initialization for
LoRA modules) yielded better performance. The overall results are summarized in Table 9.

Takeaways for the Relaxed Recursive Transformer

Adjusting the LoRA rank in the Relaxed Recursive Transformer, together with our SVD-based
initialization technique, allows for a smoother trade-off between a fully weight-tied recursive
model and a vanilla model. Furthermore, we find that initializing the shared weights in the
looped layers with the Average method leads to the best performance in this setting.

3.6 EXTENDED UPTRAINING AND KNOWLEDGE DISTILLATION

We further enhanced the performance of our low-rank models by introducing two techniques: up-
training on an extended corpus and knowledge distillation from the full-sized model. Specifically, we
increased the number of uptraining tokens from 0.5% to 2% of the total 3 trillion tokens used for
pretraining Gemma models, resulting in a total of 60 billion tokens. Additionally, we regularized the
losses using a forward Kullback-Leibler divergence (Hinton et al., 2015; Kim & Rush, 2016), which
exhibited the best performance gains among the examined distillation losses. Table 11 summarizes
the results of various ablation studies conducted to investigate the impact of these two techniques.

The combined effect of these techniques is presented in Figure 7b, demonstrating an improvement of
up to 4.1 percentage points in few-shot accuracy compared to the previous 15 billion token uptraining
results. Notably, the relaxed Gemma model with a rank of 512 nearly matched the performance of
the full-size model. We also expect that further performance gains can be achieved with a much
lighter recursive model by utilizing a superior teacher model or conducting more extensive training
on high-quality data. Figure 7c illustrates the Pareto frontier achieved by the final models. All models
exhibit competitive performance compared to the full-size model. Moreover, the superior performance
of the recursive Gemma model strongly highlights the advantages of converting high-performing
LLMs to a recursive architecture. Additional details can be found in Appendix L.
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(c) Overall performance

Figure 7: (a) Increasing the LoRA rank typically leads to improved performance in relaxed Gemma
models, attributed to the use of SVD initialization. (b) Extended uptraining and knowledge distillation
yielded substantial accuracy improvements for Gemma models. Note that the full-size model is a
pretrained model that is further uptrained on 60 billion tokens. (c) Recursive and Relaxed Recursive
Transformers achieve a compelling Pareto frontier with respect to model size and performance. Recur-
sive and relaxed models used Stepwise and Average method to initialize looped layers, respectively.

Table 1: A small loss coefficient to the first loop output (intermediate output) can significantly improve
intermediate performance without compromising the final performance. Performance was evaluated
under a static-exiting scenario (Schuster et al., 2022), where all tokens exit at either first or second
loop. We further trained the previously uptrained Gemma models on 15 billion tokens (post-training).
Delta (∆) denotes the performance changes in the final outputs after early-exit training.

Uptrain Looping Early-Exit Train Few-shot Accuracy ↑
N-emb PT Ntok Block Init Ntok CE KD LD HS PQ WG ARC-e ARC-c OB Avg ∆

0.99B ✓ 15B 2 Step - - - 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -

0.99B ✓ 15B 2 Step 15B Weighted ✗
48.9 55.5 72.7 55.3 54.9 30.1 36.0 50.5 – 1.2
49.5 54.8 72.0 53.4 54.1 29.1 35.6 49.8 -
53.0 59.1 73.9 55.4 57.4 30.6 37.8 52.5 +0.80.99B ✓ 15B 2 Step 15B Agg (0.1) ✗ 45.9 51.2 71.4 54.5 48.1 26.8 32.0 47.1 -

0.99B ✓ 15B 2 Step 15B Weighted ✓
47.7 55.1 73.2 55.6 54.5 29.1 37.2 50.4 – 1.3
48.3 54.9 72.1 55.9 54.3 28.4 35.4 49.9 -
52.9 58.9 73.7 55.7 57.5 31.1 38.2 52.6 +0.90.99B ✓ 15B 2 Step 15B Agg (0.1) ✓ 46.3 52.1 71.6 55.3 49.2 28.5 32.6 48.0 -

3.7 EARLY-EXITING AND RECURSIVE TRANSFORMER

The throughput of Recursive Transformers can be amplified by an early-exiting framework. Hence,
we further train intermediate representations from fewer looping iterations to enable token prediction.
We conducted an ablation study on various strategies, as summarized in Table 1 (more detailed results
are presented in Table 13). Directly applying the weighted CE loss (L =

∑B
i=1 αiLi where αi =

i/
∑

i i) commonly used in prior works (Schuster et al., 2022; Bae et al., 2023) led to an overemphasis
on the training of intermediate representations. To address this, we employ an aggressive coefficient
strategy that aggressively reduces the loss coefficient for intermediate outputs while maintaining a
coefficient of 1 for the final output. Our experiments demonstrated that an aggressive coefficient of
0.1, utilizing knowledge distillation from the detached final outputs (Bae et al., 2023), effectively
preserves final performance while enhancing intermediate performance. Notably, the first loop output
yielded only a difference of 4.6 percentage points in accuracy compared to the final output. This
underscores the potential to maximize the benefits of early-exiting in parameter-shared LLMs.

We applied this post-training strategy for early-exiting to our final uptrained models (shown in
§3.3), with all experimental results detailed in Appendix M. The aggressive coefficient strategy,
combined with self-distillation, consistently achieved the best performance for intermediate outputs
while maintaining strong performance for the final loop output across all models. While the optimal
strategy from non-relaxed models was applied to relaxed models, a tailored training approach could
further improve intermediate loop output performance in Relaxed Recursive Transformers.
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1.30B 2 256 CDB ✓ 55.2 1921 ×1.78 ×1.26
1.60B 2 512 CDB ✓ 56.2 1719 ×1.59 ×1.13

Figure 8: Continuous depth-wise batching (CDB) with early exiting enables Recursive Transformers
to theoretically achieve significant throughput improvements. Throughput (tokens/sec) was averaged
across SlimPajama, RedPajama, and PG19, and then normalized to the throughput of the vanilla
Pythia model. The accompanying table gives detailed throughout and performance measurements
for Gemma. ∆V measures throughput relative to the vanilla Gemma model, while ∆Seq measures
throughput relative to the vanilla Gemma model with continuous sequence-wise batching (CSB).

3.8 HYPOTHETICAL GENERATION SPEEDUP VIA CONTINUOUS DEPTH-WISE BATCHING

How we theoretically approximate actual throughput As developing practical early-exiting
algorithms is beyond the scope of this work, we present hypothetical throughput improvements based
on an oracle-exiting approach (Schuster et al., 2022; Bae et al., 2023). This assumes that tokens exit at
the earliest looping block where their prediction aligns with the final loop’s prediction. We simulated
the generation of language modeling datasets as if they were generated by our models, to obtain
the exit trajectory for each token. Then, we measured the average per-token generation time under
specific constraints, such as different memory limit or context lengths. Using these measurements
and the exit trajectory data, we conducted simulations to estimate theoretical throughput. Detailed
explanations and limitations are discussed in Appendix N.

Continuous depth-wise batching with early-exiting can substantially boost throughput Figure 8
illustrates the throughput of our proposed models and the vanilla Transformer across three architec-
tures. We consistently achieve higher speeds than the vanilla models by combining continuous depth-
wise batching with early-exiting, even surpassing those with continuous sequence-wise batching (Yu
et al., 2022; Kwon et al., 2023). In particular, Recursive models demonstrate up to 2.66× speedup in
generation compared to vanilla counterparts. Additionally, the recursive Gemma model significantly
outperforms the vanilla pretrained Pythia model, with nearly 4× improvement in throughput. Relaxed
recursive models show a clear trade-off between achievable performance and throughput, modulated
by the degree of relaxation through LoRA ranks. This characteristic enables flexible model selection
tailored to specific deployment scenarios. Comprehensive results are presented in Tables 17 and 19.

Takeaways for Continuous Depth-wise Batching

We analyze the potential for throughput improvement in the Recursive Transformer via contin-
uous depth-wise batching, a novel inference paradigm. In theory, we find that we can achieve
up to 2-3× speedup compared to a vanilla Transformer. This even outperforms the throughput
gain achieved by existing continuous sequence-wise batching methods in vanilla models.

4 CONCLUSION

In this work, we introduced Recursive Transformers, in which we compress LLMs via parameter shar-
ing across recursively looped blocks of layers. Additionally, we presented a novel relaxation strategy
that allows for low-rank deltas between shared layers by integrating layer-specific LoRA modules into
the fully-tied structure. Through novel initialization techniques for looped layers and LoRA modules,
we achieved significant performance improvements that closely approximate the original pretrained
model. Finally, by exploiting the recursive patterns and an early-exiting approach, we propose a
continuous depth-wise batching paradigm tailored for efficient serving systems of Recursive Trans-
formers. We theoretically demonstrated that an oracle-exiting strategy can yield substantial throughput
gains, reaching up to 2-3× speedup. The limitations and future works are discussed in Appendix A.
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A LIMITATION AND FUTURE WORK

Compatibility with sparse designs Sparsity-based approaches, such as pruning (Han et al., 2015),
quantization (Jacob et al., 2018), or layer-skipping mechanisms (Raposo et al., 2024), recently also
give promising model compression results. In fact, many of these techniques are complementary to
our approach: for example, we can seamlessly have a recursive, sparse architecture. In this work,
we rather choose to focus on recursive dense designs (a domain that remains relatively unexplored)
that also have very promising, practical performance traits (i.e., allowing for continuous depth-wise
batching for faster throughput). That said, while in this work we take the first step at studying Relaxed
Recursive Transformer with dense Transformer layers, we do believe that incorporating Mixture-of-
expert (Fedus et al., 2022), activation-skipping (Liu et al., 2023) and SSM components (Glorioso
et al., 2024) within the looped blocks are promising directions for future research.

Latent Reasoning via Recurrent Depth Beyond efficiency gains through down-scaling materialized
parameters with recursive patterns, an alternative research direction lies in scaling-up recurrent depth
to facilitate latent reasoning. Specifically, recurrent computation can manifest thinking vertically by
processing internal hidden states at each depth. One promising approach involves leveraging contem-
plation tokens (Pfau et al., 2024; Goyal et al., 2024) or latent (continuous) space representations (Hao
et al., 2024; Cheng & Van Durme, 2024) to enhance reasoning in mathematical and code generation
tasks. Another valuable direction focuses on enhancing the efficiency and training stability of ap-
proaches that recursively scale-up depth, building upon concepts of deep thinking (Schwarzschild
et al., 2021; Geiping et al., 2025).

Scaling up Recursive Transformers Scaling our approach to larger LLMs (7B and beyond) is
a promising avenue for future research. While our methodology is expected to remain effective,
achieving comparable performance may require significantly higher uptraining costs. Increased model
size offers the potential for a reduced memory footprint from recursive patterns; however, it is unclear
whether this translates to larger batch sizes, given the corresponding increase in hidden dimensions.
Nevertheless, our continuous depth-wise batching will yield considerable gains in serving efficiency.

Beyond hypothetical generation speedup Our oracle-exiting approach assumes any intermediate
prediction matching the final output can be exited. However, accurate throughput measurement
requires confidence-based early-exiting algorithms (Schuster et al., 2022; Bae et al., 2023). Moreover,
practical deployment needs to address decoding bottlenecks like key-value cache computation
for exited tokens in remaining loops. Nevertheless, there are potential solutions: for example, the
missing KV cache computations can be addressed by leveraging continuous depth-wise batching,
allowing the KV cache for exited positions in subsequent loops to be performed in parallel with
the computations for the next sequence sample. Moreover, we can explore key-value cache sharing
strategies (Sun et al., 2024; Brandon et al., 2024) for future work.

Efficient serving of multi-LoRA layers Relaxed models require the computation of distinct LoRA
modules during batched inference, akin to multi-task learning (Feng et al., 2024; Wang et al., 2023),
hindering parallel computation. We concatenated LoRA weights into a single weight to improve
efficiency over sequential computation, yet it introduces redundancy. To mitigate this, we can
explore optimized CUDA kernels for LoRA serving (Sheng et al., 2023; Chen et al., 2024a) and
parallelization across accelerators, inspired by distributed training for Mixture of Experts (Fedus
et al., 2022; Gale et al., 2023).

B RELATED WORK

Cross-layer parameter sharing has proven to be an effective method for achieving parameter efficiency
in deep learning models such as RNNs (Sherstinsky, 2018; Graves, 2016b), CNNs (Eigen et al., 2014;
Savarese & Maire, 2019; Guo et al., 2019; Shen et al., 2022), and the popular Transformer architecture.
The Universal Transformer (Dehghani et al., 2019), a recurrent self-attentive model, demonstrated
superior performance to non-recursive counterparts with significantly fewer parameters. This cross-
layer parameter sharing approach has subsequently been explored in various tasks, including language
understanding (Lan et al., 2020), language modeling (Bai et al., 2019; Mohtashami et al., 2023;
Liu et al., 2024b; Csordás et al., 2024; Glorioso et al., 2024), and machine translation (Dabre &
Fujita, 2019; Milbauer et al., 2023; Xia et al., 2019; Takase & Kiyono, 2023; Ge et al., 2022). These
methods often claim to achieve comparable performance with more compact models and increased

21



Published as a conference paper at ICLR 2025

computational speed, while also setting the ground for effective adaptive compute solutions (Dehghani
et al., 2019; Graves, 2016b; Schuster et al., 2021).

Concurrently, there has been growing interest in exploiting recurrent architectures for algorithmic or
logical reasoning tasks (Saunshi et al., 2024). Prior research (Schwarzschild et al., 2021; McLeish &
Tran-Thanh, 2022) has shown that recurrent networks can extrapolate reasoning strategies learned
on simple problems to harder, larger problems through additional recurrences during inference. The
looped Transformer structure has also been employed to emulate basic computing blocks for program
simulation (Giannou et al., 2023), to learn iterative algorithms for data-fitting problems (Yang
et al., 2024), to achieve length generalization in algorithmic tasks (Fan et al., 2024), and promising
theoretical potential for few-shot learning (Gatmiry et al., 2024).

However, previous work has predominantly focused on relatively small Transformer models, trained
from scratch without leveraging pretrained model weights. Our work distinguishes itself by investi-
gating parameter sharing in the context of LLMs and proposing effective initialization strategies that
leverage the knowledge embedded within existing LLMs. To the best of our knowledge, we are the
first to propose a generalized framework for parameter-shared models, enabling relaxation in weight
tying constraints through layer-specific modules.

In this paper, we also discuss how Recursive Transformers can be well suited for early-exiting
techniques to accelerate decoding in LLMs. The inherent recursive structure readily enables early-
exiting for individual responses within a large serving batch, which is often a practical limitation of
such techniques. Vanilla Transformers encounter a synchronization issue with early-exiting, where
the model must forward all layers if even a single token in a batch requires full processing (exited
tokens must wait for them). Several approaches attempt to exploit this idle time by computing
missing KV caches for exited tokens in later layers, which are essential for subsequent sequence
generation. These techniques include state propagation (Schuster et al., 2022; Elbayad et al., 2020),
SkipDecode (Del Corro et al., 2023), and parallel decoding (which can be combined with Speculative
Decoding) (Bae et al., 2023; Elhoushi et al., 2024; Liu et al., 2024a; Chen et al., 2024b; Tang
et al., 2024). Nevertheless, the heterogeneous parameters across varying model depths still hinder
the efficient progression of exited tokens to subsequent sequences. In contrast, our Recursive
Transformers enable parallel computation for tokens at different depths and sequences (in a continuous
depth-wise batching paradigm)—also allow for parallel computation of missing KV caches with
minimal overhead during the memory-bounded decoding phase.

C COMPONENTS IN TRANSFORMER ARCHITECTURE

The Transformer block consists of two core components: a multi-head attention (MHA) mecha-
nism and a feed-forward network (FFN). MHA utilizes multiple attention heads to capture diverse
relationships within the input sequence. The computation within each attention head is formulated as:

Attention(Q,K,V) = softmax
(
QKT

√
dk

)
V,

where Q, K, and V are linear projections of the input, parameterized by learned weight matrices
WQ

ℓ , WK
ℓ , and WV

ℓ , respectively. The outputs from each head of the multi-head attention are
concatenated and then projected back to the original hidden size using a learned weight matrix Wout

ℓ .

While the FFN structure typically consists of two linear transformations, in the Gemma model, it
deviates from this standard architecture as follows:

FFN(x) = Wdown
ℓ (GELU(xWgate

ℓ ) ∗ xWup
ℓ )

with three learned linear weight matrices and a GeGLU activation (Shazeer, 2020).

D PARAMETER SHARING STRATEGY

Takase & Kiyono (2023) discuss three strategies for partial layer tying in Transformer models, as
depicted in Figure 9. The SEQUENE strategy is the simplest, assigning the same parameters to
consecutive layers. The CYCLE strategy repeatedly stacks a single block of unique layers to achieve
the desired depth. Meanwhile, the CYCLE (REV) strategy stacks the lower layers in reverse order
for the remaining layers.
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In the comparative analysis of SEQUENCE and CYCLE strategies (Liu et al., 2024b), CYCLE
demonstrated marginally superior zero-shot performance. Although the SEQUENCE approach,
which caches shared weights (the capacity of SRAM is typically sufficient to hold a single transformer
block) and computes them iteratively, has the potential to mitigate the weight transfer bottleneck
between SRAM and DRAM, we prioritized compatibility with early-exiting. Consequently, we
specifically employed the CYCLE strategy, which enables continuous depth-wise batching and
thereby maximizes the throughput of Recursive Transformers.
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(a) SEQUENCE
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Layer 5
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(b) CYCLE
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Layer 5

Layer 6

(c) CYCLE (REV)

Figure 9: Three strategies for parameter sharing (Takase & Kiyono, 2023). The examples utilize
models with six layers, where identical colors represent shared weights.

E ILLUSTRATIVE EXAMPLES OF SVD INITIALIZATION IN RELAXED
RECURSIVE TRANSFORMER

We propose an SVD initialization approach for LoRA modules within a Relaxed Recursive
Transformer, effectively steering the summation of base and LoRA weights towards the pretrained
weights of their corresponding depth. Figure 10 illustrates an overview of how the LoRA module is
initialized under three different initialization techniques (Stepwise, Average, and Lower) for looped
layers. One crucial point is that if the initialized looped layer’s weights match those of the original
pretrained model, its corresponding LoRA module undergoes standard zero initialization: random
Gaussian for matrix A and zero for B. For example, with the Stepwise method, the first loop’s LoRA
module receives standard zero initialization, while the second loop’s LoRA is initialized using our
proposed initialization.
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Stepwise-based Average-based Lower-based

Figure 10: Overview of the proposed SVD initialization method for the Relaxed Recursive Trans-
former. We visualize how LoRA modules are initialized under three different looping initialization
methods, assuming a full-size model with six layers and two looping blocks. A matrices are colored
according to the corresponding full-size model weights, while B matrices are colored based on the
looped layer weights. White B matrices indicate cases where the full-size model and recursive model
weights are identical, resulting in standard zero initialization.
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F OVERVIEW OF THREE PRETRAINED LLMS

We utilized three pretrained models—Gemma 2B (Team et al., 2024), TinyLlama 1.1B (Zhang et al.,
2024b), and Pythia 1B (Biderman et al., 2023)—and converted them into Recursive Transformers. De-
tailed model configurations are summarized in Table 2, and their corresponding few-shot performance
results are presented in Table 3.

Table 2: Key parameters and pretraining details of three models. The sizes of each model refer to
the number of embedding parameters (embedding matrices and classifier heads), and all other non-
embedding parameters. Gemma and TinyLlama utilize Multi-Query (Shazeer, 2019) and Grouped-
Query (Ainslie et al., 2023) attention mechanisms, which leads to a reduced number of key-value
heads. ∗ Especially, we take an early TinyLlama checkpoint to study an under-trained model.

Model Architecture Pretraining

Models N-emb Emb NL dmodel Nhead NKV dhead Vocab Dataset Ntok Lctx

Gemma 2B 1.98B 0.52B 18 2048 8 1 256 256K Unreleased 3T 8K

TinyLlama 1.1B 0.97B 0.13B 22 2048 32 4 64 32K SlimPajama + 73B∗
2KStarcoderdata 32B

Pythia 1B 0.81B 0.21B 16 2048 8 8 256 50K Pile 300B 2K

Table 3: Few-shot performance of pretrained models. Few-shot accuracy is measured on the LAM-
BADA, HellaSwag, PIQA, WinoGrande, ARC-easy, ARC-challenge, and OpenBookQA benchmarks.
We evaluated intermediate checkpoints up to the fully trained checkpoint for TinyLlama 1.1B. Among
these, we utilized the 105B intermediate checkpoint to study an under-trained model.

Few-shot Accuracy ↑
Models N-emb Dataset Ntoken LD HS PQ WG ARC-e ARC-c OB Avg

Gemma 2B 1.99B Unreleased 3T 63.13 71.38 78.13 65.04 72.26 41.89 40.20 61.72

TinyLlama 1.1B 0.97B SlimPajama +

105B 43.26 42.23 66.81 53.35 44.74 23.21 29.20 43.26

Starcoderdata

503B 48.92 49.56 69.42 55.80 48.32 26.54 31.40 47.14
1T 53.00 52.52 69.91 55.96 52.36 27.82 33.40 49.28
2T 53.33 54.63 70.67 56.83 54.67 28.07 33.40 50.23
3T 58.82 59.20 73.29 59.12 55.35 30.12 36.00 53.13

Pythia 1B 0.81B Pile 300B 57.52 49.10 70.40 52.80 51.89 26.71 33.40 48.83

This diversity offers several benefits. First, with three versions of recursive models, we can compare
their performance based on the number of trainable parameters. Notably, the comparison between
the recursive Gemma and the pretrained TinyLlama and Pythia models highlights that leveraging
well-trained model weights can lead to a superior Recursive Transformer of equivalent size, even
with substantially lower uptraining costs. Second, by utilizing models ranging from under-trained
(e.g., TinyLlama) to significantly over-trained (e.g., Gemma), we can gain insights into the uptraining
costs required for Recursive Transformers to closely match the performance of pretrained models.
Finally, the diversity in pretraining datasets allows us to observe how Recursive Transformers perform
when faced with distribution shifts in the uptraining dataset. Table 4 in Section 3.2 presents the
evaluation results obtained after uptraining each of the pretrained models. While TinyLlama readily
improves its performance due to uptraining on the same dataset, Gemma and Pythia show a decline
in few-shot performance with SlimPajama uptraining, which can be attributed to the differences in
data distribution and the lower quality of the uptraining dataset.
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G EXPERIMENTAL SETUP

Uptraining setting To convert vanilla Transformers into Recursive Transformers, we conducted
further uptraining on either 15 billion or 60 billion tokens from the SlimPajama dataset (Soboleva
et al., 2023). SlimPajama is an open-source dataset designed for training large language models,
which is created by cleaning and deduplicating the RedPajama dataset (Computer, 2023). The source
data primarily consists of web-crawled data, along with data from Github, books, Arxiv, Wikipedia,
and StackExchange. We employed the HuggingFace training framework (Wolf et al., 2020) and
enhanced memory efficiency through the Zero Redundancy Optimizer (ZeRO) (Rajbhandari et al.,
2020) from the DeepSpeed library (Rasley et al., 2020), along with mixed precision training. The
context length was set to 2048, and the batch size was approximately 2 million tokens. We used
the AdamW optimizer (Loshchilov & Hutter, 2019) with a learning rate of 2e-4, utilizing a cosine
annealing learning rate scheduler (Loshchilov & Hutter, 2017). Additionally, we set warmup steps to
200 for 15 billion token training and 800 for 60 billion token training. Eight H100 GPUs were used
for the training.

Early-exit training setting Similar to the uptraining process, we used the SlimPajama dataset
to enable models to predict next tokens at intermediate loops. Models with two looping blocks
underwent additional training on a total of two exit points, whereas models with three blocks were
trained on three exit points. We explored various strategies, but by default, we continued training on
an additional 15 billion tokens, starting from the uptrained Recursive Transformers. We also utilized
eight H100 GPUs and maintained consistent configurations with the uptraining settings, including
batch size, context length, and learning rates.

Evaluation setting We evaluated perplexity on test sets from three language modeling datasets:
SlimPajama, RedPajama, and PG19 (Rae et al., 2019). Additionally, we used the Language Model
Evaluation Harness framework (Gao et al., 2023) to evaluate accuracy on seven few-shot tasks:
LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020), Wino-
Grande (Sakaguchi et al., 2020), ARC-easy and ARC-challenge (Clark et al., 2018), and Open-
BookQA (Mihaylov et al., 2018). We adhered to the standard number of shots specified by the
evaluation framework for each dataset. For few-shot datasets, excluding LAMBADA and Wino-
Grande, we normalized accuracy by the byte length of the target string. All evaluation performance
measurements were conducted using a single H100 GPU.

Throughput measurement settings To present the hypothetical generation speeds of our Recursive
Transformers, we prepared two key elements: per-token generation time and exit trajectory datasets.
Firstly, we measured the generation time under various model configurations using dummy weights
and inputs. We measured the time for each component, such as embedding matrices, Transformer
blocks, and the classifier head. Note that, for simplicity, throughput comparisons were based solely
on the time spent within the Transformer block components. We tested two settings of prefix and
decoding lengths (512 / 2048 and 64 / 256), calculating the per-token time by dividing the total elapsed
time by the decoding length. Using a single A100 40GiB GPU, we measured these decoding times
across different batch sizes, until an out-of-memory error occurred or under a specific memory
constraint was reached. To obtain exit trajectory data, we assumed an oracle-exiting approach,
where all tokens could exit at intermediate loops if intermediate predictions matched the final loop’s
prediction. Since our models are not finetuned on any specific downstream tasks, we simulated the
generation of language modeling datasets as if they were generated by our models. For simplicity, we
assumed a queue of 20K samples with varying context lengths, rather than considering their arrival in
static or dynamic time intervals. With these two datasets, we present the hypothetical throughput of
Recursive Transformers under various simulation scenarios.
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H PERFORMANCE OF FULL-SIZE MODEL BASELINES

Our ultimate goal is for the Recursive Transformer to achieve performance comparable to the
original, full-size pretrained model, but using the least amount of uptraining tokens possible. This is
challenging because our recursive models have substantially fewer parameters, and model capacity is
primarily determined by model size. However, prior works have suggested that FLOPs also play a role
in influencing model performance (Dehghani et al., 2019; 2022; Goyal et al., 2024). Consequently,
by recursively applying the function, we anticipate that with effective initialization techniques or
training strategies, it might be possible to attain performance that closely approaches that of the
full-size model.

However, the uptraining dataset itself can hinder this goal. Specifically, poor quality of the uptraining
dataset or a significant distribution shift from the pretraining dataset can negatively impact perfor-
mance. Indeed, as shown in Table 4, the Gemma model exhibited a performance decrease across all
few-shot benchmarks after uptraining on SlimPajama. Conversely, TinyLlama, where the uptraining
and pretraining datasets are both SlimPajama, consistently showed performance improvements.

Considering these results and our original goal, we adopted the following full-size model baselines:
the original pretrained model for TinyLlama, and vanilla models uptrained with the same cost as their
recursive counterparts for Gemma and Pythia.

Table 4: Uptraining pretrained models on datasets that differ significantly in quality or distribution
from their pretraining data can lead to decreased performance. We evaluated models after uptraining
on the SlimPajama dataset. We measured perplexity on test sets of SlimPajama, RedPajama, and
PG19, and few-shot accuracy on LAMBADA, HellaSwag, PIQA, WinoGrande, ARC-easy, ARC-
challenge, and OpenBookQA benchmarks.

Uptrain Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg

Gemma
1.99B ✓ - 11.46 8.18 13.52 63.1 71.4 78.1 65.0 72.3 41.9 40.2 61.7
1.99B ✓ 15B 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1
1.99B ✓ 60B 10.58 8.44 12.71 60.3 67.9 76.9 63.5 64.9 37.2 39.6 58.6

TinyLlama
0.97B ✓ - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3
0.97B ✓ 15B 9.87 8.24 10.73 49.2 46.3 68.8 54.0 48.2 26.0 32.2 46.4
0.97B ✓ 60B 9.59 8.12 10.42 51.6 48.8 68.6 54.1 49.9 26.2 32.8 47.4

Pythia
0.81B ✓ - 15.68 9.90 12.05 57.5 49.1 70.4 52.8 51.9 26.7 33.4 48.8
0.81B ✓ 15B 13.46 9.95 13.38 55.0 49.0 71.0 53.6 51.8 28.2 32.8 48.8
0.81B ✓ 60B 12.83 9.76 13.57 53.0 50.2 71.1 54.8 51.9 27.7 31.6 48.6

I EXPANDED RESULTS OF INITIALIZATION METHODS FOR LOOPED LAYERS

Ablation study of Stepwise method We initially hypothesized that the Stepwise method’s per-
formance could be significantly influenced by the specific rule used for layer selection from the
pretrained model. To investigate this, we conducted a controlled experiment (illustrated in Figure 11a),
where layers were selected at certain intervals starting from the first layer. We then varied whether
the final layer of the pretrained model was included in the initialization or not. While a Pythia
model showed no discernible differences in training loss or few-shot performance, other models like
Gemma exhibited markedly superior results when both the first and last layers were preserved. This
observation aligns well with prior work suggesting that maintaining the weights of the first and last
layers during depth up-scaling for LLMs can yield performance benefits (Kim et al., 2024).

Ablation study of Average method The Average initialization method exhibited notably poor perfor-
mance, particularly when applied to the Gemma model. We hypothesized that this could be attributed
to instability in the model’s learned distribution, potentially arising from averaging of normalization
layer weights. Relatedly, several studies (Csordás et al., 2024; Shim et al., 2024; Mohtashami et al.,
2023) have explored the careful design of layer normalization in parameter-shared models. To investi-
gate this further, we experimented with three different methods for initializing normalization weights,
as outlined in Figure 11b: averaging weights (Norm-avg), selecting weights from a single layer (Norm-
choice), and zero initialization (Norm-zero). The performance trend observed among these methods
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varied across different model architectures. However, zero initialization of normalization layers
resulted in a huge performance drop in certain architectures like TinyLlama and Pythia. Conversely,
we observed no big difference between averaging and single-layer selection, suggesting that any form
of distillation of the normalization weights appears to be sufficient for maintaining performance.
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Figure 11: Training loss curves of stepwise and average initialization variants across three models
with two blocks. (a) “Fixed-start” indicates that the first layer of the pretrained model is selected
initially, and subsequent layers are repeatedly chosen at a fixed interval. “Fixed-ends” means that
the first and last layers are included, and intermediate layers are selected at specific step intervals.
(b) When tying LayerNorm weights, we consider whether to average the weights (LN-avg), select a
single weight (LN-choice), or use zero initialization (LN-zero).

Overall comparison of training perplexity Figure 12 presents a comparative analysis of training
loss across three model architectures and varying looping blocks, incorporating our proposed initial-
ization methodologies. To set an upper bound on performance, we utilized a full-size model further
uptrained on SlimPajama, accounting for the distribution shift between uptraining and pretraining
data. Additionally, we trained a Recursive Transformer from a random initialization, ensuring its
exclusive reliance on the recursive architecture without leveraging any pretrained weights. While
some variance was observed across architectures, all proposed methods utilizing pretrained model
weights demonstrated significantly superior performance compared to random initialization. Notably,
the Stepwise method consistently achieved the best performance across diverse settings. Although
the full-size model’s performance was considerably higher, bridging this gap with only 15 billion
tokens of uptraining represents a remarkable achievement.
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Figure 12: Training loss for Recursive Transformers using various initialization. We omitted a
separate curve for the full-size TinyLlama model, as we used the original pretrained model as the
full-size model since both pretraining and uptraining datasets are same as the SlimPajama dataset.
Refer to Section 3.2 for more details.
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Overall comparison of few-shot performance Few-shot performance exhibited a consistent trend
with training perplexity. Table 5 provides a comparative summary of the proposed looping initializa-
tion methods against the full-size model, the reduced-size model, and Recursive Transformers utilizing
random initialization. Moreover, Figure 13 visually illustrates the performance differences across
different datasets. Notably, the Stepwise method consistently demonstrated the best performance,
showing a performance improvement of up to 14.1%p compared to random initialization.

Table 5: Evaluation results of various initialization methods for looped layers. We indicate whether
pretrained weights are used and the number of uptraining tokens. Perplexity is evaluated on test
sets of three language modeling datasets, and accuracy is evaluated on seven few-shot benchmarks.
Delta values (∆) show improvements over random initialization. We highlight the configurations that
demonstrate the best performance.

Uptrain Looping Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok Block Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

Gemma

1.99B ✓ 15B - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.66B ✗ 15B - - 24.44 21.69 36.03 27.2 30.6 63.8 50.5 40.6 22.0 27.0 37.4 -

0.99B ✓ 15B 2 Step 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 +14.1
0.99B ✓ 15B 2 Avg 15.15 12.57 19.86 43.6 47.4 70.4 52.6 50.5 27.8 34.4 46.7 +9.1
0.99B ✓ 15B 2 Lower 15.03 12.46 19.63 42.5 48.0 71.0 54.6 52.2 27.7 33.8 47.1 +9.5
0.99B ✗ 15B 2 Rand 22.66 20.06 32.86 27.4 31.6 63.4 50.5 39.7 21.9 28.8 37.6 -

0.66B ✓ 15B 3 Step 14.75 12.10 19.32 45.0 49.9 69.8 55.8 52.7 27.9 33.6 47.8 +9.9
0.66B ✓ 15B 3 Avg 17.45 14.65 23.63 39.4 39.0 66.6 48.7 46.5 24.7 31.8 42.4 +4.5
0.66B ✓ 15B 3 Lower 15.96 13.24 20.90 41.9 43.2 70.0 52.6 49.5 26.6 31.6 45.0 +7.1
0.66B ✗ 15B 3 Rand 22.67 20.09 32.77 28.1 31.4 63.8 51.1 41.0 23.0 26.6 37.9 -

0.97B ✓ - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 15B - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -

TinyLlama 0.48B ✓ 15B 2 Step 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 +6.2
0.48B ✓ 15B 2 Avg 11.86 10.29 13.42 38.6 39.4 66.1 52.8 42.7 25.4 30.6 42.2 +5.7
0.48B ✓ 15B 2 Lower 14.67 12.67 16.68 31.9 32.3 62.6 52.0 39.1 22.1 27.8 38.3 +1.8
0.48B ✗ 15B 2 Rand 16.14 15.11 19.55 24.7 30.7 61.2 50.6 36.4 22.6 29.2 36.5 -

0.81B ✓ 15B - - 13.46 9.95 13.38 55.0 49.0 71.0 53.6 51.8 28.2 32.8 48.8 -
0.40B ✗ 15B - - 25.69 20.00 32.08 24.3 30.0 61.9 50.7 38.3 22.3 26.0 36.2 -

Pythia 0.40B ✓ 15B 2 Step 16.38 12.37 17.74 43.4 40.5 67.4 50.8 46.3 25.7 30.0 43.5 +7.3
0.40B ✓ 15B 2 Avg 16.76 12.76 18.63 43.6 39.1 68.2 51.9 45.4 25.1 29.8 43.3 +7.1
0.40B ✓ 15B 2 Lower 17.04 12.62 18.44 43.9 39.2 66.3 53.4 45.4 25.8 31.2 43.6 +7.4
0.40B ✗ 15B 2 Rand 24.45 18.93 29.63 25.2 30.2 62.1 51.1 39.2 22.4 23.6 36.2 -
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Figure 13: Few-shot performance on seven benchmarks and their average accuracy based on four
looping initialization methods. Full-size model performance is represented by a gray dotted line.
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Comparison across various base model sizes We observed a consistent superiority of Stepwise
initialization strategy for recursive conversion across both 1B and 2B model scales. To further
evaluate on a wide range of base model sizes, we additionally experimented with two smaller model
sizes, Pythia 410M and 160M. Since we uptrained models on the Pile dataset (Gao et al., 2020),
the pretraining corpus of the original Pythia model, we set the original model performance as the
baseline for comparison. The results in Table 6 further validate the superior performance of the
Stepwise method for looped layer initialization. These findings reinforce the robustness of our key
observations regarding initialization methods for recursive conversion, complementing our original
extensive experiments.

Table 6: Comparison between initialization methods for looped layers on Pythia 410M and 160M.
Uptraining was performed using the Pile dataset, which was also used for pretraining the original
Pythia model. In light of the inherent randomness in few-shot accuracy, a comparison based on the
perplexity (PPL) would provide a more stable measure of performance.

Uptrain Looping PPL ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Pile LD HS PQ WG ARC-e ARC-c OB Avg

300M ✓ - - - - 44.96 40.97 66.97 53.28 44.40 25.51 30.20 43.76

150M ✓ 15B 2 Step 11.03 43.41 35.59 64.58 53.04 41.58 23.81 28.80 41.54
150M ✓ 15B 2 Lower 11.47 42.98 34.32 63.93 52.41 42.34 24.15 25.00 40.73
150M ✓ 15B 2 Avg 11.55 39.84 34.17 64.31 52.25 41.04 24.66 26.60 40.41

85M ✓ - - - - 13.53 30.67 58.22 48.62 36.62 25.00 28.60 34.47

43M ✓ 15B 2 Step 15.93 21.02 29.28 60.01 48.93 37.92 23.98 28.00 35.59
43M ✓ 15B 2 Lower 16.19 21.46 29.61 59.90 50.67 38.52 22.95 28.00 35.87
43M ✓ 15B 2 Avg 16.12 22.36 29.07 60.17 49.96 37.24 23.29 26.60 35.53

Individual contributions of leveraging pretrained weights and recursive patterns To understand
the performance of our Recursive Transformer, we established two non-recursive baselines: full-size
model and reduced-size model. The reduced size model performance is meant to serve as a lower
bound which we can use to better judge the efficacy of (1) unique looping and parameter sharing
techniques that are made possible by our approach and (2) leveraging pretrained layers. To further
ablate the effect of each of two components, we conducted experiments using the Pythia 410M model
presented in Table 7. Intuitively, we observed significant performance gains by leveraging pretrained
layers, with further improvement achieved through recursion. We believe this additional experiment
provides valuable insight into the performance contributions of the two approaches proposed for
constructing Recursive Transformers.

Table 7: Performance of recursive and baseline models with Pythia 410M to investigate the individual
contributions of pretraining layers and looping strategy. Uptraining was performed using the Pile
dataset (Gao et al., 2020), which was also used for pretraining the original Pythia model.

Uptrain Looping PPL ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Pile LD HS PQ WG ARC-e ARC-c OB Avg

300M ✓ - - - - 44.96 40.97 66.97 53.28 44.40 25.51 30.20 43.76

150M ✗ 15B - - 14.11 31.48 29.53 61.37 52.49 39.14 22.44 27.00 37.63
150M ✗ 15B 2 - 13.81 31.55 29.94 62.30 50.88 40.28 23.98 28.20 38.02

150M ✓ 15B - Step 11.48 40.48 34.19 63.42 50.99 41.84 23.12 28.40 40.35
150M ✓ 15B 2 Step 11.03 43.41 35.59 64.58 53.04 41.58 23.81 28.80 41.54

30



Published as a conference paper at ICLR 2025

J EXPANDED RESULTS OF RELAXED RECURSIVE TRANSFORMERS

Training perplexity changes with LoRA modules Figure 14 illustrates the changes in training loss
after incorporating the layer-wise LoRA modules. The Average and Lower initialization methods,
when coupled with our proposed SVD-based initialization of the LoRA modules, demonstrated
significantly enhanced benefits. In particular, the Relaxed Recursive Transformer employing the
Average method consistently outperformed the others. This suggests that it is considerably easier to
learn the difference between the original pretrained weights and the averaged looped weights using
low-rank matrices.
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Figure 14: Comparison of training loss for recursive and relaxed recursive models. All recursive
models utilize two looping blocks, and the LoRA rank is set to 512. The SVD initialization method is
used for LoRA modules.

Comparison between SVD and zero initialization The utilization of layer-wise LoRA modules
enhances model capacity by introducing additional parameters and relaxation, thereby potentially
improving performance. As depicted in Figure 15, SVD initialization significantly amplified these
performance gains compared to standard zero initialization. However, an interesting exception was
observed with the Stepwise method, where the SVD initialized LoRA module surprisingly led to
a performance degradation in Gemma and TinyLlama. This appears to be attributed to the LoRA
rank being insufficient to adequately approximate the low-rank deltas across layers, resulting in
initialization at a sub-optimal point.
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Figure 15: Comparison of average few-shot accuracy between zero and SVD initialization methods
for layer-wise LoRA across three models. Performance gains due to LoRA relaxation are indicated
by hatched bars, while cases where performance is lower than the recursive model without LoRAs
are represented by dotted lines.
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Ablation study on the LoRA rank values Our proposed SVD initialization ensures that the Relaxed
Recursive Transformer can function as an interpolation between vanilla and Recursive Transformers.
The approximation accuracy of SVD is directly influenced by the LoRA rank value; a higher rank
leads to improved restoration of the pretrained model weights. In Figure 16, we present a summary of
the performance changes observed in the relaxed models by varying the LoRA ranks. As expected,
for the Average and Lower looping initialization methods, a larger rank value results in enhanced
performance. The Stepwise method, consistent with previous experimental findings, exhibited a
U-shaped trend: with a lower rank, it behaves similarly to random initialization, resulting in a slight
performance increase. However, with a higher, the approximation becomes more accurate, leading to
a further increase in performance.
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Figure 16: Performance comparison with varying LoRA ranks under different initialization methods
for looped layers. All LoRA weights are initialized using our proposed SVD initialization method.

We further experimented with assigning different ranks to LoRA modules associated with each
linear layer. Given the computational overhead inherent to LoRA modules, allocating varying ranks
to each module can offer an optimal balance between performance and computational efficiency.
The experimental results in Table 8 reveal a strong correlation between performance and overall
model sizes. Due to the substantial hidden dimension of the linear weight within the FFN layer,
reducing its rank led to the most significant performance drop. Conversely, the relatively smaller
size of other attention weights resulted in less performance drops. An intriguing observation is the
comparable performance maintained even with minimal relaxation of key-value weights (achieved
through small ranks), despite the inherent strong sharing of key-value caches in the Multi-Query
attention structure (Ainslie et al., 2023).

Table 8: Evaluation results of relaxed recursive Gemma models with varying LoRA ranks applied
to Transformer components. We adjusted the LoRA ranks attached to query, key-value, out, and
FFN linear weights. Non-embedding parameter sizes include both the base layer parameters and the
attached LoRA weights.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Q KV Out FFN Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg

1.99B ✓ 15B - - - - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1
0.99B ✗ 15B - - - - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2

1.30B ✓ 15B 2 Avg 256 256 256 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2
1.28B ✓ 15B 2 Avg 128 256 128 256 SVD 12.27 9.81 15.10 57.4 60.2 72.5 58.9 58.1 32.6 37.8 53.9
1.29B ✓ 15B 2 Avg 256 128 256 256 SVD 12.33 9.90 15.25 58.5 59.7 73.3 58.3 56.6 32.0 40.0 54.1
1.18B ✓ 15B 2 Avg 256 256 256 128 SVD 12.56 10.12 15.59 57.0 58.7 73.0 57.4 57.0 31.6 38.2 53.3
1.27B ✓ 15B 2 Avg 128 128 128 256 SVD 12.36 9.92 15.31 57.2 59.2 73.1 57.3 58.0 32.2 38.6 53.7

1.15B ✓ 15B 2 Avg 128 128 128 128 SVD 12.52 10.07 15.51 56.1 58.2 72.3 55.8 57.1 30.7 37.2 52.5
1.14B ✓ 15B 2 Avg 64 128 64 128 SVD 12.61 10.14 15.69 55.0 57.8 73.0 57.5 56.7 30.9 38.8 52.8
1.14B ✓ 15B 2 Avg 128 64 128 128 SVD 12.72 10.18 15.76 55.5 57.7 72.7 57.0 56.9 30.1 38.2 52.6
1.08B ✓ 15B 2 Avg 128 128 128 64 SVD 12.80 10.33 15.97 55.3 56.7 72.9 57.7 55.0 29.6 36.0 51.9
1.13B ✓ 15B 2 Avg 64 64 64 128 SVD 12.77 10.29 15.95 55.2 57.4 73.0 56.7 56.5 30.5 37.2 52.3
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Overall performance comparison of Relaxed Recursive Transformers A comprehensive per-
formance comparison is presented in Table 9. This encompasses an evaluation of the performance
across three models and various looping initialization methods, considering the degree of relaxation
induced by the layer-wise LoRA module. The configuration utilizing the Average method for looped
layer initialization, paired with SVD initialization for the LoRA module, consistently outperformed
all other baselines. Furthermore, performance clearly improved with increasing rank.

Table 9: Evaluation results of relaxed recursive models varying LoRA ranks. Delta (∆) represent the
accuracy differences between relaxed and non-relaxed models using the same looping initialization.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok Block Init Rank Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 15B - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.99B ✗ 15B 2 Rand - - 22.66 20.06 32.86 27.4 31.6 63.4 50.5 39.7 21.9 28.8 37.6 -

0.99B ✓ 15B 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
1.07B ✓ 15B 2 Step 64 SVD 12.76 10.21 15.99 52.1 57.2 73.0 57.8 56.9 28.9 36.8 51.8 +0.1
1.15B ✓ 15B 2 Step 128 SVD 13.44 10.80 16.98 50.5 53.0 71.5 54.4 55.9 29.3 34.8 49.9 – 1.8
1.30B ✓ 15B 2 Step 256 SVD 14.02 11.44 18.09 46.1 49.1 71.8 53.2 52.8 27.8 33.4 47.8 – 3.9
1.60B ✓ 15B 2 Step 512 SVD 13.13 10.66 16.63 53.0 54.3 72.1 54.9 54.8 28.8 35.4 50.5 – 1.2
1.60B ✓ 15B 2 Step 512 Zero 12.46 9.97 15.58 54.9 58.8 74.0 58.1 58.8 30.6 36.6 53.1 +1.4

Gemma 0.99B ✓ 15B 2 Avg - - 15.15 12.57 19.86 43.6 47.4 70.4 52.6 50.5 27.8 34.4 46.7 -
1.07B ✓ 15B 2 Avg 64 SVD 12.83 10.35 16.02 55.9 56.8 72.5 56.8 55.7 30.6 36.2 52.1 +5.4
1.15B ✓ 15B 2 Avg 128 SVD 12.52 10.07 15.51 56.1 58.2 72.3 55.8 57.1 30.7 37.2 52.5 +5.8
1.30B ✓ 15B 2 Avg 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2 +7.5
1.60B ✓ 15B 2 Avg 512 SVD 11.83 9.46 14.57 59.3 62.8 74.0 61.6 60.1 32.9 37.6 55.5 +8.8
1.60B ✓ 15B 2 Avg 512 Zero 13.78 11.31 17.71 49.8 52.4 71.7 53.3 51.2 29.4 35.0 49.0 +2.3

0.99B ✓ 15B 2 Lower - - 15.03 12.46 19.63 42.5 48.0 71.0 54.6 52.2 27.7 33.8 47.1 -
1.07B ✓ 15B 2 Lower 64 SVD 14.21 11.77 18.40 47.5 50.5 70.9 54.2 54.1 29.2 36.0 48.9 +1.8
1.15B ✓ 15B 2 Lower 128 SVD 14.23 11.83 18.49 48.0 50.5 72.0 56.8 54.4 27.5 33.4 48.9 +1.8
1.30B ✓ 15B 2 Lower 256 SVD 13.51 11.06 17.30 53.1 53.7 71.8 57.4 52.5 28.7 35.2 50.3 +3.2
1.60B ✓ 15B 2 Lower 512 SVD 12.54 10.22 15.90 57.1 58.2 73.7 58.6 57.6 31.5 35.6 53.2 +6.1
1.60B ✓ 15B 2 Lower 512 Zero 13.95 11.59 18.02 48.4 52.1 71.9 55.7 54.9 28.8 34.6 49.5 +2.4

0.97B ✓ - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 15B - - - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -
0.48B ✗ 15B 2 Rand - - 16.14 15.11 19.55 24.7 30.7 61.2 50.6 36.4 22.6 29.2 36.5 -

0.48B ✓ 15B 2 Step - - 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 -
0.53B ✓ 15B 2 Step 64 SVD 12.10 10.40 13.75 38.9 38.3 65.2 51.5 42.0 26.0 31.0 41.9 – 0.8
0.58B ✓ 15B 2 Step 128 SVD 12.41 10.72 14.10 36.8 37.4 64.7 53.4 42.2 24.7 30.4 41.4 – 1.3
0.68B ✓ 15B 2 Step 256 SVD 11.96 10.35 13.48 38.9 38.3 65.8 51.9 43.1 25.4 29.8 41.9 – 0.8
0.86B ✓ 15B 2 Step 512 SVD 11.33 9.79 12.61 42.2 40.9 67.7 51.1 45.0 25.3 30.2 43.2 +0.5
0.86B ✓ 15B 2 Step 512 Zero 11.24 9.60 12.56 42.0 41.0 67.4 52.2 44.5 25.9 31.2 43.4 +0.7

TinyLlama 0.48B ✓ 15B 2 Avg - - 11.86 10.29 13.42 38.6 39.4 66.1 52.8 42.7 25.4 30.6 42.2 -
0.53B ✓ 15B 2 Avg 64 SVD 11.22 9.66 12.51 41.8 41.6 67.0 53.3 43.9 24.7 31.2 43.4 +1.2
0.58B ✓ 15B 2 Avg 128 SVD 10.99 9.45 12.21 43.2 42.1 68.3 53.2 44.8 25.9 30.4 44.0 +1.8
0.68B ✓ 15B 2 Avg 256 SVD 10.71 9.18 11.82 44.1 43.2 68.1 53.5 44.4 25.7 30.4 44.2 +2.0
0.86B ✓ 15B 2 Avg 512 SVD 10.46 8.92 11.50 46.0 44.1 68.2 53.0 45.8 25.1 31.2 44.8 +2.6
0.86B ✓ 15B 2 Avg 512 Zero 11.28 9.75 12.69 41.5 41.0 66.8 53.2 44.8 25.5 31.2 43.4 +1.2

0.48B ✓ 15B 2 Lower - - 14.67 12.67 16.68 31.9 32.3 62.6 52.0 39.1 22.1 27.8 38.3 -
0.53B ✓ 15B 2 Lower 64 SVD 13.68 11.77 15.48 35.5 34.0 63.8 51.0 40.0 24.6 28.0 39.5 +1.2
0.58B ✓ 15B 2 Lower 128 SVD 13.00 11.14 14.61 37.6 35.4 65.3 51.5 40.4 24.5 27.6 40.3 +2.0
0.68B ✓ 15B 2 Lower 256 SVD 12.14 10.39 13.59 40.0 37.7 66.1 52.6 42.5 24.8 30.0 42.0 +3.7
0.86B ✓ 15B 2 Lower 512 SVD 11.31 9.61 12.49 43.2 40.5 66.0 50.8 43.9 24.8 30.0 42.8 +4.5
0.86B ✓ 15B 2 Lower 512 Zero 14.56 12.69 16.57 21.2 32.9 63.9 52.6 39.5 22.9 27.8 37.3 – 1.0

0.81B ✓ 15B - - - - 13.46 9.95 13.38 55.0 49.0 71.0 53.6 51.8 28.2 32.8 48.8 -
0.40B ✗ 15B - - - - 25.69 20.00 32.08 24.3 30.0 61.9 50.7 38.3 22.3 26.0 36.2 -
0.40B ✗ 15B 2 Rand - - 24.45 18.93 29.63 25.2 30.2 62.1 51.1 39.2 22.4 23.6 36.2 -

0.40B ✓ 15B 2 Step - - 16.38 12.37 17.74 43.4 40.5 67.4 50.8 46.3 25.7 30.0 43.5 -
0.44B ✓ 15B 2 Step 64 SVD 16.44 12.44 17.89 43.7 40.4 66.5 52.9 46.5 26.2 28.8 43.6 +0.1
0.48B ✓ 15B 2 Step 128 SVD 16.63 12.61 18.35 42.4 39.3 68.0 51.5 46.3 26.7 30.6 43.5 +0.0
0.55B ✓ 15B 2 Step 256 SVD 16.54 12.61 18.39 42.8 39.1 67.2 53.7 46.4 25.9 27.8 43.3 – 0.2
0.70B ✓ 15B 2 Step 512 SVD 15.68 11.88 17.25 45.4 41.3 68.5 52.6 46.7 25.4 31.2 44.4 +0.9
0.70B ✓ 15B 2 Step 512 Zero 15.88 12.01 17.16 45.5 41.8 68.0 52.6 46.6 26.3 30.0 44.4 +0.9

Pythia 0.40B ✓ 15B 2 Avg - - 16.76 12.76 18.63 43.6 39.1 68.2 51.9 45.4 25.1 29.8 43.3 -
0.44B ✓ 15B 2 Avg 64 SVD 16.03 12.19 17.59 45.8 40.9 67.3 50.0 45.8 25.5 31.8 43.9 +0.6
0.48B ✓ 15B 2 Avg 128 SVD 15.67 11.93 17.10 46.9 41.9 67.4 51.2 45.4 24.8 31.2 44.1 +0.8
0.55B ✓ 15B 2 Avg 256 SVD 15.22 11.54 16.47 48.5 43.3 67.2 51.4 46.7 25.5 32.0 44.9 +1.6
0.70B ✓ 15B 2 Avg 512 SVD 14.70 11.07 15.71 50.2 44.7 68.2 51.6 47.6 25.4 31.2 45.6 +2.3
0.70B ✓ 15B 2 Avg 512 Zero 15.97 12.14 17.65 45.7 41.5 68.1 51.7 46.5 25.7 30.0 44.2 +0.9

0.40B ✓ 15B 2 Lower - - 17.04 12.62 18.44 43.9 39.2 66.3 53.4 45.4 25.8 31.2 43.6 -
0.44B ✓ 15B 2 Lower 64 SVD 17.03 12.78 18.73 44.1 38.3 66.9 51.9 45.4 24.7 30.8 43.2 – 0.4
0.48B ✓ 15B 2 Lower 128 SVD 16.63 12.49 18.17 45.2 39.2 66.8 51.0 45.6 24.9 29.6 43.2 – 0.4
0.55B ✓ 15B 2 Lower 256 SVD 15.93 11.99 17.30 47.6 41.4 68.3 53.2 46.0 25.8 31.0 44.8 +1.2
0.70B ✓ 15B 2 Lower 512 SVD 15.11 11.34 16.07 50.2 43.5 67.8 51.8 47.2 25.2 32.0 45.4 +1.8
0.70B ✓ 15B 2 Lower 512 Zero 16.45 12.25 17.76 45.2 40.4 66.4 54.5 45.8 25.9 32.6 44.4 +0.8
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K ALTERNATIVE APPROACHES TO RELAXATION OF PARAMETER SHARING

To mitigate the restrictive weight-tying inherent in parameter sharing, we employed LoRA modules
as discussed in §2.3, similar to prior work (Ge et al., 2022; Shim et al., 2024). However, efficiently
computing multiple LoRA modules requires specialized kernels and sequential computations of
the base layers and LoRA modules, incurring computational overhead. Consequently, we explored
layer-specific prompts (Liu et al., 2021) as an alternative. This approach integrates prompts specific
to each layer as prefix tokens, generating layer-wise key and value states for self-attention, and is
significantly more amenable to parallel computation.

Table 10 summarizes performance of the prefix tuning method. While offering computational advan-
tages, its reliance on small, learnable prompts resulted in limited performance gains. Additionally,
without leveraging the original pretrained weights, performance was significantly lower (52.1% vs.
47.6% with the Average method in 1.07B model size). Future work will explore enhancing the effec-
tiveness of this parallel approach, as well as other strategies such as bias term-based relaxation (Ge
et al., 2022).

Table 10: Evaluation results of relaxation through prefix tuning methods. Prefix length denotes the
sequence length of trainable vectors used to generate key-value prompts in each self-attention layer.
Non-embedding parameter sizes include the sizes of these trainable prefixes. Delta (∆) represent the
accuracy differences between non-relaxed models and their corresponding prefix-tuned models using
the same looping initialization.

Uptrain Looping Prefix Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok Block Init Len Size SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 15B - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -

0.99B ✓ 15B 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
1.00B ✓ 15B 2 Step 256 9.4M 12.62 10.06 15.80 53.5 58.3 73.9 57.6 57.5 29.3 35.6 52.2 +0.5
1.01B ✓ 15B 2 Step 512 18.9M 12.67 10.10 15.85 54.1 57.8 73.8 58.4 57.2 28.7 35.8 52.3 +0.6
1.03B ✓ 15B 2 Step 1024 37.7M 12.89 10.34 16.22 53.5 57.1 72.4 57.2 56.9 28.6 36.8 51.8 +0.1
1.07B ✓ 15B 2 Step 2048 75.5M 12.75 10.21 16.09 55.0 57.3 73.3 58.2 56.8 29.2 37.8 52.5 +0.8

Gemma 0.99B ✓ 15B 2 Avg - - 15.15 12.57 19.86 43.6 47.4 70.4 52.6 50.5 27.8 34.4 46.7 -
1.00B ✓ 15B 2 Avg 256 9.4M 14.85 12.31 19.41 46.9 48.3 70.4 52.7 51.4 27.2 34.0 47.3 +0.6
1.01B ✓ 15B 2 Avg 512 18.9M 15.23 12.64 19.98 44.5 47.2 70.7 54.5 49.5 28.0 33.2 46.8 +0.1
1.03B ✓ 15B 2 Avg 1024 37.7M 14.60 12.02 18.89 46.9 49.7 71.1 52.3 51.0 28.6 34.2 47.7 +1.0
1.07B ✓ 15B 2 Avg 2048 75.5M 14.63 12.07 19.03 47.3 49.5 70.8 53.1 50.7 28.2 33.4 47.6 +0.9

0.99B ✓ 15B 2 Lower - - 15.03 12.46 19.63 42.5 48.0 71.0 54.6 52.2 27.7 33.8 47.1 -
1.00B ✓ 15B 2 Lower 256 9.4M 14.59 12.12 19.02 46.3 49.7 71.5 55.1 52.9 29.0 34.0 48.4 +1.3
1.01B ✓ 15B 2 Lower 512 18.9M 14.53 12.03 18.88 45.7 49.8 71.9 56.4 53.6 29.4 33.2 48.6 +1.5
1.03B ✓ 15B 2 Lower 1024 37.7M 14.43 11.98 18.74 46.3 50.0 71.9 55.1 54.3 29.7 33.8 48.7 +1.6
1.07B ✓ 15B 2 Lower 2048 75.5M 14.79 12.26 19.23 46.1 48.7 71.4 55.4 51.3 28.2 34.0 47.9 +0.8

0.97B ✓ - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 15B - - - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -

0.48B ✓ 15B 2 Step - - 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 -
0.49B ✓ 15B 2 Step 256 11.5M 11.61 9.89 13.00 39.6 39.9 66.5 53.9 44.4 25.3 30.6 42.9 +0.2
0.50B ✓ 15B 2 Step 512 23.1M 11.61 9.89 13.01 39.5 39.9 66.7 53.4 44.1 25.3 29.8 42.7 +0.0
0.53B ✓ 15B 2 Step 1024 46.1M 11.60 9.88 13.00 39.7 39.9 66.7 53.0 44.3 25.1 30.6 42.8 +0.1
0.57B ✓ 15B 2 Step 2048 92.3M 11.58 9.87 13.01 40.1 39.9 66.8 53.4 44.4 24.9 30.0 42.8 +0.1

TinyLlama 0.48B ✓ 15B 2 Avg - - 11.86 10.29 13.42 38.6 39.4 66.1 52.8 42.7 25.4 30.6 42.2 -
0.49B ✓ 15B 2 Avg 256 11.5M 11.86 10.28 13.41 38.5 39.4 66.2 52.5 42.8 25.9 30.8 42.3 +0.1
0.50B ✓ 15B 2 Avg 512 23.1M 11.86 10.28 13.41 38.1 39.3 66.3 52.2 42.6 25.6 30.8 42.1 – 0.1
0.53B ✓ 15B 2 Avg 1024 46.1M 11.86 10.28 13.42 38.4 39.2 65.7 52.7 42.5 25.5 31.0 42.1 – 0.1
0.57B ✓ 15B 2 Avg 2048 92.3M 11.86 10.28 13.42 38.5 39.5 65.9 52.7 42.4 25.7 31.0 42.2 +0.0

0.48B ✓ 15B 2 Lower - - 14.67 12.67 16.68 31.9 32.3 62.6 52.0 39.1 22.1 27.8 38.3 -
0.49B ✓ 15B 2 Lower 256 11.5M 14.67 12.67 16.69 31.9 32.4 62.7 51.5 38.9 22.3 27.8 38.2 – 0.1
0.50B ✓ 15B 2 Lower 512 23.1M 14.67 12.67 16.69 31.9 32.3 62.8 51.7 38.9 22.2 27.8 38.2 – 0.1
0.53B ✓ 15B 2 Lower 1024 46.1M 14.67 12.67 16.68 31.6 32.3 63.0 51.9 38.9 22.1 28.0 38.3 +0.0
0.57B ✓ 15B 2 Lower 2048 92.3M 14.67 12.67 16.67 34.1 32.5 62.8 52.4 38.5 23.0 27.6 38.7 +0.4
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L EXPANDED RESULTS OF EXTENDED UPTRAINING AND DISTILLATION

Ablation study on individual techniques To further enhance performance through uptraining,
we increased the number of uptraining tokens and employed knowledge distillation loss (Hinton
et al., 2015; Kim & Rush, 2016). Specifically, we expanded the token number from 15 billion to 60
billion. Furthermore, we designated the teacher model as the full-size model for each architecture,
uptrained on 15 billion tokens from the SlimPajama dataset. Given the huge number of uptraining
tokens, we adopted an online approach to extract logits from the teacher model. Four loss functions
were utilized: forward KL (FKL; Kim & Rush (2016)), reverse KL (RKL; Gu et al. (2024)),
Jensen–Shannon divergence (JSD; Agarwal et al. (2024)), and total variation distance (TVD; Wen
et al. (2023)). Table 11 summarizes the controlled experimental results for each method. We observed
a performance improvement of 1.7% attributed to the extended uptraining and up to 1.7% from
the KD loss. We finally selected forward KL as the loss function due to its simplicity and superior
performance. These significant gains suggest that combining both techniques could yield even greater
gains.

Table 11: Evaluation results of ablation studies related to longer uptraining and knowledge distillation
loss. Performance improvements, represented by Delta, were measured for each technique. For the
knowledge distillation loss function, we experimented with four options: FKL, RKL, JSD, and TVD.
Forward KL was selected as the final configuration due to its simplicity and superior performance.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok KD Func Block Init Rank Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

0.99B ✓ 15B ✗ - 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
0.99B ✓ 60B ✗ - 2 Step - - 12.00 9.70 14.84 52.5 59.9 74.7 58.5 58.0 30.3 40.2 53.4 +1.7

0.99B ✓ 15B ✗ - 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
0.99B ✓ 15B ✓ FKL 2 Step - - 12.36 9.85 15.45 56.8 58.6 74.8 58.6 59.1 29.2 36.6 53.4 +1.7
0.99B ✓ 15B ✓ RKL 2 Step - - 12.56 10.09 15.80 55.6 58.3 74.3 58.6 58.3 30.4 37.4 53.3 +1.6
0.99B ✓ 15B ✓ JSD 2 Step - - 12.60 10.06 15.77 56.1 58.4 73.4 57.0 58.4 29.8 37.2 52.9 +1.2
0.99B ✓ 15B ✓ TVD 2 Step - - 12.47 9.92 15.52 55.1 58.5 74.0 58.2 58.9 29.5 36.8 53.0 +1.3

1.30B ✓ 15B ✗ - 2 Avg 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2 -
1.30B ✓ 15B ✓ FKL 2 Avg 256 SVD 11.90 9.52 14.63 59.9 62.0 74.1 60.0 58.6 33.2 38.0 55.1 +0.9
1.30B ✓ 15B ✓ RKL 2 Avg 256 SVD 11.95 9.62 14.79 60.0 61.6 74.5 60.0 58.1 32.9 37.8 55.0 +0.8
1.30B ✓ 15B ✓ JSD 2 Avg 256 SVD 12.09 9.65 14.81 58.1 61.1 73.1 60.8 59.0 33.2 38.6 54.8 +0.6
1.30B ✓ 15B ✓ TVD 2 Avg 256 SVD 12.05 9.62 14.78 59.3 61.5 73.9 60.5 59.0 33.0 38.2 55.1 +0.9

Overall performance after longer training with distillation loss Figure 17 and Table 12 summarize
the performance gains achieved by incorporating advanced training techniques: extended uptraining
and knowledge distillation loss. We consistently observed substantial improvements in few-shot
performance across all architectures and with varying numbers of looping blocks. We anticipate
that further performance enhancements can be achieved by utilizing a superior teacher model and
increasing the uptraining cost.
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Ntok = 15B Ntok = 60B + KD Loss
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Figure 17: Few-shot performance of three models with extended uptraining and knowledge distillation.
Optimal configurations are used for each model size. The full-size model is the pretrained model itself
for Tinyllama, but for other models, it is further uptrained on 60 billion tokens. Reduced-size models
are non-recursive and pretrained from scratch at their corresponding sizes. Dotted lines represent the
Pareto frontier, showing the optimal trade-offs between model size and performance for each setting.
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Table 12: Evaluation results of our Recursive Transformers with 60 billion token uptraining and
knowledge distillation loss. We utilized the forward KL loss as the knowledge distillation loss
function. Full-size model baselines for Gemma and Pythia are the pretrained models further uptrained
on 60 billion tokens, accounting for distribution shifts between Slimapajama and their pretraining
datasets. Delta (∆) represents the accuracy differences between the longer uptrained models with KD
and their 15 billion uptrained counterparts. We omit the Delta values for relaxed recursive Gemma
models with three blocks as they lack 15 billion uptrained counterparts. Results with extended
uptraining and knowledge distillation are highlighted.

Uptrain Looping LoRA Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok KD Block Init Rank Init SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 60B ✗ - - - - 10.58 8.44 12.71 60.3 67.9 76.9 63.5 64.9 37.2 39.6 58.6 -
0.99B ✗ 60B ✓ - - - - 15.33 13.04 20.37 42.3 43.0 68.8 53.4 49.4 26.3 31.0 44.9 -
0.99B ✗ 15B ✗ - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.66B ✗ 60B ✓ - - - - 16.79 14.39 22.85 37.5 38.4 68.7 50.4 46.5 24.6 31.6 42.5 -
0.66B ✗ 15B ✗ - - - - 24.44 21.69 36.03 27.2 30.6 63.8 50.5 40.6 22.0 27.0 37.4 -

0.99B ✓ 15B ✗ 2 Step - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -
0.66B ✓ 15B ✗ 3 Step - - 14.75 12.10 19.32 45.0 49.9 69.8 55.8 52.7 27.9 33.6 47.8 -
1.07B ✓ 15B ✗ 2 Avg 64 SVD 12.83 10.35 16.02 55.9 56.8 72.5 56.8 55.7 30.6 36.2 52.1 -
1.15B ✓ 15B ✗ 2 Avg 128 SVD 12.52 10.07 15.51 56.1 58.2 72.3 55.8 57.1 30.7 37.2 52.5 -
1.30B ✓ 15B ✗ 2 Avg 256 SVD 12.10 9.71 14.89 58.2 60.7 73.7 59.0 57.6 32.1 38.0 54.2 -

Gemma 1.60B ✓ 15B ✗ 2 Avg 512 SVD 11.83 9.46 14.57 59.3 62.8 74.0 61.6 60.1 32.9 37.6 55.5 -

0.99B ✓ 60B ✓ 2 Step - - 11.44 9.14 13.98 56.5 62.1 75.2 59.4 59.8 32.5 38.6 54.9 +3.2
1.07B ✓ 60B ✓ 2 Avg 64 SVD 11.36 9.14 13.82 58.9 62.8 75.1 61.5 61.2 33.7 37.6 55.8 +3.7
1.15B ✓ 60B ✓ 2 Avg 128 SVD 11.25 9.04 13.64 58.7 63.6 76.5 61.2 62.6 34.6 39.0 56.6 +4.1
1.30B ✓ 60B ✓ 2 Avg 256 SVD 11.05 8.88 13.35 60.6 64.7 75.3 62.5 61.6 35.3 38.8 57.0 +2.8
1.60B ✓ 60B ✓ 2 Avg 512 SVD 10.81 8.63 12.94 61.4 65.8 76.3 63.5 65.1 37.1 39.4 58.4 +2.9

0.66B ✓ 60B ✓ 3 Step - - 12.27 9.90 15.24 55.6 58.1 73.1 60.2 58.8 30.2 37.2 53.3 +5.5
0.74B ✓ 60B ✓ 3 Avg 64 SVD 12.13 9.80 14.95 55.5 58.3 73.5 60.1 58.0 31.1 36.8 53.3 -
0.82B ✓ 60B ✓ 3 Avg 128 SVD 11.83 9.53 14.51 56.7 60.2 74.2 59.8 59.1 33.0 35.4 54.1 -
0.97B ✓ 60B ✓ 3 Avg 256 SVD 11.43 9.17 13.87 59.3 62.6 74.7 61.2 61.6 32.9 40.2 56.1 -
1.27B ✓ 60B ✓ 3 Avg 512 SVD 11.01 8.80 13.25 61.5 64.9 76.2 62.0 64.3 35.6 39.2 57.7 -

0.97B ✓ - - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -
0.48B ✗ 60B ✓ - - - - 11.93 10.86 13.93 33.3 37.3 66.8 50.1 41.7 23.9 30.2 40.5 -
0.48B ✗ 15B ✗ - - - - 16.61 15.66 20.27 22.3 30.0 60.9 50.6 37.0 23.0 28.0 36.0 -

0.48B ✓ 15B ✗ 2 Step - - 11.61 9.89 13.00 39.6 39.8 66.5 52.9 44.3 24.9 30.6 42.7 -
0.53B ✓ 15B ✗ 2 Avg 64 SVD 11.22 9.66 12.51 41.8 41.6 67.0 53.3 43.9 24.7 31.2 43.4 -
0.58B ✓ 15B ✗ 2 Avg 128 SVD 10.99 9.45 12.21 43.2 42.1 68.3 53.2 44.8 25.9 30.4 44.0 -

TinyLlama 0.68B ✓ 15B ✗ 2 Avg 256 SVD 10.71 9.18 11.82 44.1 43.2 68.1 53.5 44.4 25.7 30.4 44.2 -
0.86B ✓ 15B ✗ 2 Avg 512 SVD 10.46 8.92 11.50 46.0 44.1 68.2 53.0 45.8 25.1 31.2 44.8 -

0.48B ✓ 60B ✓ 2 Step - - 10.51 9.01 11.60 44.2 43.1 68.2 52.4 44.7 25.3 32.2 44.3 +1.6
0.53B ✓ 60B ✓ 2 Avg 64 SVD 10.14 8.77 11.19 44.3 44.9 69.5 52.5 46.5 26.1 31.6 45.1 +1.6
0.58B ✓ 60B ✓ 2 Avg 128 SVD 10.07 8.68 11.07 45.9 45.1 69.4 50.5 46.8 25.4 31.6 45.0 +1.0
0.68B ✓ 60B ✓ 2 Avg 256 SVD 9.96 8.56 10.93 46.2 45.7 69.0 53.2 47.9 25.9 31.6 45.6 +1.4
0.86B ✓ 60B ✓ 2 Avg 512 SVD 9.85 8.44 10.76 47.4 46.3 69.7 52.8 47.5 26.3 31.4 45.9 +1.1

0.81B ✓ 60B ✗ - - - - 12.83 9.76 13.57 53.0 50.2 71.1 54.8 51.9 27.7 31.6 48.6 -
0.40B ✗ 60B ✓ - - - - 18.27 14.39 21.93 32.1 35.0 66.1 49.6 42.9 24.2 27.0 39.5 -
0.40B ✗ 15B ✗ - - - - 25.69 20.00 32.08 24.3 30.0 61.9 50.7 38.3 22.3 26.0 36.2 -

0.40B ✓ 15B ✗ 2 Step - - 16.38 12.37 17.74 43.4 40.5 67.4 50.8 46.3 25.7 30.0 43.5 -
0.44B ✓ 15B ✗ 2 Avg 64 SVD 16.03 12.19 17.59 45.8 40.9 67.3 50.0 45.8 25.5 31.8 43.9 -
0.48B ✓ 15B ✗ 2 Avg 128 SVD 15.67 11.93 17.10 46.9 41.9 67.4 51.2 45.4 24.8 31.2 44.1 -

Pythia 0.55B ✓ 15B ✗ 2 Avg 256 SVD 15.22 11.54 16.47 48.5 43.3 67.2 51.4 46.7 25.5 32.0 44.9 -
0.70B ✓ 15B ✗ 2 Avg 512 SVD 14.70 11.07 15.71 50.2 44.7 68.2 51.6 47.6 25.4 31.2 45.6 -

0.40B ✓ 60B ✓ 2 Step - - 14.59 11.13 15.79 47.8 43.8 69.3 52.0 48.1 25.4 30.4 45.2 +1.7
0.44B ✓ 60B ✓ 2 Avg 64 SVD 14.24 10.89 15.52 50.0 44.5 68.9 54.1 48.0 26.5 31.2 46.2 +2.3
0.48B ✓ 60B ✓ 2 Avg 128 SVD 14.10 10.79 15.27 50.1 45.5 69.0 52.6 48.3 25.8 32.0 46.2 +2.1
0.55B ✓ 60B ✓ 2 Avg 256 SVD 13.91 10.61 14.91 50.5 45.6 68.7 51.2 48.4 25.7 32.8 46.1 +1.2
0.70B ✓ 60B ✓ 2 Avg 512 SVD 13.59 10.38 14.43 52.0 47.0 69.6 53.4 48.9 26.9 31.2 47.0 +1.4
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M EARLY-EXIT TRAINING

Ablation study on early-exit training strategy To enable early-exiting capabilities, all models
require additional training to align intermediate representations with classifier heads. In this study,
we conduct ablation studies on various strategies, demonstrating Recursive Transformers can be trans-
formed into early-exiting models without compromising final loop output’s performance. Table 13
presents a comprehensive summary of our findings across various categories, including training
procedures, loss functions, and early-exit training data. Our key findings are as follows:

• Post-training after uptraining is essential for preserving final loop performance. Jointly training
intermediate loop output during the uptraining phase, even with an aggressive loss coefficient
strategy, significantly degraded the final output performance.

• Training solely the early loops with learnable LoRA modules, while freezing other parameters,
hindered effective intermediate representation learning. We attempted to fine-tune intermediate
outputs by attaching LoRA modules to classifier heads, but this proved ineffective.

• The aggressive coefficient strategy successfully maintained final loop output performance while
enhancing intermediate layer performance. Moreover, incorporating knowledge distillation from
detached final outputs further enhanced intermediate layer performance.

• No significant performance differences were observed when using the same uptraining data versus
new SlimPajama tokens for post-training.

Finally, we opted to utilize the uptrained model and perform post-training with new tokens sourced
from the same SlimPajama dataset. Moreover, we incorporated a distillation loss from the final loop
output, while using a strategy that aggressively reduces the loss coefficients of intermediate outputs.

Table 13: Ablation studies on early-exit training for recursive Gemma models. We evaluated
performance in a static-exiting scenario (Schuster et al., 2022; Bae et al., 2023), where all tokens
exit at either 9th or 18th layers. We explored post-training (after uptraining) and co-training (during
uptraining) approaches. We experimented with freezing uptrained weights and adding LoRA with
the rank of 128 to the classifier head, and we used weighted CE and aggressive CE loss functions.
Early-exit training utilized 15 billion tokens, either overlapping with uptraining data or entirely new.
Delta (∆) indicates the performance changes of the final layer. We highlight the final configuration:
post-training with aggressive CE and KD loss on 15 billion new tokens.

Uptrain Looping Early-Exit Train Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok Block Init Train Freeze Ntok CE KD Data SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 15B - - - - - - - - 10.76 8.47 13.08 63.5 68.5 77.0 63.5 67.6 38.1 42.6 60.1 -
0.99B ✗ 15B - - - - - - - - 22.63 20.03 32.60 28.9 31.6 63.1 52.3 41.2 22.5 27.8 38.2 -
0.99B ✓ 15B 2 Step - - - - - - 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Weighted ✗ Ovlp 12.97 10.51 16.55 48.9 55.5 72.7 55.3 54.9 30.1 36.0 50.5 – 1.2
13.11 10.59 16.71 49.5 54.8 72.0 53.4 54.1 29.1 35.6 49.8 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.3) ✗ Ovlp 12.60 10.21 15.75 51.8 58.2 73.7 56.8 57.0 29.9 37.8 52.2 +0.5
13.63 11.02 17.55 47.5 53.0 71.2 54.9 50.2 28.2 34.8 48.5 -
12.37 9.94 15.37 53.0 59.1 73.9 55.4 57.4 30.6 37.8 52.5 +0.80.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.1) ✗ Ovlp 14.55 11.87 19.00 45.9 51.2 71.4 54.5 48.1 26.8 32.0 47.1 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.05) ✗ Ovlp 12.33 9.90 15.31 52.8 59.2 73.6 57.5 57.7 30.5 37.2 52.6 +0.9
15.70 12.93 20.69 43.1 49.8 69.8 55.2 46.0 26.9 31.2 46.0 -
12.28 9.80 15.23 52.9 59.5 73.3 56.5 57.2 30.1 37.2 52.4 +0.70.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.01) ✗ Ovlp 22.76 20.37 30.39 32.2 45.2 67.5 53.9 40.3 26.3 29.2 42.1 -

0.99B ✓ 15B 2 Step Post- ✗ 15B Weighted ✓ Ovlp 13.04 10.57 16.66 47.7 55.1 73.2 55.6 54.5 29.1 37.2 50.4 – 1.3
13.04 10.54 16.66 48.3 54.9 72.1 55.9 54.3 28.4 35.4 49.9 -
12.40 9.97 15.42 52.9 58.9 73.7 55.7 57.5 31.1 38.2 52.6 +0.90.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.1) ✓ Ovlp 14.11 11.47 18.32 46.3 52.1 71.6 55.3 49.2 28.5 32.6 48.0 -

0.99B ✓ 15B 2 Step Post- ✓ 15B Standard ✗ Ovlp 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 +0.0
43.74 41.63 56.78 5.3 37.9 61.4 52.6 35.3 24.0 29.0 35.0 -

0.99B ✓ 15B 2 Step Post- ✓ 15B Standard ✓ Ovlp 12.85 10.29 16.21 53.0 57.3 73.2 56.2 56.1 29.2 36.6 51.7 +0.0
43.09 39.97 55.37 5.6 37.7 62.5 52.7 34.5 24.7 29.2 35.3 -

0.99B ✓ 15B 2 Step Co- ✗ 15B Agg (0.1) ✗ Ovlp 13.24 10.67 16.98 50.1 54.2 72.2 53.7 54.7 28.9 37.4 50.2 – 1.5
13.59 10.89 17.42 50.6 52.7 71.2 54.4 53.0 27.5 35.0 49.2 -

12.34 9.92 15.31 52.3 59.0 73.8 57.6 55.5 30.4 37.2 52.3 +0.60.99B ✓ 15B 2 Step Post- ✗ 15B Agg (0.1) ✗ New 14.49 11.86 18.89 43.9 51.3 71.0 54.9 48.1 27.5 31.4 46.9 -
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Early-exit training results on final models We applied the aggressive coefficient strategy with
distillation loss to the models uptrained on 60 billion tokens. Tables 14 and 15 summarize the
performance of intermediate loops and the final loop across three models. For fair comparison, the
full-size models (Gemma and Pythia) were also uptrained with 60 billion tokens and then post-trained
with 15 billion tokens. As the optimal strategy derived from the non-relaxed models was directly
applied to the relaxed models, further exploration of optimal strategies specifically for relaxed models
is left for future work.

Table 14: Evaluation results of Gemma models after early-exit training. For relaxed models, we
also experimented with increasing the coefficient to 0.3 because of the lower performance of the
intermediate layer. The relaxed model with three blocks shows a more significant performance drop
because KD loss could not be utilized due to out-of-memory issues. Delta (∆) represent the accuracy
changes of the original last layer after early-exit post-training. These changes should be compared in
reference to the performance drops observed in 75B and 60B uptraining for the full-size model.

Uptrain Looping LoRA Early-Exit Train Perplexity ↓ Few-shot Accuracy ↑
N-emb PT Ntok KD Block Init Rank Init Ntok CE KD SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

1.99B ✓ 60B ✗ - - - - - - - 10.58 8.44 12.71 60.3 67.9 76.9 63.5 64.9 37.2 39.6 58.6 -
1.99B ✓ 75B ✗ - - - - - - - 11.03 8.88 13.33 57.0 65.9 76.2 63.9 63.0 35.9 38.8 57.3 – 1.3

0.99B ✓ 60B ✓ 2 Step - - - - - 11.44 9.14 13.98 56.5 62.1 75.2 59.4 59.8 32.5 38.6 54.9 -
1.07B ✓ 60B ✓ 2 Avg 64 SVD - - - 11.36 9.14 13.82 58.9 62.8 75.1 61.5 61.2 33.7 37.6 55.8 -
1.15B ✓ 60B ✓ 2 Avg 128 SVD - - - 11.25 9.04 13.64 58.7 63.6 76.5 61.2 62.6 34.6 39.0 56.6 -
1.30B ✓ 60B ✓ 2 Avg 256 SVD - - - 11.05 8.88 13.35 60.6 64.7 75.3 62.5 61.6 35.3 38.8 57.0 -
1.60B ✓ 60B ✓ 2 Avg 512 SVD - - - 10.81 8.63 12.94 61.4 65.8 76.3 63.5 65.1 37.1 39.4 58.4 -

11.71 9.56 14.46 54.0 61.7 75.1 58.9 58.6 31.9 37.6 54.0 – 0.90.99B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ 13.68 11.39 17.60 45.0 54.1 71.9 58.5 49.8 28.8 33.4 48.8 -
11.79 9.70 14.52 53.7 60.8 73.6 61.1 58.7 32.9 37.2 54.0 – 1.81.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ 19.45 16.46 26.10 30.7 37.9 66.5 55.3 42.2 25.3 27.6 40.8 -
11.66 9.59 14.32 53.3 62.1 74.9 60.0 59.9 33.4 38.8 54.6 – 2.01.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ 19.65 16.77 26.44 29.7 37.7 66.8 52.6 41.4 25.3 28.0 40.2 -
11.47 9.39 14.03 54.9 63.0 74.5 61.7 60.5 33.1 38.4 55.2 – 1.81.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ 19.67 16.82 26.40 29.7 38.3 66.4 53.1 43.8 24.7 27.6 40.5 -
11.20 9.14 13.58 57.2 64.1 75.2 61.7 62.1 34.6 38.2 56.2 – 2.21.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ 19.29 16.47 25.73 32.0 39.6 67.6 53.3 43.2 25.8 30.2 41.7 -

12.11 9.98 14.97 52.6 59.8 74.4 59.4 57.6 31.1 37.0 53.1 – 2.71.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ 16.09 13.54 21.19 35.4 42.8 69.8 52.8 45.8 25.8 31.0 43.3 -
11.96 9.87 14.76 52.3 60.5 74.2 59.1 58.9 33.0 37.2 53.6 – 3.01.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ 16.28 13.77 21.45 35.2 42.1 69.8 53.5 46.5 25.8 31.2 43.4 -
11.73 9.63 14.43 54.3 61.4 75.0 60.7 58.8 33.1 38.6 54.6 – 2.41.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ 16.41 13.89 21.68 35.6 42.3 69.0 52.7 46.8 26.4 29.8 43.2 -
11.47 9.36 13.93 56.2 62.7 75.4 60.9 60.4 34.0 37.0 55.2 – 3.21.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ 16.24 13.72 21.42 37.8 43.6 69.0 54.4 45.5 26.4 31.2 44.0 -

0.66B ✓ 60B ✓ 3 Step - - - - - 12.27 9.90 15.24 55.6 58.1 73.1 60.2 58.8 30.2 37.2 53.3 -
0.74B ✓ 60B ✓ 3 Avg 64 SVD - - - 12.13 9.80 14.95 55.5 58.3 73.5 60.1 58.0 31.1 36.8 53.3 -
0.82B ✓ 60B ✓ 3 Avg 128 SVD - - - 11.83 9.53 14.51 56.7 60.2 74.2 59.8 59.1 33.0 35.4 54.1 -
0.97B ✓ 60B ✓ 3 Avg 256 SVD - - - 11.43 9.17 13.87 59.3 62.6 74.7 61.2 61.6 32.9 40.2 56.1 -
1.27B ✓ 60B ✓ 3 Avg 512 SVD - - - 11.01 8.80 13.25 61.5 64.9 76.2 62.0 64.3 35.6 39.2 57.7 -

12.75 10.48 16.01 50.2 57.0 72.7 58.6 56.7 30.0 38.2 51.9 – 1.4
13.81 11.47 17.80 48.4 53.0 72.4 55.6 51.6 27.2 35.2 49.0 -0.66B ✓ 60B ✓ 3 Step - - 15B Agg (0.1) ✓
16.72 14.23 22.97 37.7 44.2 69.8 53.6 44.2 24.6 30.2 43.5 -
12.64 10.43 15.81 51.4 56.3 72.2 57.9 56.7 30.4 35.0 51.4 – 1.9
19.90 16.88 26.26 30.4 39.3 66.3 54.1 41.2 24.8 29.2 40.8 -0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.1) ✗
26.31 22.49 36.10 20.9 31.2 62.6 50.8 37.2 22.0 28.0 36.1 -
12.37 10.21 15.38 52.0 58.0 72.0 56.5 58.4 30.0 35.2 51.7 – 2.4
20.07 17.09 26.47 30.9 40.5 66.3 55.4 40.8 24.4 29.6 41.1 -0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.1) ✗
26.15 22.46 35.98 21.3 31.2 62.7 51.8 36.4 22.9 26.2 36.1 -
11.92 9.78 14.71 54.8 60.6 74.6 60.1 60.1 31.8 36.6 54.1 – 2.0
19.29 16.49 25.51 35.2 42.5 65.8 55.6 41.5 25.6 29.4 42.2 -0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.1) ✗
25.12 21.53 34.53 23.1 32.0 63.2 49.7 36.1 23.0 25.2 36.1 -
11.49 9.38 14.00 56.1 62.7 74.4 60.5 62.1 34.9 38.8 55.7 – 3.0
18.52 15.79 24.34 36.7 44.9 67.2 55.3 43.8 26.0 30.4 43.5 -1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.1) ✗
24.19 20.70 33.20 24.4 32.4 63.9 50.8 37.9 21.9 27.4 37.0 -

13.07 10.84 16.49 47.7 54.4 71.7 56.1 55.9 29.4 35.2 50.1 – 3.2
16.68 14.08 21.86 35.4 42.4 68.2 53.8 44.6 26.3 29.4 42.9 -0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.3) ✗
21.43 18.26 29.12 24.4 34.1 64.3 50.5 40.7 22.3 27.8 37.7 -
12.71 10.54 15.92 50.4 55.9 73.1 57.5 56.8 30.1 34.8 51.2 – 2.9
16.90 14.32 22.18 37.6 43.5 67.6 54.5 45.0 25.3 29.0 43.2 -0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.3) ✗
21.23 18.13 28.88 25.3 34.0 64.6 51.7 40.7 23.0 26.4 38.0 -
12.26 10.15 15.23 53.5 58.5 73.5 58.8 58.3 30.6 37.6 53.0 – 3.1
16.56 14.09 21.68 42.6 45.1 68.2 57.7 45.7 25.9 28.8 44.8 -0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.3) ✗
20.78 17.72 28.29 27.9 34.3 66.3 52.2 39.7 23.6 26.8 38.7 -
11.80 9.68 14.45 54.1 61.2 74.0 59.0 59.9 32.9 38.0 54.1 – 3.6
16.02 13.53 20.86 43.5 47.5 68.3 56.2 47.1 27.0 30.4 45.7 -1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.3) ✗
20.20 17.21 27.50 28.9 35.2 65.6 52.9 41.9 23.2 26.6 39.2 -
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Table 15: Evaluation results of TinyLlama and Pythia models after early-exit training. Delta (∆)
represents the accuracy change in the original last layer following early-exit post-training. In case of
Pythia, these changes should be compared in reference to the performance drops observed in 75B
and 60B uptraining for the full-size model.

Uptrain Looping LoRA Early-Exit Train Perplexity ↓ Few-shot Accuracy ↑
Models N-emb PT Ntok KD Block Init Rank Init Ntok CE KD SlimP RedP PG19 LD HS PQ WG ARC-e ARC-c OB Avg ∆

0.97B ✓ - ✗ - - - - - - - 12.26 9.37 11.94 43.3 42.2 66.8 53.4 44.7 23.2 29.2 43.3 -

0.48B ✓ 60B ✓ 2 Step - - - - - 10.51 9.01 11.60 44.2 43.1 68.2 52.4 44.7 25.3 32.2 44.3 -
0.53B ✓ 60B ✓ 2 Avg 64 SVD - - - 10.14 8.77 11.19 44.3 44.9 69.5 52.5 46.5 26.1 31.6 45.0 -
0.58B ✓ 60B ✓ 2 Avg 128 SVD - - - 10.07 8.68 11.07 45.9 45.1 69.4 50.5 46.8 25.4 31.6 45.0 -
0.68B ✓ 60B ✓ 2 Avg 256 SVD - - - 9.96 8.56 10.93 46.2 45.7 69.0 53.2 47.9 25.9 31.6 45.6 -
0.86B ✓ 60B ✓ 2 Avg 512 SVD - - - 9.85 8.44 10.76 47.4 46.3 69.7 52.8 47.5 26.3 31.4 45.9 -

10.55 9.16 11.68 45.0 43.7 68.9 53.4 44.8 25.3 32.2 44.8 + 0.50.48B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ 12.28 10.62 13.83 38.2 39.4 65.8 52.3 41.5 24.7 30.6 41.8 -
10.34 9.08 11.50 43.4 44.8 69.5 53.4 46.9 25.6 32.0 45.1 + 0.10.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ 21.23 18.63 24.85 16.8 29.0 57.6 48.9 33.2 23.1 27.0 33.7 -
10.25 8.97 11.36 45.2 45.5 68.8 54.0 46.5 25.0 31.6 45.2 + 0.20.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ 21.30 18.56 24.75 18.5 28.9 58.4 48.0 34.1 21.8 27.4 33.9 -

TinyLlama 10.13 8.84 11.23 45.2 45.9 69.6 53.6 46.9 25.9 32.0 45.6 + 0.00.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ 20.95 18.16 24.22 20.1 28.8 57.8 48.9 33.8 22.5 25.0 33.9 -
10.02 8.74 11.04 46.6 46.5 68.6 54.5 47.9 26.3 32.2 46.1 + 0.20.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ 20.38 17.70 23.57 19.9 28.8 58.2 49.0 34.7 22.8 25.8 34.2 -

10.61 9.36 11.87 42.1 43.7 68.6 54.1 46.1 26.0 31.2 44.6 – 0.40.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ 16.83 14.88 19.77 22.0 30.3 60.7 50.7 36.9 24.1 27.8 36.1 -
10.50 9.22 11.71 44.2 44.2 69.2 53.0 46.0 25.5 31.2 44.8 – 0.20.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ 17.10 15.03 19.99 23.5 30.1 60.8 51.3 36.5 23.8 26.4 36.0 -
10.34 9.07 11.51 44.0 45.0 68.4 53.0 45.8 26.0 31.2 44.8 – 0.80.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ 17.06 14.92 19.82 24.2 30.4 59.9 51.7 36.2 23.9 27.2 36.2 -
10.21 8.94 11.28 45.1 45.8 69.3 54.5 46.7 25.9 33.4 45.8 – 0.10.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ 16.76 14.68 19.43 24.4 30.0 61.1 51.9 37.1 22.9 28.2 36.5 -

0.81B ✓ 60B ✗ - - - - - - - 12.83 9.76 13.57 53.0 50.2 71.1 54.8 51.9 27.7 31.6 48.6 -
0.81B ✓ 75B ✗ - - - - - - - 12.86 9.86 13.74 54.8 50.3 70.5 55.3 52.2 28.8 33.0 49.3 + 0.7

0.40B ✓ 60B ✓ 2 Step - - - - - 14.59 11.13 15.79 47.8 43.8 69.3 52.0 48.1 25.4 30.4 45.2 -
0.44B ✓ 60B ✓ 2 Avg 64 SVD - - - 14.24 10.89 15.52 50.0 44.5 68.9 54.1 48.0 26.5 31.2 46.2 -
0.48B ✓ 60B ✓ 2 Avg 128 SVD - - - 14.10 10.79 15.27 50.1 45.5 69.0 52.6 48.3 25.8 32.0 46.2 -
0.55B ✓ 60B ✓ 2 Avg 256 SVD - - - 13.91 10.61 14.91 50.5 45.6 68.7 51.2 48.4 25.7 32.8 46.1 -
0.70B ✓ 60B ✓ 2 Avg 512 SVD - - - 13.59 10.38 14.43 52.0 47.0 69.6 53.4 48.9 26.9 31.2 47.0 -

14.72 11.38 16.31 47.0 44.2 69.2 53.4 48.6 24.7 30.4 45.4 + 0.20.40B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ 18.61 14.11 20.96 38.4 38.1 67.0 53.7 43.3 24.4 29.0 42.0 -
14.49 11.22 16.12 49.1 43.9 69.8 53.8 48.6 26.1 31.2 46.1 – 0.10.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ 24.43 18.19 27.89 26.7 31.6 61.6 50.8 38.2 22.9 27.6 37.1 -
14.35 11.17 15.93 50.1 44.7 69.0 52.1 49.9 25.3 32.6 46.2 + 0.00.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ 24.33 18.09 27.96 28.2 32.3 61.1 53.0 38.8 23.7 27.4 37.8 -

Pythia 14.14 10.96 15.54 50.8 45.5 68.2 53.9 48.8 25.3 32.8 46.5 + 0.40.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ 24.18 17.87 27.48 28.1 32.3 61.9 54.1 38.1 22.9 28.6 38.0 -
13.81 10.72 15.11 52.4 47.0 69.3 52.7 50.1 26.9 32.0 47.2 + 0.20.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ 23.50 17.49 26.72 29.5 32.8 63.2 52.3 38.8 22.8 27.8 38.2 -

14.87 11.53 16.61 47.0 43.1 68.7 53.0 47.4 25.7 31.0 45.1 – 0.90.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ 20.62 15.60 23.57 32.6 33.6 63.4 51.2 40.7 23.3 28.0 39.0 -
14.69 11.46 16.36 48.9 43.8 68.4 53.0 49.1 26.2 31.6 45.9 – 0.30.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ 20.60 15.56 23.63 33.2 33.6 62.7 51.1 41.3 23.6 27.8 39.0 -
14.44 11.20 15.94 50.0 44.7 69.2 52.3 48.1 25.4 32.2 46.0 – 0.10.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ 20.61 15.48 23.45 33.3 34.2 63.4 52.2 40.8 23.0 28.8 39.4 -
14.08 10.94 15.44 51.1 46.4 68.7 52.2 50.0 26.9 31.6 46.7 – 0.30.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ 20.20 15.25 22.98 34.6 34.1 63.5 53.0 41.5 23.6 27.6 39.7 -
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N HYPOTHETICAL GENERATION SPEEDUP

Measuring the average generation time per token First, we measured the generation time with
various model configurations using dummy weights and inputs. We measured the elapsed time for
each components, such as embedding matrices, Transformer blocks, and the classifier head. We
measured decoding speed using FlashDecoding (Dao et al., 2022), a technique that has recently
become standard in serving LLMs. Especially, we calculated the time per token by dividing the total
time by the decoding length. Default prefix and decoding lengths are set to 512 and 2048, but we also
used shorter context lengths, like 64 and 256 to simulate scenarios where parameter memory sizes
become limiting. Using a single A100 40GiB GPU, we measured generation times by increasing
batch sizes until an out-of-memory error occurred or memory usuage reached the predefined limit.

In Table 16, generation time was measured up to the maximum batch size that a single A100 GPU
could accommodate before encountering out-of-memory errors, with prefix and decoding lengths set
to 512 and 2048, respectively. Meanwhile, Table 18 presents generation times measured in a more
memory-constrained deployment scenario, where the prefix and decoding lengths were reduced to 64
and 256, and the memory limit was set to 16GB. As anticipated, under severe memory constraints, the
reduced parameter memory footprint of Recursive Transformers enabled substantially larger batch
sizes. This observation indicates that Recursive Transformers, even without continuous batching
techniques, can achieve higher throughput than vanilla Transformers due to their inherent memory
efficiency.

When comparing the speed of the three models, Gemma 2B was the fastest, followed by TinyLlama
1.1B and then Pythia 1B. This order is the exact inverse of their non-embedding parameter sizes. This
speed difference is attributed to the Grouped-Query and Multi-Query attention mechanisms (Ainslie
et al., 2023). The main decoding bottleneck in Transformers is memory access to the key-value
cache. Hence, Gemma that effectively reduces the key-value cache size through the MQA mechanism,
achieves fastest speeds. Despite using GQA, TinyLlama 1.1B has a similar speed to Gemma 2B
due to its shallow and deep architecture (22 layers compared to Gemma’s 18 layers). This deeper
architecture likely offsets the speed gains from the attention mechanism.

Comparison of hypothetical generation throughput We conducted early-exiting simulations using
language modeling datasets (SlimPajama, RedPajama, and PG19), assuming our models generated
the tokens. For each dataset’s test set, we employed an oracle-exiting algorithm to determine the
earliest possible exit point for each token. We used 20K samples to obtain their exit trajectories. By
combining this trajectory data with previously measured per-token processing time (considering only
Transformer block computations), we estimated the hypothetical throughput across various settings
and datasets. The results are detailed in Tables 17 and 19.

Our analysis reveals that Recursive Transformers achieve a 2-3× throughput gain over vanilla
Transformers. Relaxed models also demonstrate significant speedup despite unoptimized LoRA
computations. Currently, we merge multiple LoRAs into a single, larger LoRA to enable parallel
computation of samples across different looping iterations. However, this incurs extra overhead due
to redundant computations. Therefore, we observed reduced throughput gains in memory-constrained
scenarios (shorter context lengths and lower memory limits). This degradation stems from the
increased proportion of LoRA computation time relative to overall processing time. Because attention
computation has quadratic complexity with respec to lengths, it becomes less expensive at shorter
context lengths, while the complexity of LoRA computation remains constant. This highlights the
impact of unoptimized LoRA computations, leading to substantial throughput reduction. However,
these findings suggest that relaxed models will yield even greater performance and throughput
improvements in scenarios with longer contexts where attention computation dominates.
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Approximation errors in our hypothetical throughput Since our throughput estimations are
based on theoretical estimation, they may introduce certain approximation errors as follows:

• As our models are not fine-tuned for any downstream task, we simulated the exit trajectories of
language modeling datasets by assuming they were generated by our models. While this approach
is expected to closely approximate actual generation, empirical validation is necessary to confirm
its accuracy.

• Throughput gains should be measured using realistic (confidence-based) early-exiting algorithms,
rather than relying on the oracle-exiting algorithm. While early-exiting algorithms can introduce
performance degradation due to inherent errors in confidence estimation, they also incur addi-
tional computational costs for estimating prediction confidence, necessitating further efficiency
improvements.

• Our analysis solely focused on speed improvements within Transformer blocks. However, upon
early exiting, the exited tokens require separate processing through the embedding layer or the
classifier head for subsequent sequence generation. This necessitates non-exited tokens to wait for
others, potentially reducing efficiency as the embedding layer computation may not fully utilize the
maximum batch size.

• Early-exiting architectures require computing key-value caches in remaining layers for already
exited tokens to prevent performance degradation (Bae et al., 2023). While this adds negligible
overhead in memory-bound scenarios, it inevitably increases overhead in compute-bound scenarios
where the maximum batch size is fully utilized. Our throughput estimation, however, excludes
the computation time for these key-value caches in later loops (though we did account for their
memory size). Incorporating these computations into a more realistic analysis of early-exiting
generation is a direction for future work.
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Table 16: Measurements of generation time across three models using a single A100 40GB GPU. We
measured time per token for both a batch size of 1 and the maximum batch size achievable by each
model. The prefix length was set to 512 tokens, and the decoded output length to 2048 tokens. We
then averaged the total elapsed time by the output length of 2048. Dummy input and dummy tensors
were used for measurement. Both Gemma, employing multi-query attention, and TinyLlama, utilizing
grouped-query attention, demonstrated fast generation speeds and large maximum batch sizes relative
to their model sizes. TinyLlama’s deep and narrow architecture allowed for a significantly large
maximum batch size, although its generation speed was slower due to the increased number of layers.

Model Architecture Recursive Time (ms) per token

Models NL dmodel Nhead NKV Vocab N-emb Block Rank Batch Total Emb Transformer Head

1 22.994 0.087 21.344 0.80318 2048 8 1 256K 1.98B - - 43 0.657 0.002 0.616 0.023
1 13.918 0.088 11.059 0.82718 2048 8 1 256K 0.99B 2 - 43 0.336 0.002 0.265 0.023
1 15.858 0.080 13.096 0.82518 2048 8 1 256K 1.07B 2 64 41 0.398 0.002 0.323 0.024
1 15.708 0.080 12.969 0.82218 2048 8 1 256K 1.15B 2 128 41 0.398 0.002 0.324 0.024
1 15.456 0.083 12.721 0.81818 2048 8 1 256K 1.30B 2 256 39 0.450 0.002 0.372 0.025

Gemma 2B 1 15.489 0.078 12.775 0.81718 2048 8 1 256K 1.60B 2 512 39 0.499 0.002 0.422 0.025
1 10.546 0.081 7.394 0.82718 2048 8 1 256K 0.66B 3 - 43 0.263 0.002 0.182 0.023
1 11.871 0.080 8.724 0.82718 2048 8 1 256K 0.74B 3 64 43 0.306 0.002 0.182 0.023
1 11.768 0.080 8.649 0.82518 2048 8 1 256K 0.82B 3 128 43 0.294 0.002 0.221 0.023
1 12.018 0.081 8.848 0.82318 2048 8 1 256K 0.97B 3 256 41 0.311 0.002 0.226 0.024
1 12.087 0.082 8.932 0.82218 2048 8 1 256K 1.27B 3 512 39 0.325 0.002 0.237 0.025

1 22.016 0.082 21.010 0.18822 2048 32 4 32K 0.97B - - 329 0.819 0.000 0.815 0.001
1 12.657 0.077 10.370 0.20922 2048 32 4 32K 0.48B 2 - 233 0.446 0.000 0.413 0.001
1 15.243 0.079 12.908 0.211

TinyLlama 1.1B 22 2048 32 4 32K 0.53B 2 64 211 0.454 0.000 0.421 0.002
1 15.456 0.082 13.118 0.21322 2048 32 4 32K 0.58B 2 128 209 0.454 0.000 0.421 0.002
1 15.223 0.081 12.908 0.20822 2048 32 4 32K 0.68B 2 256 209 0.457 0.000 0.423 0.002
1 15.383 0.080 13.062 0.21122 2048 32 4 32K 0.86B 2 512 209 0.461 0.000 0.428 0.002

1 13.280 0.080 12.286 0.23516 2048 8 8 50K 0.81B - - 53 1.227 0.002 1.206 0.005
1 8.423 0.081 6.378 0.26216 2048 8 8 50K 0.40B 2 - 61 0.856 0.001 0.606 0.005
1 10.554 0.082 8.519 0.260

Pythia 1B 16 2048 8 8 50K 0.44B 2 64 63 0.875 0.001 0.626 0.005
1 10.167 0.076 8.196 0.25616 2048 8 8 50K 0.48B 2 128 59 0.892 0.001 0.642 0.005
1 10.410 0.079 8.402 0.25816 2048 8 8 50K 0.55B 2 256 59 0.913 0.001 0.662 0.005
1 12.609 0.091 10.311 0.26716 2048 8 8 50K 0.70B 2 512 53 0.956 0.002 0.702 0.006
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Table 17: Hypothetical generation speedup of Recursive Transformers across three models. We
utilized the measurements of tokens per second calculated in Table 16. We only considered the time
spent within Transformer blocks, simulating generation on the SlimPajama, RedPajama, and PG19
test sets. We used a vanilla transformer model, both with and without continuous sequence-wise
batching, as our baselines. Our Recursive models further enhance throughput by applying continuous
depth-wise batching, leveraging looping and early-exiting techniques. The throughput improvements
over the vanilla Transformer and sequence-wise batching are denoted as ∆V and ∆Seq , respectively.
To aid in understanding the speedup, we also provide the performance of intermediate layers and the
maximum batch size.

Uptrain Looping LoRA Early-Exit Train Batching Few-shot Accuracy Throughput ↑
Models N-emb PT Ntok KD Block Init Rank Init Ntok CE KD Type Exit Last Mid 1 Mid 2 Batch SlimP RedP PG19 ∆V ∆Seq

1.99B ✓ 75B ✗ - - - - - - - - ✗ 57.3 - - 43 655 1228 1357 ×1.00 ×0.71
1.99B ✓ 75B ✗ - - - - - - - CSB ✗ 57.3 - - 43 1622 1604 1357 ×1.41 ×1.00

0.99B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ CDB ✓ 54.0 48.8 - 43 3159 3050 2421 ×2.66 ×1.88
1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ CDB ✓ 54.0 40.8 - 41 2357 2255 1858 ×2.00 ×1.41
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ CDB ✓ 54.6 40.2 - 41 2355 2250 1844 ×1.99 ×1.41
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ CDB ✓ 55.2 40.5 - 39 2047 1976 1740 ×1.78 ×1.26
1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ CDB ✓ 56.2 41.7 - 39 1806 1754 1598 ×1.59 ×1.13

1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ CDB ✓ 53.1 43.3 - 41 2454 2357 1929 ×2.08 ×1.47
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ CDB ✓ 53.6 43.4 - 41 2445 2346 1926 ×2.07 ×1.47
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ CDB ✓ 54.6 43.2 - 39 2123 2056 1804 ×1.85 ×1.31

Gemma 1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ CDB ✓ 55.2 44.0 - 39 1870 1819 1655 ×1.65 ×1.17

0.66B ✓ 60B ✓ 3 Step - - 15B Agg (0.1) ✓ CDB ✓ 51.9 49.0 43.5 43 3120 3041 2729 ×2.74 ×1.94
0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.1) ✗ CDB ✓ 51.4 40.8 36.1 43 2334 2274 2059 ×2.06 ×1.45
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.1) ✗ CDB ✓ 51.7 41.1 36.1 43 2290 2230 2007 ×2.02 ×1.42
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.1) ✗ CDB ✓ 54.1 42.2 36.1 41 2281 2219 1984 ×2.00 ×1.41
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.1) ✗ CDB ✓ 55.7 43.5 37.0 39 2181 2122 1900 ×1.91 ×1.35

0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.3) ✗ CDB ✓ 50.1 42.9 37.7 43 2427 2372 2143 ×2.14 ×1.51
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.3) ✗ CDB ✓ 51.2 43.2 38.0 43 2376 2321 2084 ×2.09 ×1.48
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.3) ✗ CDB ✓ 53.0 44.8 38.7 41 2359 2300 2039 ×2.07 ×1.46
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.3) ✗ CDB ✓ 54.1 45.7 39.2 39 2251 2191 1975 ×1.98 ×1.40

0.97B ✓ - - - - - - - - - - ✗ 43.3 - - 329 1205 1220 1194 ×1.00 ×0.99
0.97B ✓ - - - - - - - - - CSB ✗ 43.3 - - 329 1227 1225 1194 ×1.01 ×1.00

0.48B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ CDB ✓ 44.8 41.8 - 233 2038 2023 1933 ×1.66 ×1.64
0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ CDB ✓ 45.1 33.7 - 211 1733 1719 1617 ×1.40 ×1.39
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ CDB ✓ 45.2 33.9 - 209 1733 1717 1609 ×1.40 ×1.39

TinyLlama 0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ CDB ✓ 45.6 33.9 - 209 1728 1714 1606 ×1.39 ×1.38
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ CDB ✓ 46.1 34.2 - 209 1716 1702 1581 ×1.38 ×1.37

0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ CDB ✓ 44.6 36.1 - 211 1810 1796 1688 ×1.46 ×1.45
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ CDB ✓ 44.8 36.0 - 209 1802 1787 1668 ×1.45 ×1.44
0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ CDB ✓ 44.8 36.2 - 209 1793 1779 1668 ×1.45 ×1.44
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ CDB ✓ 45.8 36.5 - 209 1778 1763 1637 ×1.43 ×1.42

0.81B ✓ 75B ✗ - - - - - - - - ✗ 49.3 - - 53 702 785 822 ×1.00 ×0.93
0.81B ✓ 75B ✗ - - - - - - - CSB ✗ 49.3 - - 53 829 827 822 ×1.07 ×1.00

0.40B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ CDB ✓ 45.4 42.0 - 61 1339 1333 1281 ×1.71 ×1.60
0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ CDB ✓ 46.1 37.1 - 63 1205 1203 1140 ×1.54 ×1.43
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ CDB ✓ 46.2 37.8 - 59 1156 1180 1108 ×1.49 ×1.39

Pythia 0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ CDB ✓ 46.5 38.0 - 59 1138 1139 1071 ×1.45 ×1.35
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ CDB ✓ 47.2 38.2 - 53 1051 1077 1021 ×1.36 ×1.27

0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ CDB ✓ 45.1 39.0 - 63 1254 1252 1190 ×1.60 ×1.49
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ CDB ✓ 45.9 39.0 - 59 1200 1226 1153 ×1.55 ×1.45
0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ CDB ✓ 46.0 39.4 - 59 1180 1180 1112 ×1.50 ×1.40
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ CDB ✓ 46.7 39.7 - 53 1088 1114 1058 ×1.41 ×1.32
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Table 18: Generation time measurements of Gemma models on a single A100 GPU with 16GB
memory constraint. We measured time per token for both a batch size of 1 and the maximum batch
size achievable by each model. The prefix length was set to 64 tokens, and the decoded output length
to 256 tokens. We then averaged the total elapsed time by the output length of 256. Dummy input
and dummy tensors were used for measurement.

Model Architecture Recursive Time (ms) per token

Models NL dmodel Nhead NKV Vocab N-emb Block Rank Batch Total Emb Transformer Head

1 22.577 0.084 20.937 0.80118 2048 8 1 256K 1.98B - - 111 0.207 0.001 0.188 0.010
1 13.576 0.079 10.819 0.81518 2048 8 1 256K 0.99B 2 - 123 0.118 0.001 0.091 0.009
1 15.372 0.080 12.675 0.81318 2048 8 1 256K 1.07B 2 64 117 0.140 0.001 0.112 0.009
1 15.631 0.082 12.899 0.81618 2048 8 1 256K 1.15B 2 128 115 0.141 0.001 0.113 0.010
1 15.317 0.079 12.639 0.81118 2048 8 1 256K 1.30B 2 256 111 0.143 0.001 0.115 0.010

Gemma 2B 1 15.379 0.080 12.692 0.80718 2048 8 1 256K 1.60B 2 512 103 0.158 0.001 0.127 0.011
1 10.528 0.080 7.411 0.81718 2048 8 1 256K 0.66B 3 - 131 0.087 0.001 0.058 0.010
1 11.957 0.081 8.855 0.81518 2048 8 1 256K 0.74B 3 64 123 0.105 0.001 0.075 0.009
1 11.898 0.080 8.787 0.81618 2048 8 1 256K 0.82B 3 128 121 0.103 0.001 0.074 0.009
1 11.734 0.079 8.654 0.81318 2048 8 1 256K 0.97B 3 256 117 0.106 0.001 0.076 0.009
1 11.986 0.080 8.856 0.80918 2048 8 1 256K 1.27B 3 512 107 0.125 0.001 0.090 0.010

1 23.898 0.080 22.909 0.18922 2048 32 4 32K 0.97B - - 1049 0.131 0.000 0.129 0.001
1 14.129 0.080 11.846 0.20222 2048 32 4 32K 0.48B 2 - 1121 0.070 0.000 0.064 0.001
1 14.897 0.080 12.627 0.202

TinyLlama 1.1B 22 2048 32 4 32K 0.53B 2 64 1105 0.073 0.000 0.068 0.001
1 15.090 0.081 12.778 0.20522 2048 32 4 32K 0.58B 2 128 1089 0.074 0.000 0.069 0.001
1 14.962 0.081 12.659 0.20122 2048 32 4 32K 0.68B 2 256 1065 0.076 0.000 0.071 0.001
1 15.284 0.083 12.950 0.20622 2048 32 4 32K 0.86B 2 512 1017 0.080 0.000 0.075 0.001

1 13.341 0.081 12.326 0.23916 2048 8 8 50K 0.81B - - 229 0.176 0.000 0.171 0.002
1 8.336 0.079 6.303 0.26116 2048 8 8 50K 0.40B 2 - 241 0.121 0.000 0.086 0.002
1 10.408 0.081 8.353 0.262

Pythia 1B 16 2048 8 8 50K 0.44B 2 64 233 0.133 0.000 0.097 0.002
1 10.426 0.082 8.378 0.25916 2048 8 8 50K 0.48B 2 128 221 0.137 0.000 0.101 0.002
1 10.509 0.080 8.471 0.25616 2048 8 8 50K 0.55B 2 256 205 0.151 0.000 0.115 0.002
1 11.254 0.080 9.241 0.25716 2048 8 8 50K 0.70B 2 512 165 0.177 0.001 0.139 0.002
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Table 19: Hypothetical generation speedup of Recursive Transformers across three models. We
utilized the measurements of tokens per second calculated in Table 18. We only considered the time
spent within Transformer blocks, simulating generation on the SlimPajama, RedPajama, and PG19
test sets. We used a vanilla transformer model, both with and without continuous sequence-wise
batching, as our baselines. Our Recursive models further enhance throughput by applying continuous
depth-wise batching, leveraging looping and early-exiting techniques. The throughput improvements
over the vanilla Transformer and sequence-wise batching are denoted as ∆V and ∆Seq , respectively.
To aid in understanding the speedup, we also provide the performance of intermediate layers and the
maximum batch size.

Uptrain Looping LoRA Early-Exit Train Batching Few-shot Accuracy Throughput ↑
Models N-emb PT Ntok KD Block Init Rank Init Ntok CE KD Type Exit Last Mid 1 Mid 2 Batch SlimP RedP PG19 ∆V ∆Seq

1.99B ✓ 75B ✗ - - - - - - - - ✗ 57.3 - - 111 1740 3059 4796 ×1.00 ×0.63
1.99B ✓ 75B ✗ - - - - - - - CSB ✗ 57.3 - - 111 5287 5060 4796 ×1.58 ×1.00

0.99B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ CDB ✓ 54.0 48.8 - 43 3159 3050 2421 ×2.50 ×1.59
1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ CDB ✓ 54.0 40.8 - 41 2357 2255 1858 ×1.87 ×1.19
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ CDB ✓ 54.6 40.2 - 41 2355 2250 1844 ×1.87 ×1.19
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ CDB ✓ 55.2 40.5 - 39 2047 1976 1740 ×1.86 ×1.18
1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ CDB ✓ 56.2 41.7 - 39 1806 1754 1598 ×1.73 ×1.10

1.07B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ CDB ✓ 53.1 43.3 - 41 2454 2357 1929 ×1.95 ×1.24
1.15B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ CDB ✓ 53.6 43.4 - 41 2445 2346 1926 ×1.95 ×1.24
1.30B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ CDB ✓ 54.6 43.2 - 39 2123 2056 1804 ×1.93 ×1.22

Gemma 1.60B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ CDB ✓ 55.2 44.0 - 39 1870 1819 1655 ×1.79 ×1.14

0.66B ✓ 60B ✓ 3 Step - - 15B Agg (0.1) ✓ CDB ✓ 51.9 49.0 43.5 43 3120 3041 2729 ×2.62 ×1.66
0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.1) ✗ CDB ✓ 51.4 40.8 36.1 43 2334 2274 2059 ×1.87 ×1.19
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.1) ✗ CDB ✓ 51.7 41.1 36.1 43 2290 2230 2007 ×1.90 ×1.20
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.1) ✗ CDB ✓ 54.1 42.2 36.1 41 2281 2219 1984 ×1.86 ×1.18
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.1) ✗ CDB ✓ 55.7 43.5 37.0 39 2181 2122 1900 ×1.62 ×1.03

0.74B ✓ 60B ✓ 3 Avg 64 SVD 15B Agg (0.3) ✗ CDB ✓ 50.1 42.9 37.7 43 2427 2372 2143 ×1.94 ×1.23
0.82B ✓ 60B ✓ 3 Avg 128 SVD 15B Agg (0.3) ✗ CDB ✓ 51.2 43.2 38.0 43 2376 2321 2084 ×1.97 ×1.25
0.97B ✓ 60B ✓ 3 Avg 256 SVD 15B Agg (0.3) ✗ CDB ✓ 53.0 44.8 38.7 41 2359 2300 2039 ×1.92 ×1.22
1.27B ✓ 60B ✓ 3 Avg 512 SVD 15B Agg (0.3) ✗ CDB ✓ 54.1 45.7 39.2 39 2251 2191 1975 ×1.67 ×1.06

0.97B ✓ - - - - - - - - - - ✗ 43.3 - - 1049 6856 7481 4090 ×1.00 ×0.96
0.97B ✓ - - - - - - - - - CSB ✗ 43.3 - - 1049 7709 7481 4090 ×1.05 ×1.00

0.48B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ CDB ✓ 44.8 41.8 - 233 2038 2023 1933 ×1.70 ×1.62
0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ CDB ✓ 45.1 33.7 - 211 1733 1719 1617 ×1.38 ×1.32
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ CDB ✓ 45.2 33.9 - 209 1733 1717 1609 ×1.36 ×1.30

TinyLlama 0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ CDB ✓ 45.6 33.9 - 209 1728 1714 1606 ×1.34 ×1.28
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ CDB ✓ 46.1 34.2 - 209 1716 1702 1581 ×1.28 ×1.23

0.53B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ CDB ✓ 44.6 36.1 - 211 1810 1796 1688 ×1.45 ×1.38
0.58B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ CDB ✓ 44.8 36.0 - 209 1802 1787 1668 ×1.41 ×1.35
0.68B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ CDB ✓ 44.8 36.2 - 209 1793 1779 1668 ×1.39 ×1.33
0.86B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ CDB ✓ 45.8 36.5 - 209 1778 1763 1637 ×1.33 ×1.27

0.81B ✓ 75B ✗ - - - - - - - - ✗ 49.3 - - 229 4273 5346 5149 ×1.00 ×0.89
0.81B ✓ 75B ✗ - - - - - - - CSB ✗ 49.3 - - 229 5813 5724 5149 ×1.13 ×1.00

0.40B ✓ 60B ✓ 2 Step - - 15B Agg (0.1) ✓ CDB ✓ 45.4 42.0 - 61 1339 1333 1281 ×1.77 ×1.57
0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.1) ✓ CDB ✓ 46.1 37.1 - 63 1205 1203 1140 ×1.44 ×1.28
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.1) ✓ CDB ✓ 46.2 37.8 - 59 1156 1180 1108 ×1.32 ×1.17

Pythia 0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.1) ✓ CDB ✓ 46.5 38.0 - 59 1138 1139 1071 ×1.22 ×1.08
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.1) ✓ CDB ✓ 47.2 38.2 - 53 1051 1077 1021 ×0.98 ×0.87

0.44B ✓ 60B ✓ 2 Avg 64 SVD 15B Agg (0.3) ✓ CDB ✓ 45.1 39.0 - 63 1254 1252 1190 ×1.50 ×1.33
0.48B ✓ 60B ✓ 2 Avg 128 SVD 15B Agg (0.3) ✓ CDB ✓ 45.9 39.0 - 59 1200 1226 1153 ×1.37 ×1.22
0.55B ✓ 60B ✓ 2 Avg 256 SVD 15B Agg (0.3) ✓ CDB ✓ 46.0 39.4 - 59 1180 1180 1112 ×1.27 ×1.12
0.70B ✓ 60B ✓ 2 Avg 512 SVD 15B Agg (0.3) ✓ CDB ✓ 46.7 39.7 - 53 1088 1114 1058 ×1.02 ×0.90
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