
Published as a conference paper at ICLR 2023

Understanding and Adopting Rational Behavior by Bellman

Score Estimation - Appendix

A PROOFS

We restate the definition of the score-operator here to make it easier to go through the proofs.

Definition 2 The Bellman score operator G⇡,✓ : R|X⇥A|⇥dim(✓)
! R|X⇥A|⇥dim(✓)

for a policy ⇡
and reward r✓ is defined on an input J 2 R|X⇥A|⇥dim(✓)

as

G⇡,✓J = r✓r✓ + �P⇡J .

For all results we make the following weak assumption.

Assumption 1 The parametric reward function r✓ : ⇥ ! R|X⇥A|
is continuously differentiable

with respect to ✓. The considered MDPs satisfy standard regularity conditions from Bertsekas &

Tsitsiklis (1995) to guarantee convergence of value iteration.

We now dive straight into proving our first main result.

Theorem 1 For all t = 1, ..., T and any matrix J 2 R|X⇥A|⇥dim(✓)
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where, r✓Qsoft
✓,0 = r✓r✓. Furthermore, the Q-gradient satisfies:
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Proof We first prove the finite-horizon results. r✓Qsoft
✓,0 = r✓r✓ holds trivially since Qsoft

✓,0 = r✓.

We start from the definition of the optimal soft Q-function from Eq. 2 and derive the gradient for
each dimension of Qsoft

✓,t+1 2 R|X⇥A|.
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For t = 1, we have Qsoft
✓,1 = G⇡soft

✓,0 ,✓r✓Qsoft
✓,0 .
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For t � 1, we assume r✓Qsoft
✓,t (x, a) = G⇡soft

✓,t�1,✓
...G⇡soft

✓,0 ,✓r✓Qsoft
✓,0 . Then, by the above result we

have
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We now prove that the computed gradient is in fact equivalent to the conditional occupancy, i.e
r✓Qsoft

✓,t (x, a) = Ex0,a0⇠⇢
⇡soft
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,t
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in vector notation where ⇢⇡soft
✓,:t ,t

2 R|X⇥A|⇥|X⇥A| is overloaded to mean the matrix with each row
being a conditional occupancy. (and not the unconditional occupancy)
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Where the last line holds by applying our inductive hypothesis and the previous score operator result.

Now we prove the infinite-horizon results. Notice that the Bellman score operator G⇡soft
r,1,✓ is simply

the standard Bellman backup operator with a multi-dimensional reward r✓r✓(x, a), i.e the ith column
output of G⇡,✓ computes the Q-values for an agent acting according to ⇡ with the reward set to the ith
column of rr✓. Thus, the standard contraction mapping proofs directly apply to show that G⇡soft

✓,1,✓

is a max-norm contraction along each of it’s output columns (Bertsekas & Tsitsiklis, 1995). This
proves that G⇡soft

✓,1,✓ converges to a unique fixed point for any starting matrix J . We will now show
that infinite-horizon Q-gradient satisfies the fixed-point equation r✓Qsoft

✓,1 = G⇡soft
✓,1,✓(r✓Qsoft

✓,1) by
first showing that it is equivalent to the infinite-horizon conditional occupancy. To show this we use
the implicit function theorem. Consider the function f defined as:

f(✓, Q) = Q� THQ

where TH is the Bellman optimality operator defined in Eq. 2. Then, Qsoft
✓,1 is implicitly defined as

a function of ✓ at the point f(✓, Q) = 0. It trivially holds that f is continuously differentiable in ✓
since it is linear in r✓ and r✓ is assumed to be continuously differentiable with respect to ✓. We may
thus apply the implicit function theorem (Bai et al., 2019) to compute the gradient of the fixed point
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with respect to ✓.
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This proves that r✓Qsoft
✓,1(x, a) is equivalent to the infinite horizon conditional occupancy. We use

this result to show that the fixed point equation for G⇡soft
✓,1,✓ is satisfied by r✓Qsoft

✓,1(x, a).
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We have thus shown that G⇡soft
✓,1,✓ converges to a unique fixed point and that r✓Qsoft

✓,1(x, a) satisfies
the fixed point equation for G⇡soft

✓,1,✓. Since the MDP satifies the regularity conditions for value-
iteration to converge (Assumption 1) and G⇡soft

✓,1,✓ is simply a Bellman backup operator along each of
its output columns, repeated application of the infinite-horizon score operator must converge to the
true Q-gradient for any starting matrix J .
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Theorem 2 The gradient of the MaxEntIRL objective of Eq. 6 is

r✓E⌧⇠p⇤ [log p✓(⌧)] = Ex⇠P0,a⇠⇡⇤
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Proof We omit the discount factor as it can be absorbed into the reward as r✓,t(x, a) = �tr✓(x, a).
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Now the magic happens when we take gradients:
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In the deterministic dynamics case, this is precisely equal to the contrastive divergence gradient for
the energy-based model

p✓(⌧) =
exp r✓(⌧)P
⌧ 0 exp r✓(⌧ 0)

In the case where the reward is a linear function of known features F : X ⇥ A ! Rdim(✓), i.e
r✓(x, a) = ✓ · F (x, a), we note that Eq. 8 simplifies into

Ex,a⇠⇢⇡⇤,T
[F(x, a)]� Ex0,a0⇠⇢

⇡soft
✓

,T
[F(x, a)]

which is the result derived in Theorem 2 of Ziebart et al. (2010) for the simplified feature matching
formulation of Maximum Causal Entropy IRL with linear reward models. Our result generalizes
Theorem 2 of Ziebart et al. (2010) to the maximum likelihood formulation of MaxEntIRL with
non-linear function approximators.

B EXPERIMENT DETAILS

GAC details Table 4 shows a list of all GAC specific hyperparameters from Algorithms 2, 3. These
hyperparameters were fixed throughout all state and visual control experiments.

For all state control tasks we use pytorch_sac (Yarats & Kostrikov, 2020) as the backbone RL
in Algorithm 2. For all RL related modules (actor, critic, and etc.), we use their default network
architectures and hyperparameters. (see https://github.com/denisyarats/pytorch_
sac) The learner and expert Q-gradients g L , g E are represented by a single network with ReLU
activations and two 1024 unit hidden layers. (same archiecture as the critic) The shared gradient
network takes as input a one-hot indicator vector to switch between learner and expert. The reward
r✓ is represented by a single layer network with 64 hidden units, ReLU activations, and a sigmoid
output head to scale the reward between [0, 1].

For all visual control tasks we use DrQ-v2 (Yarats et al., 2022) as the backbone RL and similarly
use their default hyperparameters for all RL related modules. (see https://github.com/

facebookresearch/drqv2) The expert and learner Q-gradients are again represented by a
single network with the same architecture as the critic from (Yarats et al., 2022). The indicator vector
is injected after the encoding layers. The actor, critic, Q-gradient, and reward all share an encoder
but only the critic loss updates it. The implementation code will be released shortly.

Table 4: GAC Hyperparameters for both state, visual control problems

Parameter Value

M : Total number GAC iterations Until ✓ convergence
N : Number of score iteration steps per GAC iteration 1
N✓: Reward update interval 20
N : Number of Q-gradient update steps per policy update 2
⌘r: Reward learning rate 0.00001
⌘ : Q-gradient learning rate 0.0001
⌘!: score-learning rate 0.0001
↵g: Target Q-gradient mixing rate 0.005

RL: One policy update step in the inner loop of an RL algorithm SAC (state)
DrQ-v2 (visual)

Baselines: For DAC Kostrikov et al. (2019), state-of-the-art results are reported in (Cohen
et al., 2021), and so we follow their implementation which is already fine-tuned for DM con-
trol environments. GCL (Finn et al., 2016b) and AIRL (Fu et al., 2018) are equivalent to
Generative Adversarial Imitation Learning (Ho & Ermon, 2016) with a different parametiza-
tion of the discriminator Finn et al. (2016a). We use the implementation which at https:
//github.com/HumanCompatibleAI/imitation which builds off of stable-baselines 3
https://github.com/DLR-RM/stable-baselines3. Although these baseline imple-
mentations are already fine-tuned for DM control out of the box, we do an exhaustive hyperparameter
search to maximize their performance. As fully listing out all hyperparameter values for every
baseline is not very useful, we will instead release the code upon publication.
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Figure 3: State-control ablation results when varying the number of score iteration steps per
environment step N , reward update interval N✓, and the number of Q-gradient update steps per policy
update N . We vary each hyper-parameter while keeping the other parameter values set to those in
Table 4. Performance at a given hyper-parameter value is measured as the average task performance
across all nine state-control tasks in Table 2 (expert level is ⇡ 1000 for all tasks), where ten random
seeds are used to evaluate performance on a single task and one demonstration is supplied.

Figure 4: Visual-control ablation results when varying the number of score iteration steps per
environment step N , reward update interval N✓, and the number of Q-gradient update steps per policy
update N . We vary each hyper-parameter while keeping the other parameter values set to those in
Table 4. Performance at a given hyper-parameter value is measured as the average task performance
across ten random seeds. Ten demonstrations were supplied for each task.

For the reward transfer experiments, we compare against AIRL (Fu et al., 2018) and GCL (Finn et al.,
2016b). All three models learn state-only reward functions following (Fu et al., 2018) since Theorem
5.2 from Fu et al. (2018) shows that a disentangled reward (which is effective for transfer) must be
state-only. Rewards are first learned on the non-perturbed environments using 10 demonstrations,
then re-optimized via RL on the perturbed environments.

C ABLATION STUDIES

We’ve conducted hyperparameter ablation experiments for three main hyperparameters, namely the
number of score iteration steps per environment step N , reward update interval N✓, and the number
of Q-gradient update steps per policy update N . Results are shown in Figure 4. On the walker
task, we found that IRL control performance begins to drop meaningfully (more than a standard
deviation) past N > 5 (default is N = 1), which suggests that too many score iteration updates per
environment sample collected leads to overfitting and hence poor RL performance. We found that
the reward update interval N✓ should be kept within the relatively flexible range of 10  N✓  40
(default is N✓ = 20) in order to avoid drops in IRL performance. We posit that updating the rewards
too frequently triggers instability in the RL algorithms that must use the fast changing reward to
learn a policy. In contrast, if rewards are updated too infrequently, the algorithm takes an intractable
amount of time to converge. Finally, the number of Q-gradient update steps per policy update N 
should be kept within 1  N  5 (default is N = 2) to avoid IRL performance drop-off. Too
many Q-gradient updates per policy update leads overfitting the Q-gradient network to the current
policy/replay buffer, and also increases the compute time. Overall we found that our approach was
not too sensitive to the choice of hyper-parameters.
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D LIMITATIONS AND ADDITIONAL RESOURCES

D.1 LIMITATIONS AND FUTURE WORKS

An important limitation of score-learning (Algorithm 2) is the potential to suffer from the deadly
triad (Van Hasselt et al., 2018). The deadly triad issue is the problem that the combination of
off-policy learning, function approximations, and bootstrapping can hinder the convergence of value
iteration algorithms such as Q-learning. In comparison to standard Q-learning, score-learning may
be more heavily impacted by the deadly triad as it seeks to estimate a high dimensional gradient
vector r✓Qsoft

✓,1 with the three aforementioned components. The probability of divergence of each
dimension of the estimated gradient vector may compound to yield a much higher chance of overall
algorithm divergence. We hope to see future works investigate this topic.

As score-learning (Algorithm 2) uses a replay buffer for offline-learning, it may also suffer from
issues of double-sampling (Zhu & Ying, 2020). As our main experiments were in deterministic
Mujoco environments, we may have not run into double-sampling issues. However, it’s possible this
problem may appear in more complex, stochastic environments and deserves further investigation.

Another limitation of GAC is that it requires more compute time than the baselines. This is mostly
due to the computational burden of training an additional Q-gradient network which is updated more
frequently than the policy net. We report the compute time benchmarking results in Table 5

Table 5: GAC Compute Comparison for both state, visual control problems. Run times are
benchmarked on a single A5000 gpu. For state-control (second column), we report the mean and
standard deviation of the run time (in hours) averaged across all tasks in Table 2 using ten random
seeds per task. We do the same for visual-control (third column) with the tasks in Figure 2. Ten
demonstrations are supplied for all tasks

Method Run Time (state-control) Run Time (visual-control)

AIRL (Fu et al., 2018) 2.4± 0.3 5.5± 0.6
DAC (Kostrikov et al., 2019) 2.1± 0.4 5.0± 0.7
GAC (Ours) 3.7± 0.6 6.1± 0.5

We find that the GAC requires roughly 1.7 times more time than the baselines on the state-control
tasks while 1.2 times more on the visual-control tasks. This is because the Q-gradient and reward
networks share the encoder with the actor-critic networks in the visual control experiments.

D.2 DETAILED PROBLEM DEFINITIONS

Here we concretely define the concepts of reward identification, counterfactual predictions, behavior
imitation, and behavior transfer. All four problems fall under the broader scope of Learning from
Demonstrations.

Reward Identification seeks to infer the underlying reward function of the expert given demonstra-
tions of behavior sampled from the expert. Typically, the expert is assumed to act according to a
policy that is optimal with respect to a MDP.

Counterfactual Prediction problems seek to infer the optimal policy of an agent if the reward were
different from the reward optimized by the demonstrator. As the demonstrations contain information
about the optimal policy solution for one reward, some of that information should be reused in order
to more efficiently infer the optimal policy for the counterfactual reward.

Behavior Imitation seeks to infer a policy that matches the demonstrator’s behavior policy. Humans
frequently learn sports via Imitation Learning, e.g by copying a better athlete’s form.

Behavior Transfer seeks to learn a policy that displays the same semantic behavior as the demonstra-
tor under perturbed environmental conditions. For example, given demonstrations of a robot walking
on a high-friction surface, we want to learn a policy that enables the robot to walk on a low-friction
surface.
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D.3 FINITE-HORIZON SCORE ITERATION

Here we give the finite horizon version of the score-iteration algorithm.

Algorithm 4 Score Iteration: Computes the finite-horizon Bellman score via dynamic programming
M = (X ,A, P, P0, r✓, �): Markov Decision Process
T : Time-horizon
{gsoft✓,t }Tt=0: Q-gradient vector
{ssoft✓,t }Tt=0: Bellman score vector
procedure SCOREITERATION(M, T )

For M, learn the optimal policy {⇡soft
✓,t }Tt=0

Set gsoft✓,0 (x, a) = r✓r✓(x, a) and ssoft✓,0 (x, a) gsoft✓,0 (x, a)�
P

a02A ⇡soft
✓,0 (a0|x)gsoft✓,0 (x, a0)

for t = 1, ..., T do

for x 2 X , a 2 A do

Update Q-gradient: gsoft✓,t (x, a) r✓r✓(x, a) + �
P

x0,a0 P⇡soft
✓,t�1

(x0, a0|x, a)gsoft✓,t�1(x
0, a0)

Compute Bellman score: ssoft✓,t (x, a) gsoft✓,t (x, a)�
P

a0 ⇡
soft
✓,t (a0|x)gsoft✓,t (x, a0)

return {⇡soft
✓,t }Tt=0, {gsoft✓,t }Tt=0, {ssoft✓,t }Tt=0
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