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A Appendix

In this document, we provide additional details and results to the main paper. The document is
structured as follows:

A.1 Loss Analysis - Analysis of the unimodal and multimodal latent regularization loss across
different distributions and an ablation study on the proposed loss function.

A.2 Image Generation - In this section, we compare VQVAE model with our method, provide
detailed descriptions of the dataset, network architecture, and implementation details of the
image generation experiments in the main paper.

A.3 Modelling Discrete Structures - In this section, we describe the experimental and implemen-
tation details of the discrete data structure experiments in the main paper.

A.4 Mode Analysis - Quantitative analysis of the clustering performance in MNIST and FASH-
ION MNIST images.

A.5 Additional Qualitative Analysis - More examples of the randomly generated samples of
MNIST, FASHION MNIST, SVHN and CELEBA images.

A.1 Loss Analysis

Unimodal Regularization loss In this section, we analyze the unimodal version of the proposed
regularization loss across different distributions. For a fixed, target prior we investigate the behaviour
of our loss on samples from varying distributions. Throughout the unimodal analysis, we choose
the target prior to be a standard normal distribution. In our experiments, we evaluate our loss on
samples from unimodal Gaussian distributions with (1) standard deviation equal to the prior, but
different means and (2) mean equal to the prior, but varying standard deviation. The observed values
for the proposed weighted regularization loss are plotted in Figure 1 for dimensions 1 and 2. It can be
observed that the loss function increases with increasing distance between the means and standard
deviations of the sampling distribution and the target prior.

Multimodal Regularization loss Next, we extend the analysis to the multimodal regularization
loss across different distributions. Throughout the multimodal analysis, we fix the target prior to
be a Gaussian mixture model with two equally weighted spherical components centered at one hot
encoding vectors of the respective dimensions. Similar as above, we consider two sets of experiments
for the evaluation: (1) Samples from a GMM with two spherical components centered at different
means and (2) Samples from a GMM with two components centered at the means of the prior
components, but different covariance. In both cases, we vary the means and covariances by adding
a multiplicative factor α and β to the means and covariance matrices of the prior respectively. The
observed values for the proposed weighted regularization loss are plotted in Figure 2 for dimensions
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2 and 3. It can be observed that the value of the loss function increases with the increasing factors α
and β.
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Figure 1: Loss analysis - Unimodal latent regularization in one and two dimensions for varying
numbers of samples from different Gaussian distributions. With increase in mean and standard
deviation the loss function increases with respect to the target prior (blue).

0 20 40 60 80 100 120

Number of samples
0

2

4

6

8

10

W
ei

gh
te

d 
re

gu
la

riz
at

io
n Dimension 2

0 20 40 60 80 100 120

Number of samples

2

4

6

8

10
Dimension 3

GMM Prior, num_centers=2
GMM( =1.5), num_centers=2

GMM( =5.0), num_centers=2
GMM( =10.0), num_centers=2

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Means Factor
0

2

4

6

8

10

12

14

W
ei

gh
te

d 
re

gu
la

riz
at

io
n Dimension 2

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Means Factor

2

4

6

8

10

12

Dimension 3

0 20 40 60 80 100 120

Number of samples

1

2

3

4

5

6

7

8

W
ei

gh
te

d 
re

gu
la

riz
at

io
n Dimension 2

0 20 40 60 80 100 120

Number of samples

1

2

3

4

5

6

7

Dimension 3

GMM Prior, num_centers=2
GMM( =2), num_centers=2

GMM( =5), num_centers=2
GMM( =10), num_centers=2

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Covariance Factor

2

4

6

8

W
ei

gh
te

d 
re

gu
la

riz
at

io
n Dimension 2

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Covariance Factor

2

4

6

8

Dimension 3

Figure 2: Loss analysis - left: Multimodal latent regularization in two and three dimensions for
varying numbers of samples from different Gaussian mixture distributions. Right: Multimodal latent
regularization in two and three dimensions for different mean(α) and covariance factor(β). With
increase in mean and covariance of the samples, the loss function increases with respect to the target
GMM prior (blue).

Latent space analysis We perform ablation study on the two loss terms in the proposed regu-
larzation loss. For simplicity, we consider a subset of MNIST images with two digits 1 and 8 as
training dataset for this line of experiments. For ease of visualization, the prior is chosen to be a
mixture of two Gaussian with means (3, 3) and (−3,−3) and identity covariance matrices. We train
a deterministic autoencoder with the two individual loss terms (mean squared covariance distances
and simplified Kolmogorov-Smirnov distance) and the proposed weighted combination of both. In
Figure 3, we show the latent representations of the training data using these three regularizers after
1 and 30 epochs. It can be seen that a combination of the proposed two loss terms is essential for
effectively regularizing the latent representations to match the target prior.
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Figure 3: Ablation study on loss functions - 2D pair plot visualization of the target prior and posterior
(test images) of the proposed model trained on a subset of MNIST images with different terms of the
loss functions.

A.2 Image Generation

This section summarizes the VQVAE comparison to our model and the implementation details of the
image generation experiments in the main paper.

A.2.1 Comparison to VQVAE

The VQVAE [8, 9] models can be also be considered as a deterministic autoencoder and they focuses
on high fidelity image generation. Training VQ-VAE involves two stages of training relying on
complex discrete autoregressive density estimators. The training also involves tuning two important
hyperparameters, size of the discrete latent space/number of embeddings (K) and the dimensionality
of each latent embedding vector (D). We applied VQVAE [8] to MNIST data and observed the
following results: for K = 32 and D = 128, we observed a sampling FID of 18.51, reconstruction
FID of 17.62 and interpolation FID of 16.85. However, VQVAE does not address the question of
how to structure the continuous latent space before quantization. In contrast, the proposed approach
addresses specifically this question of how to efficiently structure the latent space. In that sense,
the two approaches are rather complementary than direct competitors. A combination of both for
high quality image generation from pre-structured latent spaces prior to quantization would be an
interesting topic for future research.

A.2.2 Dataset

We performed empirical evaluations for image generation across four dataset, MNIST [5], FASHION-
MNIST [10], SVHN [7] and CELEBA [6].
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MNIST The dataset (licensed under GNU General Public License v3.0) includes gray-scale images
of hand-written digits from 0 to 9. The original MNIST images of size 28× 28 were padded to size
32 × 32 for all our experiments. The training dataset includes 50000 images, validation and test
dataset includes 10000 images each.

FASHION-MNIST The dataset (licensed under MIT License) includes gray scale images of fashion
and clothing items of 10 classes. The original images of size 28× 28 were padded to size 32× 32 for
all our experiments. The training dataset includes 50000 images, validation and test dataset includes
10000 images each.

SVHN The dataset (licensed under GNU General Public License v3.0) includes house numbers
cropped from street view images (RGB) and is available in two formats, cropped versions of size
32× 32 and original images of varying resolution. For our experiments, we considered the cropped
versions. The training dataset includes 73257 images, validation dataset of 10000 images and test
dataset of 16032 images.

CELEBA The dataset (licensed under Custom(non-commercial research)) includes over 200k
celebrity face images (RGB). The training dataset includes 162721 images, validation dataset of
19866 and test dataset 19961 images. The images were center cropped to size 140× 140 and then
resized to 64× 64 before training.

A.2.3 Network architecture: Training details and hyper-parameters

The architectural details of the encoder and decoder used are shown in Table 1. For fair comparison
we used the same architecture for all the baseline methods. Filter size of 4 is used for all layers in the
network, with padding size, 1 and stride 2. Please refer to the code appendix for the implementation of
the proposed model. For regularized autoencoders (RAE) and other VAEs in the baseline comparison,
we used the official GitHub repository to evaluate the results1. We used the Pytorch implementation
in the Github repository2 for GMVAE experiments.

Table 1: Encoder and Decoder network architecture - Image generation. Conv2D stands for the con-
volution layer, BN corresponds to batch normalization, Conv2DT refers to the transposed convolution
layer and FC stands for fully connected layer.

Dataset Encoder Decoder

Layer Output Layer Output

MNIST/ Input 1× 32× 32 Input 10× 1
FASHION MNIST Conv2D, BN, ReLU 128× 16× 16 FC, Reshape 1024× 2× 2

Conv2D, BN, ReLU 256× 8× 8 Conv2DT, BN, ReLU 512× 4× 4
Conv2D, BN, ReLU 512× 4× 4 Conv2DT, BN, ReLU 256× 8× 8
Conv2D, BN, ReLU 1024× 2× 2 Conv2DT, BN, ReLU 128× 16× 16

Flatten, FC 10× 1 Conv2DT, BN, ReLU 1× 32× 32

SVHN Input 3× 32× 32 Input 100× 1
Conv2D, BN, ReLU 128× 16× 16 FC, Reshape 1024× 2× 2
Conv2D, BN, ReLU 256× 8× 8 Conv2DT, BN, ReLU 512× 4× 4
Conv2D, BN, ReLU 512× 4× 4 Conv2DT, BN, ReLU 256× 8× 8
Conv2D, BN, ReLU 1024× 2× 2 Conv2DT, BN, ReLU 128× 16× 16

Flatten, FC 100× 1 Conv2DT, BN, ReLU 3× 32× 32

CELEBA Input 3× 64× 64 Input 64× 1
Conv2D, BN, ReLU 128× 32× 32 FC, Reshape 1024× 4× 4
Conv2D, BN, ReLU 256× 16× 16 Conv2DT, BN, ReLU 512× 8× 8
Conv2D, BN, ReLU 512× 8× 8 Conv2DT, BN, ReLU 256× 16× 16
Conv2D, BN, ReLU 1024× 4× 4 Conv2DT, BN, ReLU 128× 32× 32

Flatten, FC 64× 1 Conv2DT, BN, ReLU 3× 64× 64

1https://github.com/ParthaEth/Regularized_autoencoders-RAE-
2https://github.com/jariasf/GMVAE
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We train our model with ADAM optimizer [3], using a batch size of 100, number of epochs 100,
momentum (β1, β2) = (0.5, 0.999) with starting learning rate of 0.002 which exponentially decays
when the validation loss plateaus. The latent space dimension of MNIST and FASHION-MNIST is
10, 100 for SVHN and 64 for CELEBA images. The image reconstruction loss coefficient value of
0.005 is used for all experiments. The other two loss coefficient values can be calculated as mentioned
in section 3 of the main paper. For prior definition, we define the means of each Gaussian component
as one hot encoding vector with a standard deviation of 1. A mixture of 10 components with equally
weighted mixing co-efficients were used for MNIST, FASHION MNIST and SVHN, 20 for CELEBA
images. For evaluation metrics, Fréchet Inception Distance (FID) [2] is calculated for 10000 images
and averaged across 5 different runs. The FIDs observed by sampling from the prior along with error
bars (for different runs) are as follows, MNIST: 13.11±0.9, FASHION-MNIST: 33.70±0.8, SVHN:
37.42± 1.1 and CELEBA: 49.79± 1.2. And the FIDs that we observe after fitting a GMM to the
latent space of our model are as follows (for different runs), MNIST: 12.82± 0.6, FASHION-MNIST:
26.62± 0.8, SVHN: 36.46± 0.9 and CELEBA: 44.79± 1.0. All our experiments were conducted
on a single GTX1080 GPU with 12/16 GB RAM memory3.

A.3 Modelling Discrete Data Structures

In this section we discuss the experimental setup and implementation details of the structured data
experiments in the main paper. We consider two optimization problems similar to [4], 1. searching
the latent space for arithmetic expression that best fits a target dataset and 2. searching for the best
drug like molecule. We follow the same experimental setup as in [4], which we summarize in the
following for clarity.

Arithmetic expression fitting task The model is trained with a dataset of 100, 000 randomly gener-
ated univariate arithmetic expressions (functions of x) following a defined grammar [4]. The objective
of this experiment is to search in the latent space of the trained model to find an expression that best
matches a fixed target dataset. The target dataset is defined by selecting 1000 input values of x, that
are linearly-spaced between −10 and 10. The corresponding x values are given to the true function
1/3 + x+ sin(x ∗ x) to generate target observations. The target variable/score to optimize is defined
as the log(1 + MSE) between the predictions made by an expression and the true data. Bayesian
optimization (BO) is utilized to traverse through the latent space of arithmetic expressions to search
for an equation that best matches this target true function. The best three expressions found by our
method along with their corresponding score is reported in Table 3.

Molecule discovery The model is trained with a dataset of 250, 000 SMILES strings ZINC250K [1]
following the context free grammar as defined in [4]. The latent space of the trained model is
then traversed to find the molecule with the best drug likeliness score. The drug likeliness score is
quantified by the design metric water octanol partition co-efficient (logP) of the molecules. The best
three molecules generated by our model along with their target score is given in Table 4.

Implementation We extend the official Tensorflow implementation of GRAMMAR-VAE [4]4 with
our novel regularizer to evaluate the results. The image reconstruction loss coefficient used is 0.005
for both the experiments. The other two loss coefficient values can be calculated as mentioned in
section 3 of the main paper. We used the same network architecture and other hyper-parameters
similar to the original implementation.

Predictive performance of the latent representation Similar to [4] we also evaluate the predictive
performance of the the latent representations of the proposed model. The sparse Gaussian process
model used in the BO is used to evaluate the predictive performance on a left out 10% of data (test).
The input to the sparse GP model is the test data (formed by the latent representation of the available
sequences) and the output is the prediction of the associated properties/scores of each tasks. The test
log likelihood and the average RMSE values obtained for our model is compared to GVAE [4] and
CVAE [1] in Table 2. Our model yields better predictive performance on both tasks which shows that
the proposed model learned better latent features for better predictions compared to the other two
baseline models.

3GPU cluster part of carbon neutral framework
4https://github.com/mkusner/grammarVAE
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Table 2: Predictive performances of sparse Gaussian processes on different VAEs. Baseline values
are taken from [4].

Objective Method Expressions Molecules

LL GVAE −1.320± 0.001 −1.739± 0.004
CVAE −1.397± 0.003 −1.812± 0.004
Ours -1.309 ± 0.001 -1.689 ± 0.003

RMSE GVAE 0.884± 0.002 1.404± 0.006
CVAE 0.975± 0.004 1.504± 0.006
Ours 0.877 ± 0.001 1.400 ± 0.002

Table 3: The generated expressions corre-
sponding to the observed best three scores.

Number Expression Score(↓)

1 x ∗ 1 + sin(3) + sin(x ∗ x) 0.03
2 x ∗ 1 + sin(1) + sin(2 ∗ 3) 0.40
3 x + 1 + sin(3) + sin(3 + 2) 0.41

Table 4: The generated molecules corresponding to
the observed best three scores.

Number SMILE Score(↑)

1 C(CCC)CCCCCCCC 4.15
2 CCCCCCCCCCC 3.84
3 CCCCCc1cccc(c1) 3.12

A.4 Mode Analysis

Although clustering is not the goal of this paper, we investigate the performance of the model to
generate samples from similar classes within each component of the GMM prior. In addition to the
qualitative and quantitative analysis of clustering performance of the proposed method in the main
paper, we also report the quantitative unsupervised clustering performance in terms of two other
metrics, 1. Normalized Mutual Information (NMI) and 2. mean Average Precision (mAP). NMI
measures the mutual information between the cluster assignments and the ground truth labels and is
normalized by the average of the entropy of both target and observed labels. The calculated NMI
and mAP values for the MNIST and FASHION MNIST test images are reported in the Table 5. The
images similar in visual appearance are grouped in to same components in the prior and the proposed
model achieves reasonable natural clustering of the object classes in both MNIST and FASHION
MNIST images.

Table 5: Unsupervised clustering performance on MNIST and FASHION MNIST images.
Dataset NMI mAP

MNIST 0.72 0.75
FASHION MNIST 0.60 0.61

A.5 Additional Qualitative Analysis

The qualitative analysis of the generated samples for FASHION MNIST images are shown in Figure 4
along with the reconstructed samples and interpolated samples in the latent space of the trained model.
More examples of randomly generated MNIST, FASHION MNIST, SVHN and CELEBA images are
given in Figure 5 and Figure 6 respectively.
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Random samples Reconstructed samples Interpolated samples

Figure 4: Qualitative analysis on image generation on FASHION-MNIST images. Column 1 shows
the randomly generated samples; Column 2 shows the reconstructed samples by the decoder on test
dataset after training, first row in each sections corresponds to the ground truth and the second one its
corresponding reconstruction; Column 3 shows randomly interpolated samples in the learned latent
space of our model.
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MNIST FASHION MNIST

Figure 5: Additional qualitative analysis on image generation - randomly generated MNIST and
FASHION MNIST smaples.
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SVHN CELEBA

Figure 6: Additional qualitative analysis on image generation - randomly generated SVHN and
CELEBA samples.

9



References
[1] R. Gómez-Bombarelli, D. Duvenaud, J. Hernández-Lobato, J. Aguilera-Iparraguirre, T. Hirzel,

R. Adams, and A. Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS Central Science, 4, 2016.

[2] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. In NIPS, 2017.

[3] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[4] M. J. Kusner, B. Paige, and J. M. Hernández-Lobato. Grammar variational autoencoder. In
Proceedings of the 34th International Conference on Machine Learning - Volume 70, ICML’17,
page 1945–1954, 2017.

[5] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010.

[6] Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Proceedings
of International Conference on Computer Vision (ICCV), December 2015.

[7] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng. Reading digits in natural images
with unsupervised feature learning. NIPS, 2011.

[8] A. Oord, O. Vinyals, and K. Kavukcuoglu. Neural discrete representation learning. In NIPS,
2017.

[9] A. Razavi, A. Oord, and O. Vinyals. Generating diverse high-fidelity images with vq-vae-2.
ArXiv, abs/1906.00446, 2019.

[10] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. ArXiv, abs/1708.07747, 2017.

10


	Appendix
	Loss Analysis
	Image Generation
	Comparison to VQVAE
	Dataset
	Network architecture: Training details and hyper-parameters

	Modelling Discrete Data Structures
	Mode Analysis
	Additional Qualitative Analysis


