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Abstract

We study the linear contextual bandits problem in the presence of adversarial1

corruption, where the interaction between the player and a possibly infinite decision2

set is contaminated by an adversary that can corrupt the reward up to a corruption3

level C measured by the sum of the largest alteration on rewards in each round.4

We present a variance-aware algorithm that is adaptive to the level of adversarial5

contamination C. The key algorithmic design includes (1) a multi-level partition6

scheme of the observed data, (2) a cascade of confidence sets that are adaptive to7

the level of the corruption, and (3) a variance-aware confidence set construction8

that can take advantage of low-variance reward. We further prove that the regret9

of the proposed algorithm is Õ(C2d
√∑T

t=1 σ
2
t + C2

√
dT + CR

√
dT ), where10

d is the dimension of context vectors, T is the number of rounds, R is the range11

of noise and σ2
t , t = 1 . . . , T are the variances of instantaneous reward. We also12

prove a gap-dependent regret bound for the proposed algorithm, which is instance-13

dependent and thus leads to better performance on good practical instances. To the14

best of our knowledge, this is the first variance-aware corruption robust algorithm15

for contextual bandits.16

1 Introduction17

Multi-armed bandits algorithms are widely applied in online advertising (Li et al., 2010), clinical18

trials (Villar et al., 2015), recommendation system (Deshpande and Montanari, 2012) and many other19

real-world tasks. In the model of multi-armed bandits, the algorithm needs to decide which action20

(or arm) to take (or pull) at each round and receive a reward for the chosen action. In the stochastic21

setting, the reward is subject to a fixed but unknown distribution for each action. In reality, however,22

these rewards can easily be “corrupted” by some malicious users. A typical example is click fraud23

(Lykouris et al., 2018), where botnets simulate the legitimate users clicking on an ad to fool the24

recommendation systems. This motivates the studies of the bandits algorithms that are robust to25

adversarial corruptions.26

For example, Lykouris et al. (2018) introduced a bandit model in which an adversary could corrupt27

the stochastic reward generated by an arm pull. They proposed an algorithm and show that the28

regret of this “middle ground” scenario degrades smoothly with the amount of corruption injected29

by the adversary. Gupta et al. (2019) proposed an alternative algorithm which gives a significant30

improvement in regret.31

While the algorithms that are robust to the corruptions have been studied in the setting of multi-armed32

bandits in a number of prior works, they are still understudied in the setting of linear contextual33

bandits. The linear contextual bandits problem can be regarded as an extension of the multi-armed34

bandit problem to linear optimization, in order to tackle an unfixed and possibly infinite set of feasible35
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actions. There is a large body of literature on efficient algorithms for linear contextual bandits with36

no corruptions (Abe et al., 2003; Auer, 2002; Chu et al., 2011; Dani et al., 2008; Rusmevichientong37

and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011; Li et al., 2019b), to mention a few. The significance38

of this setting lies in the fact that linear regression approaches are widely used in recommendation39

systems and advertising (Li et al., 2010; Jhalani et al., 2016; Deshpande and Montanari, 2012). Linear40

contextual bandits with adversarial corruptions is an arguably more challenging setting since most of41

the previous corruption-robust algorithms are based on the idea of action elimination (Lykouris et al.,42

2018; Gupta et al., 2019; Bogunovic et al., 2021), which is not applicable to the contextual bandits43

settings where the decision set is time varying and possibly infinite at each round. In Garcelon et al.44

(2020), it is shown that a malicious agent can force a linear contextual bandit algorithm to take any45

desired action T − o(T ) times over T rounds, while applying adversarial corruptions to rewards with46

a cumulative cost that only grow logarithmically. This poses a big challenge for designing corruption47

robust algorithms for linear contextual bandits.48

In this paper, we make a first attempt to study a linear contextual bandit model where an adversary49

can corrupt the rewards up to a corruption level C, which is defined as the the sum of biggest50

alteration the adversary made on rewards in each round. We propose a linear contextual bandits51

algorithm that is robust to reward corruption, dubbed multi-level optimism-in-the-face-of-uncertainty52

weighted learning (Multi-level OFUL). More specifically, our algorithm consists of the following53

novel techniques: (1) We design a multi-level partition scheme and adopt the idea of sub-sampling to54

do the robust estimation of the model parameters; (2) We maintain a cascade of candidate confidence55

sets corresponding to different corruption level (which is unknown) and randomly select a confidence56

set at each round to take the action; and (3) We design confidence sets that depend on the variances57

of rewards, which lead to a potentially tighter regret bound.58

Our contributions are summarized as follows:59

• We propose a variance-aware algorithm which is adaptive to the amount of adversarial corruptions60

C. To the best of our knowledge, it is the first algorithm for the setting of linear contextual bandits61

with adversarial corruptions which does not rely on the finite number of actions and other additional62

assumptions.63

• We prove that the regret of our algorithm is in Õ
(
C2d

√∑T
t=1 σ

2
t + C2

√
dT + CR

√
dT

)
, where64

d is the dimension of context vectors, T is the number of rounds, R is the range of noise and σ2
t , t =65

1 . . . , T are the variances of instantaneous reward. Our regret upper bound has a multiplicative66

dependence on C2 which indicates that our algorithm achieves a sub-linear regret when the67

corruption level satisfies C = o(T 1/4).68

• We also derive a gap-dependent regret bound Õ
(

1
∆ · C

2R2d+ 1
∆ · d

2C2 maxt∈[T ] σ
2
t

)
for our69

proposed algorithm, which is instance-dependent and thus leads to a better performance on good70

practical instances.71

Notation. We use lower case letters to denote scalars, and use lower and upper case bold face letters72

to denote vectors and matrices respectively. We denote by [n] the set {1, . . . , n}. For a vector x ∈ Rd73

and matrix Σ ∈ Rd×d, a positive semi-definite matrix, we denote by ‖x‖2 the vector’s Euclidean74

norm and define ‖x‖Σ =
√

x>Σx. For two positive sequences {an} and {bn} with n = 1, 2, . . . ,75

we write an = O(bn) if there exists an absolute constant C > 0 such that an ≤ Cbn holds for all76

n ≥ 1 and write an = Ω(bn) if there exists an absolute constant C > 0 such that an ≥ Cbn holds77

for all n ≥ 1. We use Õ(·) to further hide the polylogarithmic factors. We use 1(·) to denote the78

indicator function.79

2 Related Work80

Bandits with Adversarial Attacks: There is a large body of literature on the problems of multi-81

armed bandits with adversarial corruptions. Most research in this area aims to design algorithms that82

achieve desirable regret bound in both stochastic multi-armed bandits and adversarial bandits, known83

as “the best of both worlds” guarantees (Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014; Auer84

and Chiang, 2016; Seldin and Lugosi, 2017; Zimmert and Seldin, 2019). These works mainly focus85

on achieving bounds in the worst case and the case where there is no adversary. As a result, these86
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algorithms are either not robust to instances that moderate amount of corruptions occur, or suffer87

from restrictive assumptions on adversarial corruptions. Distinctive from the above line of research,88

Lykouris et al. (2018) focus on a variant of classic multi-armed bandit model in which each pull of an89

arm generates a stochastic reward that may be contaminated by an adversary before it is revealed90

to the player. In their work, the corruption level C is defined as C =
∑
t maxa |rt(a) − rtS(a)|91

where rtS(a) is the stochastic reward of arm a and rt(a) is the corrupted reward of arm a at round t.92

They develop algorithms adaptive to the unknown corruption level, which achieves an O(K1.5C
√
T )93

regret bound. Gupta et al. (2019) proposed an improved algorithm that can achieve a regret bound94

with only additive dependence on C.95

On the other hand, many research efforts have also been devoted into designing adversarial attacks96

that cause standard algorithms to fail (Jun et al., 2018; Liu and Shroff, 2019; Gupta et al., 2019;97

Garcelon et al., 2020).98

Linear Bandits with Corruptions: Li et al. (2019a) studied stochastic linear bandits with adversarial99

corruptions and achieved Õ( 1
∆ ·d

5/2C+ 1
∆2 ·d6) regret bound where d is the dimension of the context100

vectors, ∆ is the gap between the rewards of the best and the second best action in the decision101

set D. The distinction between Li et al. (2019a) and our work is that Li et al. (2019a) considers a102

fixed decision set D throughout all T rounds, while we consider contextual bandits with changing103

decision set observed before each round. Bogunovic et al. (2021) also studied linear bandits with104

adversarial corruptions and considered the setting under the assumption that context vectors undergo105

small random perturbations, which is previously introduced by Kannan et al. (2018). Aside from106

the additional assumption, another major distinction in Bogunovic et al. (2021) is that the number107

of actions k is finite and the regret bound depends on k in the contextual setting with unknown108

corruption level C. Recently, Lee et al. (2021) considered corrupted linear bandits with a finite and109

fixed decision set and achieve an instance-independent regret of Õ(d
√
T + C). Though both their110

work and the work by Li et al. (2019a) focus on corrupted linear stochastic bandits, Lee et al. (2021)111

have a slightly different definition of regret and adopt a strong assumption on corruptions that in112

each round t, the corruptions on rewards are linear in the actions. Neu and Olkhovskaya (2020)113

studied linear contextual bandits with a finite decision set (i.e., K actions) and an adversary. Unlike114

our model, they assume that the adversary can add an arbitrary noise to the loss under a limited115

amount ε and prove an Õ((Kd)
1
3T

2
3 ) + ε ·

√
dT regret bound for their proposed algorithm. Kapoor116

et al. (2019) considered the corrupted linear contextual bandits setting under a strong assumption on117

corruptions that for any prefix, at most an η fraction of the rounds are corrupted.118

3 Preliminaries119

In this paper, we study linear contextual bandits with adversarial corruptions. We will introduce our120

model and some basic concepts in this section.121

Corrupted linear contextual bandits. We consider the the linear contextual bandits model studied122

in Abbasi-Yadkori et al. (2011) under the same corruption studied by Lykouris et al. (2018). In detail,123

distinctive from the linear contextual bandits Abbasi-Yadkori et al. (2011), the interaction between124

the agent and the environment is now contaminated by an adversary. The protocol between the agent125

and the adversary at each round t ∈ [T ] can be described as follows:126

1. At the beginning of round t, the environment generates an arbitrary decision set Dt ⊆ Rd where127

each element represents a feasible action that can be selected by the agent.128

2. The environment generates stochastic reward function r′t(a) = 〈a,µ∗〉+ εt(a) together with an129

upper bound on the standard variance of εt(a), i.e., σt(a) for all a ∈ Dt.130

3. The adversary observes Dt, r′t(a), σt(a) for all a ∈ Dt and decides a corrupted reward function131

rt defined over Dt.132

4. The agent observes Dt and selects at ∈ Dt.133

5. The adversary observes at and then returns rt(at) and σt(at).134

6. The agent observes rt(at), σt(at).135

Let Ft be the σ-algebra generated by D1:t,a1:t−1, ε1:t−1, r1:t−1 and σ1:t−1.136
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At step 2, µ∗ is a hidden vector unknown to the agent which can be observed by the adversary at the137

beginning. We assume that for all t ≥ 1 and all a ∈ Dt, ‖a‖2 ≤ A, |〈a,µ∗〉| ≤ 1 and ‖µ∗‖2 ≤ B138

almost surely. εt(a) can be any form of random noise as long as it satisfies139

∀t ≥ 1,∀a ∈ Dt, |εt(a)| ≤ R, E[εt(a)|Ft] = 0, E[ε2t (a)|Ft] ≤ σ2
t (a). (3.1)

This assumption on εt is a variant of that in Zhou et al. (2020): We now require the noise to be140

generated for all a ∈ Dt in advance before the adversary decides the corrupted reward function. Our141

assumption on noises is more general than those in (Li et al., 2019a; Bogunovic et al., 2021; Kapoor142

et al., 2019) where they are assumed to be 1-sub-Gaussian or Gaussian.143

At step 3, we assume that the adversary has observed all the previous information and thus may144

predict which policy the agent will take at the current round. However, since the agent can take a145

randomized policy, the adversary may not know exactly which action the agent will take.146

Corruption level. We define corruption level147

C =
1

R+ 1

T∑
t=1

sup
a∈Dt

|r′t(a)− rt(a)|. (3.2)

to indicate the level of adversarial contamination. We say a model is C-corrupted if the corruption148

level is no larger than C.149

Our definition of corruption level is equivalent to the counterpart in Lykouris et al. (2018) and Gupta150

et al. (2019) where they define C =
∑T
t=1 maxa |r′t(a) − rt(a)| in our notation of rewards. We151

introduce a factor of 1
R+1 since the noise is of range R in our model, while they assume all the152

rewards are in range [0, 1].153

Regret. Since the actions selected by the agent may not be deterministic, we define the regret for this154

model as follows:155

Regret(T ) =

T∑
t=1

〈a∗t ,µ∗〉 − E

[
T∑
t=1

〈at,µ∗〉

]
. (3.3)

Our definition follows from the definition in Gupta et al. (2019) where the standard metric in stochastic156

multi-armed bandit models of pseudo-regret is adopted. But note that we need to take the expectation157

on
∑T
t=1 r

′
t(at) (the second term in (3.3)), since a randomized policy is applied in each round.158

Gap. Let ∆t be the gap between the rewards of the best and the second best action in the decision set159

Dt as defined in Dani et al. (2008) which can be formally written as160

∆t = min
a∈Dt,a6∈A∗

t

(〈a∗t ,µ∗〉 − 〈a,µ∗〉) . (3.4)

where A∗t = argmaxa∈Dt
〈a,µ∗〉 and a∗t is an arbitrary element in A∗t . Let ∆ denotes the smallest161

gap mint∈[T ] ∆t.162

4 The Proposed Algorithm163

In this section, we propose a variance-aware algorithm, Multi-level OFUL, in Algorithm 1, to tackle164

the corrupted linear contextual bandits problem. At the core of our algorithm is an action partition165

scheme to group historical selected actions and use them to select the future actions in different166

groups with different probabilities. Such a scheme is introduced to deal with the unknown corruption167

level. For simplicity, we denote rt(at), σt(at) in Section 3 by rt, σt in our algorithm.168

Main difficulty in our setting. We begin with the main difficulty that prevents us from applying169

existing algorithms to our setting. Consider a simpler setting where the agent knows the corruption170

level C in prior, and we have σt = R for all t. Then we can apply OFUL (Abbasi-Yadkori et al.,171

2011) to solve our problem. In detail, in each round we estimate µ∗ by µt, which is the minimizer of172

the following ridge regression problem:173

µt = argmin
µ∈Rd

λ‖µ‖22 +

t−1∑
i=1

[〈µ,ai〉 − ri]2. (4.1)
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Algorithm 1 Multi-level OFUL
1: Set the largest level of confidence sets: `max ← dlog2 2T e.
2: For ` ∈ [`max], set Σ1,` ← λI,µ1,` ← 0, c1,` ← 0.
3: Set Σ1 ← λI,µ1 ← 0, c1 ← 0.
4: for t = 1, · · · , T do
5: Observe Dt.
6: for ` = 1, · · · , `max do
7: Set βt,` and γt,` as defined in (4.5) and (4.6).
8: C′t,` ← {µ|‖µ− µt‖Σt

≤ βt,`} ∩
{
µ|‖µ− µt,`‖Σt,`

≤ γt,`
}
.

9: Ct,` ←
{
C′t,`, C′t,` 6= ∅
Ct,`+1, otherwise

.

10: end for

11: Set f(t) =

{
` with probability 2−` 1 < ` ≤ `max

1 otherwise
.

12: Select at ← argmaxa∈Dt
maxµ∈Ct,f(t)

〈µ,a〉 and observe rt, σt.
13: Set σt = max{(R+ 1)/

√
d, σt}.

14: Σt+1 ← Σt + ata
>
t /σ

2
t , ct+1 ← ct + rtat/σ

2
t ,µt+1 ← Σ−1

t+1ct+1.
15: for ` 6= f(t) do
16: Σt+1,` ← Σt,`, ct+1,` ← ct,`,µt+1,` ← µt,`.
17: end for
18: Σt+1,f(t) ← Σt,f(t) + ata

>
t /σ

2
t , ct+1,f(t) ← ct,f(t) + rtat/σ

2
t .

19: µt+1,f(t) ← Σ−1
t+1,f(t)ct+1,f(t).

20: end for

By slightly modifying the self-normalized martingale concentration inequality proposed in Abbasi-174

Yadkori et al. (2011), we can conclude that µ∗ belongs to the ellipsoid ‖µ− µt‖Σ−1
t
≤ βt with high175

probability, where βt = Õ(R
√
d + C

√
d). Such a confidence bound leads to a final regret which176

has a polynomial dependence on C. However, such a simple approach have two limitations. First,177

the agent does not know C apriori in our setting, thus it is impossible to set βt to be dependent on178

C. Second, vanilla ridge regression estimator does not consider different variances σt in each round,179

thus it only gives a very conservative estimation.180

Action partition scheme. To address the unknown C issue, besides the original estimator µt which181

uses all previous data, Algorithm 1 maintains several additional learners to learn µ∗ at different182

accuracy level simultaneously, and it randomly selects one of the learners with different probabilities183

at each round. Such a “parallel learning” idea is inspired by Lykouris et al. (2018). In detail,184

we partition the observed data into `max levels indexed by [`max] and maintain `max sub-sampled185

estimators µt,1, · · · ,µt,`max
. According to line 11, the observed data in round t goes into level ` with186

probability 2−` if 1 < ` ≤ `max and it goes to level 1 with probability 1−
∑`max

`=2 2−` = 1/2+2−`max .187

The intuition is that if 2` ≥ C, then the corruption level experienced by level `188

Corruptiont,` =

t∑
i=1

1(f(i) = `)

R+ 1
· sup
a∈Di

|ri(a)− r′i(a)| (4.2)

can be bounded by some quantity that is independent of C. That says, the individual learners whose189

level is greater than logC can learn µ∗ successfully, even with the corruption. For the learners whose190

level is less than logC, we can also control the error by controlling the probability for the agent to191

select them.192

Weighted regression estimator. After introducing the partition scheme, we still need to deal193

with the varying variance (heteroscedastic) case. Similar to (Kirschner and Krause, 2018; Zhou194

et al., 2020), we proposed the following weighted ridge regression estimator, which incorporates the195

variance information of the rewards into estimation:196

µt = argmin
µ∈Rd

λ‖µ‖22 +

t−1∑
i=1

[〈µ,ai〉 − ri]2/σ2
i . (4.3)
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Here σt is defined as the upper bound of the true variance σt in line 13. The closed-form solution to197

(4.3) is calculated at each round in line 14. The use of σt, as we will show later, makes our estimator198

more efficient in the heteroscedastic case. Meanwhile, we also apply our weighted regression199

estimator to each individual learner, and their estimator µt,` can be written as follows:200

µt,` = argmin
µ∈Rd

λ‖µ‖22 +

t−1∑
i=1

1(f(i) = `) · [〈µ,ai〉 − ri]2/σ2
i . (4.4)

The closed-form solution to (4.4) is calculated at each round in lines 15–20.201

Final Multi-Level confidence sets. With the estimators µt, µt,1, · · · ,µt,`max at the beginning of202

round t, we define a cascade of candidate confidence sets as in lines 6–10, where203

βt,` = 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(4t2/δ) + 4

√
d log(4t2/δ) + 2`

√
d+
√
λB, (4.5)

γt,` = 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(8t2T/δ) + 4

√
d log(8t2T/δ) + C`

√
d+
√
λB, (4.6)

with C` = log(2`2/δ) + 3. For simplicity, we define204

`∗ = max{2, dlog2 Ce} (4.7)
as an important threshold in our later proof for regret bound analysis. Later we will prove that Ct,`205

contains µ∗ for all ` ≥ `∗, t ≥ 1 with high probability.206

Note that each candidate confidence set can be written as the intersection of two ellipsoids. The207

intuition behind our construction of candidate confidence sets is that we hope that Ct,` is robust208

enough to handle the 2`-corrupted case, i.e., µ∗ ∈ Ct,` with high probability. To achieve this, the first209

ellipsoid makes use of the global information and the “radius” βt,` need to contain a factor of 2` to210

tolerate a corruption level of 2`, and the second ellipsoid makes use of the observed data in level `211

since this level only contain a few times of corruptions in 2`-corrupted case.212

Action selection. With the candidate confidence sets, we use line 11 to randomly decide one213

confidence set and select an action based on the optimism-in-the-face-of-uncertainty (OFU) principle214

in line 12. Then we update the estimators for the next round t+ 1.215

Remark 4.1. Our algorithm shares a similar strategy for partitioning the observed data with the216

algorithm in Lykouris et al. (2018) but note that there is a major difference in that: Lykouris et al.217

(2018) regard the partition scheme as a “layer structure”, i.e., their algorithm further uses different218

estimators in layers of parallel learners and do action elimination layer by layer in each round. In219

contrast, the sub-sampled estimators in our algorithm are used independently, i.e., the selected action220

only relies on one of the partitions. As a result, Algorithm 1 does not need to do action elimination,221

thus is capable of handling the cases where the number of actions is huge or even infinite.222

5 Main Results223

In this section we present our main theorem, which establishes the regret bound for Multi-level224

OFUL.225

Theorem 5.1. Set λ = 1/B2. Suppose that C = Ω(1), R = Ω(1), for all t ≥ 1 and all a ∈ Dt,
〈a,µ∗〉 ∈ [−1, 1]. Then with probability at least 1 − 3δ, the regret of Algorithm 1 is bounded as
follows:

Regret(T ) = Õ

C2d

√√√√ T∑
t=1

σ2
t + C2

√
dT + CR

√
dT

 .

Remark 5.2. When σt, R = Ω(1), the regret bound in Theorem 5.1 matches the regret bound of226

OFUL proposed in Zhou et al. (2020) when the corruption level C is a constant.227

Remark 5.3. Compared with the Õ(d
√
T + C) result in Lee et al. (2021), our result has a multi-228

plicative quadratic dependence on C, which seems to be worse. However, we want to emphasize that229

we focus on a more challenging contextual bandits setting where the decision sets Dt at each round230

are not identical, which is different from that in Lee et al. (2021). Therefore, our result and that in231

Lee et al. (2021) are not directly comparable.232
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Remark 5.4. Note that this instance-independent regret upper bound also holds in a stronger model233

than the one described in Section 3, where the adversary can even decide the decision set Dt at each234

round t since our regret bound can hold without any assumption on the decision sets.235

Corollary 5.5. Under the same conditions as in Theorem 5.1, if σt given by the environment are all
R, the regret of Algorithm 1 is bounded by:

Regret(T ) = Õ
(
C2dR

√
T
)
.

We also provide a gap-dependent regret bound.236

Theorem 5.6. Suppose that C = Ω(1), R = Ω(1), for all t ≥ 1 and all a ∈ Dt, 〈a,µ∗〉 ∈ [−1, 1].
Then with probability at least 1− 3δ, the regret of Algorithm 1 is bounded as follows:

Regret(T ) = Õ

(
1

∆
· C2R2d+

1

∆
· d2C2 max

t∈[T ]
σ2
t

)
.

Remark 5.7. Theorem 5.6 automatically suggests an Õ(R2d2C2/∆) regret bound, by the fact237

σt = O(R). Compared with previous result Õ(d5/2C/∆ + d6/∆2) (Lee et al., 2021), our result238

has a better dependence on the dimension d but a worse dependence on the corruption level C. As239

Remark 5.3 suggests, we focus on a more challenging contextual bandits setting, and the worse240

dependence on C might be due to this.241

6 Proof Outline242

First we have the following lemma which is a corruption-tolerant variant of Bernstein inequality for243

self-normalized vector-valued martingales introduced in Zhou et al. (2020).244

Lemma 6.1 (Bernstein inequality for vector-valued martingales with corruptions). Let {Gt}∞t=1

be a filtration, {xt, ηt}t≥1 a stochastic process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is
Gt+1-measurable. Fix R,L, σ, λ > 0, µ∗ ∈ Rd. For t ≥ 1 let ystoch

t = 〈µ∗,xt〉 + ηt and suppose
that ηt,xt also satisfy

|ηt| ≤ R,E[ηt|Gt] = 0,E[η2
t |Gt] ≤ σ2, ‖xt‖2 ≤ L.

Suppose {yt} is a sequence such that
∑t
i=1 |yi − ystoch

i | = C(t) for all t ≥ 1. Then, for any245

0 < δ < 1, with probability at least 1− δ we have ∀t > 0,246

‖µt − µ∗‖Zt
≤ βt + C(t) +

√
λ‖µ∗‖2,

where for t ≥ 1, µt = Z−1
t bt, Zt = λI +

∑t
i=1 xix

>
i , bt =

∑t
i=1 yixi, and

βt = 8σ

√
d log

dλ+ tL2

dλ
log(4t2/δ) + 4R log(4t2/δ).

Next, we have that with high probability, all the levels satisfying ` ≥ `∗ are only influenced by a247

limited amount of corruptions as mentioned in Section 4.248

Lemma 6.2. Let Corruptiont,` be defined in (4.2). Then we have with probability at least 1− δ, for
all ` ≥ `∗, t ≥ 1:

Corruptiont,` ≤ C` = log(2`2/δ) + 3.

We denote by Esub the event that the above inequality holds.249

We define the following event to further show that our candidate confidence sets with ` ≥ `∗ are250

“robust” enough, i.e., Ct,` contains µ∗ with high probability.251

Definition 6.3. Let `∗ be defined in (4.7). We introduce the event E1 as follows.252

E1 :=
{
∀` ≥ `∗ and t ≥ 1, ‖µ∗ − µt‖Σt

≤ βt,` and ‖µ∗ − µt,`‖Σt,`
≤ γt,`

}
. (6.1)

where βt,`, γt,` are defined in (4.5) and (4.6).253
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Next lemma suggests that the event E1 happens with high probability.254

Lemma 6.4. Let E1 be defined in (6.1). For any 0 < δ < 1/3, we have P(E1) ≥ 1− 3δ.255

For simplicity, we define at,` = argmaxa∈Dt
maxµ∈Ct,`〈µ,a〉 for each level `. at can be seen as an256

action vector randomly chosen from at,`, ` ∈ [`max]. Next two lemmas suggest that under event E1,257

at each round, the gap between the optimal reward and the selected reward can be upper bounded by258

some bonus terms related to at,`.259

Lemma 6.5. On event E1, if f(t) ≤ `∗, we have 〈a∗t−at,µ
∗〉 ≤ 2βt,`∗‖at‖Σ−1

t
+2βt,`∗‖at,`∗‖Σ−1

t
.260

Lemma 6.6. On event E1, if f(t) = ` > `∗, we have 〈a∗t − at,µ
∗〉 ≤ 2γt,`‖at‖Σ−1

t,`
.261

Now we provide the proof sketch of Theorem 5.1.262

Proof sketch of Theorem 5.1 . Suppose E1 occurs. The main idea to bound the regret is to decompose263

the total rounds [T ] into two non-overlapping parts, based on which individual learner is selected at264

that round. In detail, we have265

Regret(T ) = E

[
T∑
t=1

(〈a∗t ,µ∗〉 − 〈at,µ∗〉)

]

= E

[
T∑
t=1

1(f(t) ≤ `∗) (〈a∗t ,µ∗〉 − 〈at,µ∗〉)

]
︸ ︷︷ ︸

I1

+

`max∑
`=`∗+1

E

[
T∑
t=1

1(f(t) = `) (〈a∗t ,µ∗〉 − 〈at,µ∗〉)

]
︸ ︷︷ ︸

I2(`)

. (6.2)

Here I1 represents the regret where the the “low-level” learner is selected, and the corruption level is266

beyond the learner level. In this case, by Lemma 6.5, we can directly show that267

I1 ≤ E

[
T∑
t=1

1(f(t) ≤ `∗) min
{

2, 2βt,`∗‖at,`∗‖Σ−1
t

+ 2βt,`∗‖at‖Σ−1
t

}]
. (6.3)

We further bound (6.3). Let Ft be the σ-algebra generated by as, rs, σs, f(s) for s ≤ t − 1.268

Then by the property of our partition scheme (note that P(f(t) = `∗) = 2−`
∗
), we can show that269

E
[
1(f(t) ≤ `∗)‖at,`∗‖Σ−1

t
|Ft
]
≤ 2`

∗E
[
‖at‖Σ−1

t
|Ft
]
. Therefore, we can further bound I1 by270

I1 ≤ 4 · 2`
∗
E

[
T∑
t=1

min
{

2, βT,`∗‖at‖Σ−1
t

}]
︸ ︷︷ ︸

I3

. (6.4)

To further bound I3, we split [T ] into 2 parts, I1 = {t ∈ [T ]|‖at/σt‖Σ−1
t

> 1}, I2 = {t ∈271

[T ]|‖at/σt‖Σ−1
t
≤ 1}. To bound I1 part, the intuition is that the cardinality of I1 is bounded, and272

the sum of terms with t ∈ I2 can be bounded using Cauchy-Schwarz inequality.273

∑
t∈I1

min
{

2, βT,`∗‖at‖Σ−1
t

}
≤ 2|I1| ≤ 2

T∑
t=1

min
{

1, ‖at/σt‖2Σ−1
t

}
≤ 4d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
,

(6.5)

where the first inequality holds since min
{

2, βT,`∗‖at‖Σ−1
t

}
≤ 2, the second inequality follows274

from the definition of I1, and the third inequality holds by Lemma C.2. To bound I2 part, we have275 ∑
t∈I2

min
{

2, βT,`∗‖at‖Σ−1
t

}
≤ βT,`∗

√∑
t∈I2

σ2
t ·
√∑
t∈I2

min
{

1, ‖at/σt‖2Σ−1
t

}

8



≤ βT,`∗

√√√√(R+ 1)2T/d+

T∑
t=1

σ2
t ·

√
2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
,

(6.6)

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows276

from the definition of σt and Lemma C.2.277

Substituting (6.5) and (6.6) into (6.3), we have278

I1 = Õ

C2d

√√√√ T∑
t=1

σ2
t + C2

√
dT + CR

√
dT

 . (6.7)

Now it remains to bound I2(`). By Lemma 6.6, we have279

I2(`) ≤ 2E

[
T∑
t=1

1(f(t) = `) min
{

1, γt,`‖at,`‖Σ−1
t,`

}]
︸ ︷︷ ︸

I4

= Õ

R√Td+ d

√√√√ T∑
t=1

σ2
t

 , (6.8)

where the second equality can be proved by an analysis similar to that of (6.5) and (6.6). Finally,280

substituting (6.7) and (6.8) into (6.2) completes our proof.281

282

7 Conclusion and Future Work283

In this paper, we have considered the linear contextual bandits problem in the presence of adversarial284

corruptions. We propose a Multi-level OFUL algorithm, which is provably robust to the adversarial285

attacks. We prove a gap-independent regret bound of Õ
(
C2d

√∑T
t=1 σ

2
t + C2

√
dT + CR

√
dT

)
286

together with a gap-dependent bound of Õ
(

1
∆ · C

2R2d+ 1
∆ · d

2C2 maxt∈[T ] σ
2
t

)
.287

We leave it as an open question that whether the multiplicative dependence on C2 in the regret upper288

bounds can be removed without making additional assumptions in our setting.289
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A Proof of the Main Results394

A.1 Proof of Theorem 5.1395

We first prove the following lemma which is a corruption-tolerant variant of Bernstein inequality for396

self-normalized vector-valued martingales introduced in Zhou et al. (2020).397

Lemma A.1 (Restatement of Lemma 6.1). Let {Gt}∞t=1 be a filtration, {xt, ηt}t≥1 a stochastic
process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is Gt+1-measurable. Fix R,L, σ, λ > 0, µ∗ ∈
Rd. For t ≥ 1 let ystoch

t = 〈µ∗,xt〉+ ηt and suppose that ηt,xt also satisfy

|ηt| ≤ R,E[ηt|Gt] = 0,E[η2
t |Gt] ≤ σ2, ‖xt‖2 ≤ L.

Suppose {yt} is a sequence such that
∑t
i=1 |yi − ystoch

i | = C(t) for all t ≥ 1. Then, for any398

0 < δ < 1, with probability at least 1− δ we have ∀t > 0,399

‖µt − µ∗‖Zt
≤ βt + C(t) +

√
λ‖µ∗‖2,

where for t ≥ 1, µt = Z−1
t bt, Zt = λI +

∑t
i=1 xix

>
i , bt =

∑t
i=1 yixi, and

βt = 8σ

√
d log

dλ+ tL2

dλ
log(4t2/δ) + 4R log(4t2/δ).

Proof. See Appendix B.1.400

Then we prove that with high probability, all the level ` ≥ `∗ only influenced by limited amount of401

corruptions as mentioned in Section 4.402

Lemma A.2 (Restatement of Lemma 6.2). Let Corruptiont,` be defined in (4.2). Then we have with
probability at least 1− δ, for all ` ≥ `∗, t ≥ 1:

Corruptiont,` ≤ C` = log(2`2/δ) + 3.

We denote by Esub the event that the above inequality holds.403

Proof. The proof of this lemma is based on Lemma B.1 introduced by Lykouris et al. (2018); for404

details see Appendix B.2.405

We define the following event to further show that our candidate confidence sets with ` ≥ `∗ are406

“robust” enough, i.e. Ct,` contains µ∗ with high probability.407

Definition A.3. Let `∗ be defined in (4.7). We introduce the event E1 as follows.408

E1 :=
{
∀` ≥ `∗ and t ≥ 1, ‖µ∗ − µt‖Σt

≤ βt,` and ‖µ∗ − µt,`‖Σt,`
≤ γt,`

}
. (A.1)

Recall that409

βt,` = 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(4t2/δ) + 4

√
d log(4t2/δ) + 2`

√
d+
√
λB, (A.2)

γt,` = 8

√
d log

(R+ 1)2λ+ tA2

(R+ 1)2λ
log(8t2T/δ) + 4

√
d log(8t2T/δ) + C`

√
d+
√
λB. (A.3)

Lemma A.4 (Restatement of Lemma 6.4). Let E1 be defined in (A.1). For any 0 < δ < 1, we have410

P(E1) ≥ 1− 3δ.411

Proof. See Appendix B.3.412

Definition A.5. For simplicity, we define at,` = argmaxa∈Dt
maxµ∈Ct,`〈µ,a〉 for each level `.413
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With this definition, at can be seen as an action vector randomly chosen from at,`, ` ∈ [`max]. In the414

following part of this section, we show how to derive the instance-independent regret upper bound415

using this notation.416

Lemma A.6 (Restatement of Lemms 6.5). Suppose E1 occurs. If f(t) ≤ `∗, we have 〈a∗t−at,µ
∗〉 ≤417

2βt,`∗‖at‖Σ−1
t

+ 2βt,`∗‖at,`∗‖Σ−1
t
.418

Lemma A.7 (Restatement of Lemms 6.6). On event E1, if f(t) = ` > `∗, we have 〈a∗t − at,µ
∗〉 ≤419

2γt,`‖at‖Σ−1
t,`
.420

Proof of Theorem 5.1. Suppose E1 occurs. We divide regret into two parts,421

Regret(T ) = E

[
T∑
t=1

(〈a∗t ,µ∗〉 − 〈at,µ∗〉)

]

= E

[
T∑
t=1

1(f(t) ≤ `∗) (〈a∗t ,µ∗〉 − 〈at,µ∗〉)

]
︸ ︷︷ ︸

I1

+

`max∑
`=`∗+1

E

[
T∑
t=1

1(f(t) = `) (〈a∗t ,µ∗〉 − 〈at,µ∗〉)

]
︸ ︷︷ ︸

I2(`)

, (A.4)

where the first equality holds by definition in (3.3).422

By Lemma B.3, we have423

I1 ≤ E

[
T∑
t=1

1(f(t) ≤ `∗) min
{

2, 2βt,`∗‖at,`∗‖Σ−1
t

+ 2βt,`∗‖at‖Σ−1
t

}]
. (A.5)

Let Ft be the σ-algebra generated by as, rs, σs, f(s) for s ≤ t− 1. Note that424

E
[
1(f(t) ≤ `∗)‖at,`∗‖Σ−1

t
|Ft
]

= P(f(t) ≤ `∗)‖at,`∗‖Σ−1
t

≤ 2`
∗
P(f(t) = `∗)‖at,`∗‖Σ−1

t

≤ 2`
∗
E
[
‖at‖Σ−1

t
|Ft
]
, (A.6)

where the first equality holds since at,`∗ and Σt is deterministic given Ft, the first inequality holds425

since P(f(t) = `∗) = 2−`
∗
, the last inequality holds due to the fact that P(f(t) = `∗)‖at,`∗‖Σ−1

t
=426

E
[
1(f(t) = `∗)‖at‖Σ−1

t
|Ft
]
.427

Substituting (A.6) into (A.5), we have428

I1 ≤ 2`
∗
E

[
T∑
t=1

4 min{βt,`∗‖at‖Σ−1
t
, 2}

]
≤ 4 · 2`

∗
E

[
T∑
t=1

min
{

2, βT,`∗‖at‖Σ−1
t

}]
︸ ︷︷ ︸

I3

(A.7)

We split [T ] into 2 parts to bound I3.429

Let I1 = {t ∈ [T ]|‖at/σt‖Σ−1
t
> 1}, I2 = {t ∈ [T ]|‖at/σt‖Σ−1

t
≤ 1}.430

∑
t∈I1

min
{

2, βT,`∗‖at‖Σ−1
t

}
≤ 2|I1| ≤ 2

T∑
t=1

min
{

1, ‖at/σt‖2Σ−1
t

}
≤ 4d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
,

(A.8)

13



where the first inequality holds since min
{

2, βT,`∗‖at‖Σ−1
t

}
≤ 2, the second inequality follows431

from the definition of I1, the third inequality holds by Lemma C.2.432

∑
t∈I2

min
{

2, βT,`∗‖at‖Σ−1
t

}
≤ βT,`∗

√∑
t∈I2

σ2
t ·
√∑
t∈I2

min
{

1, ‖at/σt‖2Σ−1
t

}

≤ βT,`∗

√√√√(R+ 1)2T/d+

T∑
t=1

σ2
t ·

√
2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
,

(A.9)

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows433

from the definition of σt and Lemma C.2.434

Substituting (A.8) and (A.9) into (A.7), we have435

I1 = Õ

C2d

√√√√ T∑
t=1

σ2
t + C2

√
dT + CR

√
dT

 . (A.10)

By Lemma B.4,436

I2(`) ≤ E

[
T∑
t=1

1(f(t) = `) min
{

2, 2γt,`‖at,`‖Σ−1
t,`

}]

≤ 2E

[
T∑
t=1

1(f(t) = `) min
{

1, γt,`‖at,`‖Σ−1
t,`

}]
︸ ︷︷ ︸

I4

(A.11)

Again, we divide [T ] into two parts. Let J1 = {t ∈ [T ]|‖at,`/σt‖Σ−1
t,`

> 1},J2 = {t ∈437

[T ]|‖at,`/σt‖Σ−1
t,`
≤ 1}.438

∑
t∈J1

1(f(t) = `) min
{

1, γt,`‖at,`‖Σ−1
t,`

}
≤
∑
t∈J1

1(f(t) = `) · 1

≤
T∑
t=1

1(f(t) = `) min
{

1, ‖at,`‖2Σ−1
t,`

}
≤ 2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
, (A.12)

where the second inequality follows from the definition of J1, the second inequality holds due to439

Lemma C.2.440

∑
t∈J2

1(f(t) = `) min
{

1, γt,`‖at,`‖Σ−1
t,`

}

≤ γT,`

√√√√ T∑
t=1

σ2
t

√√√√∑
t∈J2

min

{
1, ‖at/σt‖2Σ−1

t,`

}

≤ γT,`

√√√√(R+ 1)2T/d+

T∑
t=1

σ2
t

√
2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
, (A.13)
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where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows441

from the definition of σt and Lemma C.2.442

Substituting (A.12) and (A.13) into (A.11), we have443

I2(`) ≤ 4d log
(R+ 1)2λ+ TA2

(R+ 1)2λ
+ 2γT,`

√√√√(R+ 1)2T/d+

T∑
t=1

σ2
t

√
2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ

(A.14)
444

I2(`) = Õ

R√Td+ d

√√√√ T∑
t=1

σ2
t

 . (A.15)

Substituting (A.10) and (A.15) into (A.4), we have

Regret(T ) = Õ

C2d

√√√√ T∑
t=1

σ2
t + C2

√
dT + CR

√
dT

 .

445

A.2 Proof of Theorem 5.6446

Proof of Theorem 5.6. First we decompose the regret as follows.447

Regret(T ) = E

[
T∑
t=1

(〈a∗t ,µ∗〉 − 〈at,µ∗〉)

]

≤ 1

∆
E

[
T∑
t=1

1(f(t) ≤ `∗) (〈a∗t ,µ∗〉 − 〈at,µ∗〉)
2

]
︸ ︷︷ ︸

I1

+

`max∑
`=`∗+1

1

∆
E

[
T∑
t=1

1(f(t) = `) (〈a∗t ,µ∗〉 − 〈at,µ∗〉)
2

]
︸ ︷︷ ︸

I2(`)

, (A.16)

where the first equality holds due to the definition in (3.3), the last inequality follows from the fact448

that either 〈a∗t ,µ∗〉 − 〈at,µ∗〉 = 0 or ∆T ≤ 〈a∗t ,µ∗〉 − 〈at,µ∗〉. To bound I1, we have449

I1 ≤ E

[
T∑
t=1

1(f(t) ≤ `∗) min

{
4,
(

2βt,`∗‖at,`∗‖Σ−1
t

+ 2βt,`∗‖at‖Σ−1
t

)2
}]

≤ 2`
∗
E

[
T∑
t=1

min
{

4, 16β2
t,`∗‖at‖2Σ−1

t

}]
︸ ︷︷ ︸

I3

, (A.17)

where the first inequality holds due to Lemma A.6 and the second inequality follows from a similar450

argument as (A.6). To further bound I3, we decompose [T ] into two non-overlapping sets: I1 = {t ∈451

[T ]|‖at/σt‖Σ−1
t
> 1}, I2 = {t ∈ [T ]|‖at/σt‖Σ−1

t
≤ 1}. For I1, we have452 ∑

t∈I1

min
{

4, 16β2
t,`∗‖at‖2Σ−1

t

}
≤ 4|I1|

≤ 4

T∑
t=1

min
{

1, ‖at/σt‖2Σ−1
t

}
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≤ 8d log
(R+ 1)2λ+ TA2

(R+ 1)2λ
, (A.18)

where the third inequality holds due to Lemma C.2. For I2, we have453 ∑
t∈I2

min
{

4, 9β2
t,`∗‖at‖2Σ−1

t

}
≤ 16β2

T,`∗ max
t∈[T ]

σ2
t

∑
t∈I2

min
{

1, ‖at/σt‖2Σ−1
t

}
≤ 32β2

T,`∗(max
t∈[T ]

σ2
t + (R+ 1)2/d)d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
,

(A.19)

where the first inequality follows from the definition of I2, the second inequality follows from Lemma454

C.2.455

Substituting (A.18) and (A.19) into (A.17), we have456

I1 = Õ

(
C2R2d+ d2C2 max

t∈[T ]
σ2
t

)
. (A.20)

To bound I2(`), by Lemma A.7, we have457

I2(`) ≤ E

[
T∑
t=1

1(f(t) = `) min
{

4, 4γ2
t,`‖at‖2Σ−1

t,`

}]

≤ 4E

[
T∑
t=1

1(f(t) = `) min
{

1, γ2
t,`‖at‖2Σ−1

t,`

}]
︸ ︷︷ ︸

I4

. (A.21)

We divide [T ] into two parts to calculate I4. Let J1 = {t ∈ [T ]|‖at/σt‖Σ−1
t,`

> 1},J2 = {t ∈458

[T ]|‖at/σt‖Σ−1
t,`
≤ 1}. For J1, we have459

∑
t∈J1

1(f(t) = `) min
{

1, γ2
t,`‖at‖2Σ−1

t,`

}
≤ |J1|

≤
∑
t∈[T ]

min
{

1, ‖at‖2Σ−1
t,`

}
≤ 2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
, (A.22)

where the second inequality follows from the fact that J1 ⊆ [T ], the third inequality holds due to460

Lemma C.2. For J2, we have461

∑
t∈J2

1(f(t) = `) min
{

1, γ2
t,`‖at‖2Σ−1

t,`

}
≤ γ2

T,` max
t∈[T ]

σ2
t

∑
t∈J2

‖at‖2Σ−1
t,`

≤ γ2
T,`(max

t∈[T ]
σ2
t + (R+ 1)2/d)

∑
t∈[T ]

min
{

1, ‖a‖2
Σ−1

t,`

}
≤ γ2

T,`(max
t∈[T ]

σ2
t + (R+ 1)2/d)2d log

(R+ 1)2λ+ TA2

(R+ 1)2λ
,

(A.23)

where the second inequality follows from the definition of σt and J2 and the third inequality holds462

due to Lemma C.2.463

Substituting (A.22) and (A.23) into (A.21), we have464

I2(`) = Õ(dR2 + d2 max
t∈[T ]

σ2
t ). (A.24)
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Finally, substituting (A.24) and (A.20) into (A.16), we have

Regret(T ) =
1

∆
Õ

(
C2R2d+ d2C2 max

t∈[T ]
σ2
t

)
.

465

B Proof of Technical Lemmas in Section A466

B.1 Proof of Lemma A.1467

Proof. Let S(t) = {1 ≤ i ≤ t|yi 6= ystoch
i }, bstoch

t =
∑t
i=1 y

stoch
i xi and µstoch

t = Z−1
t bstoch

t . By468

Lemma C.1, we have that with probability at least 1− δ, ‖µstoch
t − µ∗‖Zt

≤ βt +
√
λ‖µ∗‖2 holds469

for all t ≥ 1.470

Also, we have471

‖µt − µstoch
t ‖Zt

= ‖Z−1
t (bt − bstoch

t )‖Zt

≤
t∑
i=1

‖Z−1
t (ystoch

i − yi)xi‖Zt

≤
t∑
i=1

|ystoch
i − yi| · ‖xi‖Z−1

t

≤ C(t).

where the first inequality holds due to the triangle inequality and the last inequality holds due to472

‖xi‖Z−1
t
≤ 1.473

Hence, we can obtain

‖µt − µ∗‖Zt
≤ ‖µstoch

t − µ∗‖Zt
+ ‖µt − µstoch

t ‖Zt
≤ βt + C(t) +

√
λ‖µ∗‖2.

474

B.2 Proof of Lemma A.2475

Lemma B.1 (Lemma 3.3, Lykouris et al. 2018). Define the corruption level for a level `:

Corruptiont,` =

t∑
i=1

1(f(i) = `)

R+ 1
· sup
a∈Di

|ri(a)− r′i(a)| .

Then we have for all ` ≥ `∗, with probability at least 1− δ:

Corruptiont,` ≤ log(1/δ) + 3, ∀t ≥ 1.

Proof of Lemma A.2. Applying Lemma B.1, we have for all ` ≥ `∗, with probability at least 1 −476

δ/(2`2): Corruptiont,` ≤ log(2`2/δ) + 3,∀t ≥ 1.477

Using a union bound over all ` ≥ `∗, we can prove the lemma.478

B.3 Proof of Lemma A.4479

To prove the lemma, we first define the following two events:480

E2 := {∀` ≥ `∗ and t ≥ 1, ‖µ∗ − µt‖Σt ≤ βt,`} (B.1)

E3 :=
{
∀` ≥ `∗ and t ≥ 1, ‖µ∗ − µt,`‖Σt,`

≤ γt,`
}

(B.2)

Lemma B.2. Let E2 be defined in (B.1). For any 0 < δ < 1, we have P(E2) ≥ 1− δ.481
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Proof. Applying Lemma A.1, we have that ‖µt − µ∗‖Σt
≤ 8

√
d log (R+1)2λ+tA2

(R+1)2λ log(4t2/δ) +482

4
√
d log(4t2/δ) + C

√
d+
√
λ‖µ∗‖2 for all t ≥ 1 with probability at least 1− δ. Note that 2` ≥ C483

for all ` ≥ `∗, which indicates that E2 occurs with probability at least 1− δ.484

Lemma B.3. Let E3 be defined in (B.2). For any 0 < δ < 1, we have P(E3) ≥ 1− 2δ.485

Proof. Applying Lemma A.1, we have that ‖µt,` − µ∗‖Σt ≤ 8
√
d log (R+1)2λ+tA2

(R+1)2λ log(4t2T/δ) +486

4
√
d log(4t2T/δ) + Corruptiont,`

√
d +
√
λ‖µ∗‖2 for all t ≥ 1 with probability at least 1 − δ/`.487

Here we use the fact that ` ≤ T . Applying Lemma A.2 and a union bound, we have E3 occurs with488

probability at least 1− 2δ.489

Proof of Lemma A.4. This lemma can be proved by a union bound on E2 and E3 with Lemmas B.2490

and B.3.491

B.4 Proof of Lemma A.6492

Proof. For simplicity, let At,` = {µ|‖µ− µt‖Σt ≤ βt,`} ,Bt,` =
{
µ|‖µ− µt,`‖Σt,`

≤ γt,`
}
. Let493

µmt = argmaxµ∈Ct,f(t)
〈at,µ〉. Then we have494

〈at,µ∗〉 ≥ 〈at,µt〉 − βt,`∗‖at‖Σ−1
t

≥ 〈at,µmt 〉 − 2βt,`∗‖at‖Σ−1
t

≥ 〈at,`∗ ,µmt 〉 − 2βt,`∗‖at‖Σ−1
t

≥ 〈at,`∗ ,µt〉 − βt,`∗‖at,`∗‖Σ−1
t
− 2βt,`∗‖at‖Σ−1

t

≥ max
µ∈At,`∗

〈at,`∗ ,µ〉 − 2βt,`∗‖at,`∗‖Σ−1
t
− 2βt,`∗‖at‖Σ−1

t
,

≥ max
µ∈Ct,`∗

〈at,`∗ ,µ〉 − 2βt,`∗‖at,`∗‖Σ−1
t
− 2βt,`∗‖at‖Σ−1

t
, (B.3)

where the first inequality holds since µ∗ ∈ Ct,`∗ ⊆ At,l∗ , the second inequality holds since µmt ∈495

Ct,f(t) ⊆ At,l∗ , the third inequality holds by the definition of at and µmt , the fourth inequality holds496

since µmt ∈ At,`∗ , the fifth inequality holds since µt ∈ At,`∗ , the last one holds since Ct,`∗ ⊆ At,`∗ .497

By the definition of E1 and at,`∗ , we have498

max
µ∈Ct,`∗

〈at,`∗ ,µ〉 = max
a∈Dt

max
µ∈Ct,`∗

〈a,µ〉 ≥ max
a∈Dt

〈a,µ∗〉 = 〈a∗t ,µ∗〉. (B.4)

Combining (B.3) with (B.4), we have 〈a∗t − at,µ
∗〉 ≤ 2βt,`∗‖at‖Σ−1

t
+ 2βt,`∗‖at,`∗‖Σ−1

t
.499

B.5 Proof of Lemma A.7500

Proof. We have501

〈a∗t − at,µ
∗〉 ≤ max

µ∈Ct,`
〈at,µ〉 − 〈at,µ∗〉 ≤ 2γt,`‖at‖Σ−1

t,`
,

where the first inequality follows from the fact that µ∗ ∈ Ct,` and the definition of at, the second502

inequality holds since µ∗ ∈ Ct,` on the event E1.503

C Auxiliary Lemmas504

Lemma C.1 (Theorem 4.1, Zhou et al. 2020). Let {Gt}∞t=1 be a filtration, {xt, ηt}t≥1 a stochastic
process so that xt ∈ Rd is Gt-measurable and ηt ∈ R is Gt+1-measurable. Fix R,L, σ, λ > 0, µ∗ ∈
Rd. For t ≥ 1 let yt = 〈µ∗,xt〉+ ηt and suppose that ηt,xt also satisfy

|ηt| ≤ R,E[ηt|Gt] = 0,E[η2
t |Gt] ≤ σ2, ‖xt‖2 ≤ L.

Then, for any 0 < δ < 1, with probability at least 1− δ we have ∀t > 0,505

‖µt − µ∗‖Zt
≤ βt +

√
λ‖µ∗‖2,
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where for t ≥ 1, µt = Z−1
t bt, Zt = λI +

∑t
i=1 xix

>
i , bt =

∑t
i=1 yixi, and

βt = 8σ

√
d log

dλ+ tL2

dλ
log(4t2/δ) + 4R log(4t2/δ).

Lemma C.2 (Lemma 11, Abbasi-Yadkori et al. 2011). For any λ > 0 and sequence {xt}Tt=1 ⊂ Rd
for t ∈ 0 ∪ [T ], define Zt = λI +

∑t
i=1 xix

>
i . Then, provided that ‖xt‖2 ≤ L holds for all t ∈ [T ],

we have

T∑
t=1

min{1, ‖xt‖2Z−1
t−1

} ≤ 2d log
dλ+ TL2

dλ
.

D Experiments506

In this section, we conduct experiments and evaluate the performance our algorithm Multi-level507

OFUL, along with the baselines, OFUL (Abbasi-Yadkori et al., 2011), weighted OFUL (Zhou et al.,508

2020) and the greedy algorithm proposed by Bogunovic et al. (2021) under different corruption levels.509

We repeat each baseline algorithm for 10 times and plot their regrets w.r.t. number of rounds in Figure510

1.511

D.1 Experimental Setup512

Following Bogunovic et al. (2021), we let the adversary always corrupt the first k rounds, and leave513

the rest T − k rounds intact. According to our definition in (3.2), our design can simulate the cases514

where corruption level is 2k.515

Model parameters. Recall that corrupted linear contextual bandits defined in Section 3, we consider516

B = 1, A = 1 d = 20 and R = 0.5 and fix µ∗ as
(

1√
d
, · · · , 1√

d

)>
. We set σt as a random517

variable which is independently and uniformly chosen from [0, 0.05] in each round t. Note that518

〈a,µ∗〉 ∈ [−1, 1] always hold for any eligible a under our setting of parameters.519

Attack method. In the first k rounds, the adversary always trick the learner by flipping the value of520

µ∗, i.e., rt(a) = −〈a,µ∗〉+ εt(a) for all t ∈ [k] and a ∈ Dt.521

Decision set. We consider |Dt| = 20 for all t ≥ 1. In each of the first k rounds, we generate the522

20 actions in Dt independently, each having entries drawn i.i.d. from the uniform distribution on523 [
− 1√

d
, 1√

d

]
. For the following uncorrupted rounds, however, we use a fixed D generated in the same524

way.525

Intuitively, non-robust algorithm will “learn” the flipped µ∗ faster with diversified action vectors.526

As a result, the learner is likely to select the same nonoptimal action for a huge number of rounds527

afterwards, making it even more difficult to learn the true µ∗.528

Noise synthesis. We generate identical noises εt for all a ∈ Dt at each round t, i.e., εt(a) = εt. To529

generate εt, we first generate ε′t subject to N (0, σ2
t ) and let530

εt =


−R, ε′t < −R
R, ε′t > R

ε′t, otherwise
.
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D.2 Results and Discussion531
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(a) C = 0
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(b) C = 300
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(c) C = 600
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(d) C = 900

Figure 1: Regret plot against number of rounds under corruption level from 0 to 900 averaged in 10
trials.

We plot the regret with respect to the number of rounds in Figure 1. The results are averaged over 10532

trials. In the setting where C = 0 (Figure 1(a)), we only plot the regret of OFUL, weighted OFUL533

and Multi-level OFUL, and do not plot the regret of the greedy algorithm since its regret is much534

worse than the other three algorithms.535

We have the following observations from Figure 1. For the corruption-free case C = 0 (Figure 1(a)),536

our proposed Multi-level OFUL behaves worse than weighted OFUL and OFUL, which is not537

surprising since Multi-level OFUL has additional algorithm design to deal with the corruption and it538

may pay additional price in regret in the absence of corruption. Weighted OFUL outperforms OFUL539

remarkably since it takes advantage of the information concerning the variance of noise. For the540

corruption case (Figure 1(b) to 1(d)), our Multi-level OFUL outperforms other baseline algorithms541

by a large margin, which suggests that it can deal with the corruption successfully.542
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