
A Algorithm Details1

We summarize our method in Algorithm 1 as follows:2

Algorithm 1: FCFL : obtain a fair Pareto min-max model
Input: fairness budget {εi}, gradient threshold εd, the initial parameters δ0l , δ

0
g , the learning rate

η, the parameter decay rate β, the initial hypothesis hθ0 , and the data of all clients{
D1, D2, ...DN

}
.

Stage 1: obtain a fair min-max model h1
for t = 1, 2, ...T 1 do

Local clients:
The center server sends the global model ht to all local client;
Local clients evaluate the performance of ht and obtain the local gradients∇θt li;
Center server:
Calculate the surrogate maximum objective l̂ and disparity ĝ′ using the Eq.( 10) in the main

text
if ĝ′ ≤ 0 then

Determine the gradient direction dt by solving the LP problem in the Eq.(12) in the main
text;

end
else

Determine dt by solving the problem in the Eq.(13) in the main text;
end
Update the model θt+1 = θt + ηdt;
if ||dt|| ≤ εd then

Decay the parameter δtl and δtg: δt+1
l = β · δtl , δt+1

g = β · δtg
end
else

δt+1
l = δtl , δ

t+1
g = δtg

end
Until converge to fair min-max solution h1;

end
Stage 2: continue to optimize h1 to achieve Pareto optimality
for t = 1, 2, ...T 2 do

Local clients:
The center server sends the global model ht to all local client;
Local clients evaluate the performance of ht and obtain the local gradients∇θt li;
Center server:
Determine dt by solving the LP problem in the Eq.(15) in the main text;
Update the model θt+1 = θt + ηdt;
Until converge to h∗;

end
Output: the fair Pareto min-max solution h∗.

B Proof of Theorem 13

Firstly,HFP andHFU are always non-empty from their definitions. Suppose h ∈ HFU ⊂ HF . From4

the definitions ofHFP andHFU , we have (1) ∃h′ ∈ HFP , s.t., h′ dominates h that h′ � h ∈ HFU ;5

(2) max(l(h)) ≤ max(l(h′)). From (1), max(l(h)) ≥ max(l(h′)) holds. Combining (2), we have6

max(l(h)) = max(l(h′)), so h′ ∈ HFU holds. Therefore, h′ ∈ HFU ∩HFP 6= ∅ holds.7

C Convergence Derivation of FCFL8

We will prove the convergence of our method in this section. FCFL reaches a min-max Pareto fair9

model by a two-stage process and we aim to identify a gradient direction d to optimize the model in10
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each iteration. For N clients with N corresponding objectives [l1, l2, .lN ] and a given direction d, we11

have the following proposition, i.e.,12

Proposition 1. Given the gradient direction d with all dT∇θli < 0, there exists η0, such that:13

li(hθt+1) < li(hθt),∀i ∈ {1, 2, ., N}
θt+1 = θt + η · d,∀η ∈ [0, η0].

(S.1)

14

Proof. Consider Taylor’s expansion with Peano’s form of the differentiable objective function15

li(hθt+1):16

li(hθt+1) = li(hθt+η·d) = li(hθt) + ηdT∇θt li + o(η), (S.2)

where o(η) denotes a function that approaches 0 faster than η. Specifically, ∀ε > 0, there exists η0,17

such that o(η) < εη for all η ∈ [0, η0]. Now we set ε = −dT∇θt li > 0, there exists η0, such that18

li(hθt+1)− li(hθt) = ηdT∇θt li + o(η) = −ηε+ o(η) < 0 for all η ∈ [0, η0].19

We will prove the convergence of our method in two steps. First, when optimizing h to achieve20

min-max performance with MCF as in Eq.( 11) in the main text, we optimize either l̂ or ĝ′ and keep l̂21

without ascent in each iteration. The monotonic decreasing l̂ means h will converge to h1 satisfying22

fairness and min-max constraints. Then, we continue to optimize h1 to achieve Pareto optimality23

by controlling the gradient direction d without causing ascent for all objectives in Eq.(15) in the24

main text. The objective 1
N

∑N
i=1 li will monotonically decrease until convergence as we constrain25

all objectives to descend or remain unchanged defined in Eq.(15) in the main text. Assuming all26

objectives and their derivatives are bounded, the formal and detailed derivations are as follows.27

Convergence of Constrained Min-Max Optimization To prove the convergence of the Constrained28

Min-Max Optimization procedure, we firstly give Lemma 1 as follows:29

Lemma 1. In each iteration, the surrogate maximum function l̂max(hθt , δ
t
l ) decreases:30

l̂max(hθt+1 , δtl ) ≤ l̂max(hθt , δ
t
l ) (S.3a)

l̂max(hθt , δ
t+1
l ) ≤ l̂max(hθt , δ

t
l ) (S.3b)

l̂max(hθt+1 , δt+1
l ) ≤ l̂max(hθt , δ

t
l ). (S.3c)

31

Proof. We prove Eq.(S.3a) in two cases: 1) ĝmax(hθt , δ
t
g ≤ 0): we obtain the gradient direction32

d by solving Eq.(12) in the main text. As we choose d = −∇θt l̂, dT∇θt l̂ < 0 holds. According33

to Proposition 1, as min dT∇θt l̂ ≤ dT∇θt l̂ < 0, we prove l̂max(hθt+1 , δtl ) ≤ l̂max(hθt , δ
t
l ) as in34

Eq.(S.3a); 2) as ĝmax(hθt , δ
t
g > 0), we obtain the gradient direction d by solving Eq.(13) in the35

main text. If we choose −d which lies on the angular bisector of the angle formed by ∇θt l̂ and36

∇θt ĝ, we have dT∇θt l̂ ≤ 0 and dT∇θt ĝ ≤ 0. As the optimal solution d∗ of Eq.(13) in the main text37

satisfies d∗T∇θt l̂ ≤ 0 and d∗T∇θt ĝ ≤ dT∇θt ĝ ≤ 0, we prove l̂max(hθt+1 , δtl ) ≤ l̂max(hθt , δ
t
l ) as38

in Eq.(S.3a) in this case. While the SMF l̂max(θt, δtl ) monotonically increases with respect to δtl ,39

Eq.(S.3b) holds as θt+1 = β · θt < θt. From Eq.(S.3a) and Eq.(S.3b), we have l̂max(hθt+1 , δt+1
l ) ≤40

l̂max(hθt , δ
t+1
l ) ≤ l̂max(hθt , δ

t
l ) as in Eq.(S.3c) shows.41

Combining the conclusion that l̂max(hθt , δ
t
l ) decreases monotonically in each iteration in Lemma 142

with l̂max(hθt , δ
t
l ) ≥ 0, we prove the convergence of constrained min-max optimization described in43

Section 4.2.44

Convergence of Constrained Pareto Optimization Constrained Pareto optimization procedure45

ensures the property as follows:46
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Lemma 2. In each iteration, the objective l(hθt) decreases or remains unchanged:47

li(hθt+1) ≤ li(hθt), ∀i ∈ {1, ., N} . (S.4)

Proof. We obtain the gradient direction d by solving Eq.(15) in the main text during constrained48

Pareto optimization. If there exists a solution d which satisfies all constraints in Eq.(15) in the main49

text, we have dT∇θt li ≤ 0,∀i which means all objectives will not increase in this iteration as Lemma50

2 shows. If there is no solution to Eq.(15) in the main text, we achieve Pareto optimality and the51

algorithm converges.52

D Time Complexity Analysis53

FCFL scales linearly with the dimension (n) of the model parameters. In our constrained min-max54

optimization procedure, the computation of l̂m(h, δl), ĝ′m(h, δg) in Eq.(10) has runtime of O(N).55

With the current best LP solver [1], the LP problem with k variables and Ω(k) constraints has runtime56

of O∗(k2.38) 1. The LP problem in Eq.(12) and Eq.(12) has 2 variables and at most 4 constraints (357

constraints for d ∈ G and 1 constraint for dT∇θ l̂ ≤ 0) so the runtime is O∗(22.38). The LP problem58

in Eq.(15) has N variables and at most 2N + 2 constraints so the runtime is O∗(N2.38). In deep59

model in FL, usually n� N .60

E Implementation Details and Additional Experimental Results61

E.1 Implementation Details62

Following the experiment setting on Adult dataset in works [2, 3], we use the original Adult dataset63

and 66% samples are training samples and 33% are test samples. We also split the 33% as test64

sets and train models on the remaining 67% on eICU dataset. For the experiments in fairness65

constrained setting, we randomly split the eICU dataset with this ratio to run all experiments five66

times and report the average performance. We delete the sensitive attribute when training the model67

in fairness-constrained setting. All models are based on Logistic Regression and are trained and68

evaluated on randomly split datasets. While the original function for measuring ∆DP or ∆EO in69

Eq.(2) in the main text is not differentiable as there is indicator function Ŷ = 1h(X)≥0.5, we use70

a surrogate differentiable function to approximate the indicator function Ŷ = 1

1+(
1−h(X)
h(X)

)10
during71

training. We implement our method with Pytorch and determine all hyper-parameters (including72

learning rate, the decay rate of δl, δg, etc.) by evaluating different combinations on the training73

set. We run all experiments 5 times and report the average results with stds. For all baselines74

except FedAve+FairReg, we use the source implementation for comparison with the optimal hyper-75

parameters. For the baselines on fairness-constrained experiments given uniform fairness budgets, 1)76

if the baselines can satisfy MCF, we try to optimize the model disparities to achieve MCF with the77

optimal model utilities; 2) if the baselines cannot satisfy MCF after exhaustive trying, we minimize the78

model disparities with reasonable model utilities. For gradient computation, we use SGD optimizer79

for each local client. For more algorithm details, the source code of our method is available at80

https://github.com/cuis15/FCFL.81

E.2 Training Devices82

We train all our models on our local Linux server with 8 GeForce RTX 2080 Ti GPUs.83

E.3 Data Asset84

Adult [4] is public data that anyone can download and use it freely. eICU [5] is a dataset for which85

permission is required. We followed the procedure on the website https://eicu-crd.mit.edu86

and got the approval for this dataset.87

1We use O∗ to hide ko(1) and logO(1)(1/δ), δ being the relative accuracy. Detailed information is in [1]
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E.4 Additional Results on Fairness Constraint Experiment88

We show the statistic results on eICU in Table 1.89

Table 1: the Statistic Results on LoS Prediction with MCF.

Methods utility utility disparity
mean(%) min (%) max (%)

MMCF 65.8± .0 61.4± .0 11.9± .0
FA 69.5± .05 60.1± .09 11.5± 1.2

FedAve+FairReg 67.6± .9 59.3± 1.2 11.0± 4.5
ours(ε = 0.1) 69.1±1.3 61.4±.3 9.3±1.4

ours(ε = 0.05) 69.1±1.5 60.9±.5 6.8±1.1

Table 1 shows the statistical results of LoS prediction with equal fairness budgets. Our method90

achieves the min-max performance as we set the fairness budget ε = 0.1. All baselines cannot reduce91

the disparities below 0.1. When we constrain all disparities ∆DPi ≤ 0.05, our method reduces the92

disparities significantly compared to baselines with a comparable min-max accuracy 60.9%.93

Income Prediction with sensitive attribute being gender and equal fairness budgets94

PhD Non-PhD
0.0

0.1

0.2

0.3

0.4

D
is

pa
ri

ty 0.222

0.059

0.278

0.066
0.045

0.006

0.050 0.039

Disparities with =0.05
MMPF
FA

Fedave+Fair
ours

(a)
PhD Non-PhD

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

0.668

0.821

0.619

0.823

0.712

0.790

0.705

0.791

Accuracies with =0.05
MMPF
FA

Fedave+Fair
ours

(b)
PhD Non-PhD

0.00

0.05

0.10

0.15

0.20

D
is

pa
ri

tie
s

0.136

0.046

0.008 0.0120.010 0.007

Disparities with =0.01
FA
Fedave+Fair

ours

(c)
PhD Non-PhD

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

0.673

0.815

0.706

0.788

0.699

0.778

Accuracies with =0.01
FA
Fedave+Fair

ours

(d)
Figure 1: The disparities and accuracies on both clients as ε = 0.05 and as ε = 0.01 of on Adult
dataset when gender is the sensitive attribute.

In this experiment, we select gender as sensitive attribute. From Figure 1, with the budget εi =95

0.05, ∀i ∈ {1, ., N}, we achieve comparable min-max performance with MCF while MMPF and FA96

violate the constraint on PhD client. As the fairness budget εi = 0.01, ∀i ∈ {1, ., N}, all baselines97

violate the constraint on PhD client and we maintain the utilities on both clients with MCF.98

Income Prediction with sensitive attribute being gender and client-specific fairness budgets99

The results of Income prediction with client-specific fairness constraints in Figure 2. The disparities100

of both clients decrease significantly as in Figure 2(a) as w decreases. With a decreasing fairness101

budget, the utilities of both clients slightly decreases as in Figure 2(b).
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Figure 2: Client-specific constraint experiment on Adult dataset with sensitive attribute being gender.
102

Income prediction using EO metric Besides DP [6] metric, we verify the effectiveness of our103

method using another metric Equal opportunity (EO) [7] which measures difference of the false104

negative rates across different groups as in Eq.(2). Here we show the results on Income prediction105

with the sensitive attribute being race given uniform fairness budgets εi = 0.05 on both clients in our106

main text.107

The original unconstrained model causes disparities on both clients: ∆EOPhD = 0.105 and108

∆EOnon−PhD = 0.183. Our model significantly reduces the disparities with fairness budget109
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Figure 3: The results of unconstrained optimization and fairness-constrained optimization with the
disparities measured by EO and the sensitive attribute is race.
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Figure 4: The results of unconstrained optimization and fairness-constrained optimization with the
disparities measured by EO and the sensitive attribute is gender.

ε = 0.05 as shown in Figure 3(a). For the model utilities on both clients shown in Figure 3(b), we110

achieve reasonable performances and there is a 0.03 drop on PhD client and 0.02 on non-PhD client.111

Similar results can also be found in Figure 4 as the sensitive attribute is gender in Appendix.112

F Compatibility with Unconstrained Pareto Min-Max Optimization113

F.1 Achieving Pareto Min-Max Optimality without Fairness Constraints114

Though our method is proposed for fairness-constrained multi-objective optimization, FCFL is also115

compatible with unconstrained min-max optimization problems which only care about the utilities of116

all clients as in [2, 3]:117

1. optimize h to achieve min-max performance:

min
d∈G

dT∇θt l̂,

2. optimize h for Pareto optimality and min-max performance:

min
d∈G

1

N

N∑
i=1

dT∇θt li, s.t. dT∇θt li ≤ 0 ∀i ∈ {1, ., N} ,

where G is the convex hull of [∇θt l1, .,∇θt lN ] and we obtain the gradient direction d using the118

gradient information of all clients without accessing the local data.119

F.2 Experiments on Improving Consistency without Fairness Constraints120

We evaluate the performance of our method on the problem of improving consistency without fairness121

constraints described with two existing methods q-FFL [2] and AFL [3].122

Our method seeks for min-max performance by optimizing the SMF l̂ which is the upper bound of123

all objectives. Experimental results on Income Prediction in Table 2 show that our method achieves124

relatively higher performance on the worst-performing client (74.9). Besides, FCFL achieves Pareto125
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Table 2: The accuracies on Income Prediction

Methods average (%) PhD (%) non-PhD (%)
q-FFL 82.3± .1[2] 74.4± .9[2] 82.4± .1[2]
AFL 82.5± .5[2] 73.0± 2.2[2] 82.6± .5[2]
ours 82.7 ±.1 74.9 ±.4 82.8 ±.1

optimality to avoid unnecessary harm to other clients. From Table 2, we maintain the performance on126

non-PhD client (82.8).127

We conduct experiments on eICU dataset in unconstrained min-max setting. We randomly split the128

dataset 5 times and run the two prediction tasks. We show the statistical average results in Table 3.129

For LoS prediction task, we achieve higher uniformity by a higher utility on the worst-performing130

client compared to baselines. We also predict the in-hospital mortality as a prediction task and all131

methods achieve similar results.132

Table 3: The accuracies on eICU without fairness constraints

Mortality Prediction LoS Prediction
Methods minimum (%) average(%) minimum (%) average(%)
q-FFL 91.7± .1 88.3± .7 57.6± 2.2 70.0± .3
AFL 91.7± .1 88.2± .7 58.1± 2.0 70.0± .4
ous 91.7± .1 88.3± .6 60.5± 2.0 67.4± .7

G Discussion about Fairness Budget133

G.1 How is the fairness budget of each client relate to one another134

For each fairness budegt εk, it should be assigned by each client based upon its actual fairness135

requirements. However, the fairness budgets εk assigned by different clients are not unrelated since136

all fairness constraints defined by εkdetermine the feasible region of the model together. Due to the137

potential trade-off between the fairness and the utility, the fairness constraint determined by εk of the138

k-th client can have an impact on the utility of all clients in the federated network.139

G.2 When the fairness budget should be the same140

As we stated above, the assignment of the fairness budget εk depends on the actual scenarios. In141

high-stake scenarios (e.g., hospitals, banks, etc.), people are highly concerned about fairness and142

different clients should have consistent fairness budgets. In some other scenarios such as advertising143

recommendations, people may be more tolerant of the difference of εk among different clients. In this144

case, the assignment of the fairness budget εk depends on whether it can lead to a satisfying trade-off145

between fairness and utility for all clients. For example, we determine the εk based upon the original146

disparity as the experiments presented in Sec 5.4. In addition, to obtain a budget combination that147

satisfies all clients, one may try different budget combinations and evaluate the performances of all148

clients, then all clients vote for a reasonable budget combination.149

H Limitations and Future work150

In this study, we aim to tackle the algorithmic disparity and performance inconsistency issues in151

federated learning. As it is hard to realize the min-max optimality and Pareto optimality by one-152

stage optimization, we propose a two-stage optimization framework that first achieving consistent153

performance then enforcing Pareto optimality. Since our framework encourages a more uniform154

model performance distribution, on the one hand, some clients with poor performances may be155

significantly improved; on the other hand, other clients whose model utility could be further improved156

may come to a halt.157
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Since we focus on addressing the local disparity, it cannot guarantee reasonable global fairness. In158

reality, the global disparity is also a matter of concern in a federated network. We will study how to159

give consideration to both local fairness and global fairness in our future work.160
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