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Abstract

An important challenge in robust machine learning is when training data is provided by strate-
gic sources who may intentionally report erroneous data for their own benefit (Caro and Gallien,
2010; Caro et al., 2010). A line of work at the intersection of machine learning and mechanism
design aims to deter strategic agents from reporting erroneous training data by designing learning
algorithms that are strategyproof (Dekel et al., 2010; Perote and Perote-Pena, 2004; Chen et al.,
2018; Cummings et al., 2015; Meir and Rosenschein, 2011; Meir et al., 2008, 2010, 2012; Hardt
et al., 2016; Ghalme et al., 2021; Dong et al., 2018; Ahmadi et al., 2021). Strategyproofness is a
strong and desirable property, but it comes at a cost in the approximation ratio of even simple risk
minimization problems.

A recent line of work on mechanism design with advice has shown that side information can
be leveraged to overcome worst-case bounds in mechanism design. Strategyproof mechanisms
that achieve an improved approximation ratio when the advice is accurate (consistency) and an
acceptable approximation ratio when the advice is inaccurate (robustness) have been designed for
problems such as strategic facility location (Agrawal et al., 2022; Xu and Lu, 2022; Balkanski
et al., 2024a), auction design (Lu et al., 2024; Caragiannis and Kalantzis, 2024; Balkanski et al.,
2024b), strategic scheduling (Balkanski et al., 2023), strategic assignment (Colini-Baldeschi et al.,
2024), and metric distortion (Berger et al., 2024). In this paper, we study strategyproof learning in
two settings: regression and classification; we provide the first non-trivial consistency-robustness
tradeoffs for both.

In strategic learning, each agent i € {1,...,n} reports aset S; = {(z; ;,y; ;)}; of labeled data
points to the learner. The points x; ; are public information, but the labels y; ; are private informa-
tion that agent ¢ can potentially misreport. The goal of the mechanism is to learn a function f from
a function class F that minimizes the global risk R(f,S) = |—é‘ > leill 0(f(z;4),yi,;) for
some loss function ¢. The agents are strategic and aim to minimize their personal risk R;(f,S) =
ﬁ lei‘l 0(f(z5),yi,;)- We augment the problem of strategic learning with a potentially erro-

neous advice f € F about the global risk minimizer that is given as input to the mechanism, in
addition to the labeled data reported by the agents.

We first consider regression problems with the absolute loss function £(z,y) = |z — y|. For
the classes of constant and homogeneous linear functions, Dekel et al. (2010) gave deterministic
and group-strategyproof mechanisms that achieved 3 approximation to the minimum global risk
and showed that these guarantees were tight. We provide the following results for regression over
constant functions:

¢ Introduce a deterministic and strategyproof mechanism that is, for any € (0, 2], 14y consistent
and 1 + 4/~ robust,

¢ Show that this mechanism is group strategyproof when agents have unique personal risk mini-
mizers, and
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* Prove that the consistency-robustness tradeoff is tight under mild assumptions.

This mechanism and its guarantees also extend to homogeneous linear functions. We then consider
binary classification problems over the 0-1 loss function in the shared input setting, where agents
have identical points but may disagree on their labels, and the function class is a set of specific
labelings for the points. Meir et al. (2012) give a deterministic mechanism that achieves a 2n — 1
approximation and show that no deterministic mechanism can achieve a sublinear approximation.
They also give a 3 approximate randomized mechanism, which they also show to be tight. We
provide the following results:

* Any deterministic and o(n) consistent mechanism has unbounded robustness, and

* Any random mechanism with consistency better than 3 is 2(n) robust.

For the special case of function classes with only two labelings, we extend the deterministic mech-
anism for regression and its guarantees, as well as provide a randomized mechanism parametrized
by v € (0, 1] that is 1 +  consistent and 1 + 1/~ robust.!
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