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A Score-based Diffusion Models
Here, we review the continues form of diffusion model introduced

for completeness. The forward process of diffusion can be formu-

lated by an Itô SDE:

dx = f (x, 𝑡)d𝑡 + 𝑔(𝑡)dw, (18)

where f (·, 𝑡) : R𝑑 ↦→ R𝑑 is a drift coefficient function, 𝑔(𝑡) ∈ R is a

scalar function known as the diffusion coefficient, and w ∈ R𝑑 is

the standard Wiener process. The forward process of DDPM can be

viewed as variance-preserving (VP) SDE [51] as the total variance

is preserved.

Correspondingly, the reversed generative (i.e., denoising) process

is given by the reverse-time SDE:

dx = [f (x, 𝑡) − 𝑔2 (𝑡)∇x𝑡 log𝑝𝑡 (x𝑡 )]d𝑡 + 𝑔(𝑡)dw̄, (19)

where dw̄ denotes the standard Wiener process running backward

in time and 𝑝𝑡 (x𝑡 ) denotes the marginal probability density w.r.t. x
at time 𝑡 . In practice, a time-dependent network s𝜃 (x𝑡 , 𝑡) param-

eterized by 𝜃 is trained to approximate the (Stein) score function

∇x𝑡 log𝑝𝑡 (x𝑡 ) with score-matching method [54]:

min

𝜃
E𝑡,x0,x𝑡

[
∥s𝜃 (x𝑡 , 𝑡) − ∇x𝑡 log𝑝 (x𝑡 |x0)∥22

]
, (20)

where 𝑡 is uniformly sampled from [0,𝑇 ], x0 ∼ 𝑞𝑑𝑎𝑡𝑎 (x) and x𝑡 ∼
𝑞(x𝑡 |x0). Once we have aceess to the well-trained s𝜃 (x𝑡 , 𝑡), an clean
sample can be derived by simulating the generative reverse-time

SDE (19) using numerical solvers (e.g. Euler-Maruyama).

B Additional Details
B.1 Derivation for x∗𝑡−1

We show the detailed derivation and explanation for the x∗
𝑡−1

in

Equation (9). Our motivation was to give the stochastic sampling

process a supervision at inference, trying to make the sampled

x𝑡−1 in the vicinity of the theoretically derived solution. Recall the

inference distributions defined in [47]:

𝑞(x𝑡−1 |x𝑡 , x0)

= N(
√
𝛼𝑡−1x0 +

√︃
1 − 𝛼𝑡−1 − 𝜎2

𝑡 ·
x𝑡 −
√
𝛼𝑡x0√

1 − 𝛼𝑡
, 𝜎2

𝑡 I) .
(21)

By setting 𝜎𝑡 = 0, we get our deterministic denoised estimate x∗
𝑡−1

x∗𝑡−1
=
√
𝛼𝑡−1x0 +

√
1 − 𝛼𝑡−1 ·

x𝑡 −
√
𝛼𝑡x0√

1 − 𝛼𝑡

=

√
1 − 𝛼𝑡−1√
1 − 𝛼𝑡

x𝑡 + (
√
𝛼𝑡−1 −

√
𝛼𝑡 ·
√

1 − 𝛼𝑡−1√
1 − 𝛼𝑡

)x0 .

(22)

Then we have the approximation for Ax∗
𝑡−1

:

Ax∗𝑡−1
=

√
1 − 𝛼𝑡−1√
1 − 𝛼𝑡

Ax𝑡 + (
√
𝛼𝑡−1 −

√
𝛼𝑡 ·
√

1 − 𝛼𝑡−1√
1 − 𝛼𝑡

)Ax0 . (23)

By applying y = Ax0 + n,

Ax∗𝑡−1

=

√
1 − 𝛼𝑡−1√
1 − 𝛼𝑡

Ax𝑡 + (
√
𝛼𝑡−1 −

√
𝛼𝑡 ·
√

1 − 𝛼𝑡−1√
1 − 𝛼𝑡

) (y − n)

≈
√

1 − 𝛼𝑡−1√
1 − 𝛼𝑡

Ax𝑡 + (
√
𝛼𝑡−1 −

√
𝛼𝑡 ·
√

1 − 𝛼𝑡−1√
1 − 𝛼𝑡

)y

(24)

The approximation of last step holds when 𝜎𝑦 is assumed in a

small range as n ∼ N(0, 𝜎yI).

Proposition B.1. Assume that ∥y∥2 ≤ 𝑌, ∥x0∥2 ≤ 𝑋, ∥x′
𝑡−1
∥2 ≤

𝑋, ∥𝝁𝜃 (x𝑡 , 𝑡, y)∥2 ≤ 𝐸 are bounded and continuous, there exists a

upper bound for ∥A
(
x𝑖
𝑡−1
− x∗

𝑡−1

)
∥2

2
which is:

∥A
(
x𝑖𝑡−1

− x∗𝑡−1

)
∥2

2
≤ (A𝐸 − A𝑋 + A𝜎𝑡 )2 . (25)

It is proven that some linear (i.e. super-resolution and inpainting)
operators A can be modeled as matrices [8] which are bounded and
linear. And for 𝜎𝑡 , it is usually set to a small value which is also
bounded. Thus, we can conclude that the above upper bound holds.

Proof.

∥A
(
x𝑖𝑡−1

− x∗𝑡−1

)
∥2

2

= ∥Ax𝑖𝑡−1
− Ax∗𝑡−1

∥2
2

(26)

(a)
≈ ∥A

(
𝝁𝜃 (x𝑡 , 𝑡, y) + 𝜎𝑡 z𝑖𝑡

)
−(√

𝛼𝑡−1y +
√

1 − 𝛼𝑡−1 ·
Ax𝑡 −

√
𝛼𝑡y

√
1 − 𝛼𝑡

)
∥2

2
, (27)

where z𝑖𝑡 ∼ N(0, I) and the

(a)
≈ is from Eq. (11). Here, we apply

trigonometric inequalities to the above equation, we have:

∥A
(
x𝑖𝑡−1

− x∗𝑡−1

)
∥2

2

(a)
≈ ∥A

(
𝝁𝜃 (x𝑡 , 𝑡, y) + 𝜎𝑡 z𝑖𝑡

)
−(√

𝛼𝑡−1y +
√

1 − 𝛼𝑡−1 ·
Ax𝑡 −

√
𝛼𝑡y

√
1 − 𝛼𝑡

)
∥2

2
(28)

≈ ∥
(
A𝝁𝜃 (x𝑡 , 𝑡, y) −

√
𝛼𝑡−1y

)
+(

𝜎𝑡Az𝑖𝑡 −
√

1 − 𝛼𝑡−1 ·
Ax𝑡 −

√
𝛼𝑡y

√
1 − 𝛼𝑡

)
∥2

2
(29)

≈
(
∥A𝝁𝜃 (x𝑡 , 𝑡, y) −

√
𝛼𝑡−1y∥2+

∥𝜎𝑡Az𝑖𝑡 −
√

1 − 𝛼𝑡−1 ·
Ax𝑡 −

√
𝛼𝑡y

√
1 − 𝛼𝑡

∥2
)

2

. (30)

Since ∥𝝁𝜃 (x𝑡 , 𝑡, y)∥2 ≤ 𝐸, ∥𝛼𝑡 ∥2 ≤ 𝐴, ∥𝛼𝑡 ∥2 ≤ 𝐴, ∥𝛼𝑡−1∥2 ≤ 𝐴,,

and ∥y∥2 ≤ 𝑌 , we have the upper bound for ∥A𝝁𝜃 (x𝑡 , 𝑡, y) −√
𝛼𝑡−1y∥2, and thus ∥A𝝁𝜃 (x𝑡 , 𝑡, y) −

√
𝛼𝑡−1y∥2 ≤ A𝐸 +

√
𝐴𝑌 . Sim-

ilarly, we have the upper bound for ∥
√

1 − 𝛼𝑡−1· Ax𝑡−
√
𝛼𝑡y√

1−𝛼𝑡
∥2, which

is ∥
√

1 − 𝛼𝑡−1 · Ax𝑡−
√
𝛼𝑡y√

1−𝛼𝑡
∥2 = ∥

√
1−𝛼𝑡−1Ax𝑡√

1−𝛼𝑡
−
√
𝛼𝑡 (1−𝛼𝑡−1 )𝑦√

1−𝛼𝑡
∥ ≤

A𝑋 +
√
𝐴𝑌 . Therefore, we have:

∥A
(
x𝑖𝑡−1

− x∗𝑡−1

)
∥2

2

(a)
≈ ∥A

(
𝝁𝜃 (x𝑡 , 𝑡, y) + 𝜎𝑡 z𝑖𝑡

)
−(√

𝛼𝑡−1y +
√

1 − 𝛼𝑡−1 ·
Ax𝑡 −

√
𝛼𝑡y

√
1 − 𝛼𝑡

)
∥2

2
(31)

≤
(
A𝐸 + A𝑋 + 2

√
𝐴𝑌 + A𝜎𝑡

)
2

. (32)

Chung et al. [8] has shown that some linear operations A (such

as super-resolution and inpainting) can be represented as matrices

that are linear and bounded. Moreover, 𝜎𝑡 is typically chosen to be
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a small and finite number. Therefore, we can affirm that the upper

bound in the previous equation is valid. □

Proposition B.2. For the random variable z ∼ N(0, I) and its
objective function:

𝑓 (z) = ∥A(𝝁𝜃 (x𝑡 , 𝑡, y) + 𝜎𝑡 z −𝐶1x𝑡 ) −𝐶2y∥2
2
, (33)

where 𝐶1 =
√

1 − 𝛼𝑡−1/
√

1 − 𝛼𝑡 and 𝐶2 =
√
𝛼𝑡−1 −

√
𝛼𝑡
√

1 − 𝛼𝑡−1/√
1 − 𝛼𝑡 . Thus, with𝑀 trials, each consisting of 𝑁 samples, we have

the variance for 𝑓 (z), which is Var (𝑓 (z)). We have

VarDPS (𝑓 (z)) > VarMC (𝑓 (z)) > VarOurs (𝑓 (z)) , (34)

here, VarDPS (𝑓 (z)) is the variance of DPS [8], VarMC (𝑓 (z)) is the
variance of Monte Carlo sampling, and VarOurs (𝑓 (z)) is the variance
of our proximal sampling method.

Proof. For each trial, we only take one sample z1 from the

distribution, and compute 𝑓 (z1). Thus, for DPS, the estimation of a

single sample is 𝜇
single

= 𝑓 (z1), and the variance of the estimation

is Var (𝑓 (z)).
For Monte Carlo sampling, we draw 𝑁 independently and iden-

tically distributed samples z1, z2, . . . , z𝑁 , and compute the function

𝑓 (z𝑖 ) for each sample. Finally, we can get the estimation of a single

trial as:

𝜇MC =
1

𝑁

𝑁∑︁
𝑖=1

𝑓 (z𝑖 ) . (35)

By the central limit theorem, when 𝑁 is large enough, the variance

of 𝜇MC is
Var(𝑓 (z) )

𝑁
.

For our proximal sampling method, similar to Monte Carlo sam-

pling, we also draw 𝑁 independently and identically distributed

samples z1, z2, . . . , z𝑁 for each trial, and compute the function 𝑓 (z𝑖 )
for each sample. However, we only get the estimation from the sam-

ple with the lowest objective function value:

𝜇Ours = arg min

z
𝑓 (z1, z2, . . . , z𝑁 ). (36)

In contrast to Monte Carlo sampling, which averages all function

values, our proximal sampling selects only the samples correspond-

ing to the smallest function values for each trial. Thus, the set of

function value selected by our method is a subset of those sampled

by Monte Carlo sampling. Obviously, for multiple trials, the vari-

ance of our method is smaller than Monte Carlo sampling, and also

smaller than random sampling as in DPS. Therefore, we have:

VarDPS (𝑓 (z)) > VarMC (𝑓 (z)) =
VarDPS (𝑓 (z))

𝑁
> VarOurs (𝑓 (z)) .

(37)

□

C Additional Experimental Results
C.1 Less Error Accumulation
As discussed in Section 5.3, sampling in proximity to the measure-

ment yields less error accumulation. This is achieved by treating

the injected noise as an adaptive correction. To verify this, Figure 9

reports the Frobenius norm between true values

√
𝛼𝑡−1x0 and the

predicted values 𝝁𝜃 (x𝑡 , 𝑡, y).
The results validate that our proximal sampling exhibits superior

predictive accuracy and less error accumulation compared to ran-

dom sampling, consequently enhancing the precision in predicting

subsequent samples.

D Experimental Details
D.1 Comparison Methods
Since Score-SDE, DDRM, MCG, DPS, and DiffPIR are all pixel-based

diffusion models, we used the same pre-trained checkpoint for fair

comparison.

PnP-ADMM: For PnP-ADMM we take the pre-trained model

from DnCNN [59] repository, and set 𝜏 = 0.2 and number of itera-

tions to 10 for all inverse problem.

Score-SDE: For Score-SDE, data consistency projection is con-

ducted after unconditional diffusion denoising at each step. We

adopt the same projection settings as suggested in [9].

MCG, DPS: The experimental results are derived from the

source code implementation provided by [8] with the default pa-

rameter setting as suggested in the paper, i.e. 𝜁𝑡 = 1/∥y−A(x̂
0 |𝑡 )∥

for all inverse problem on FFHQ dataset, 𝜁𝑡 = 1/∥y − A(x̂
0 |𝑡 )∥ for

ImageNet SR and inpainting, 𝜁𝑡 = 0.4/∥y − A(x̂
0 |𝑡 )∥ for ImageNet

Gaussian deblur, and 𝜁𝑡 = 0.6/∥y − A(x̂
0 |𝑡 )∥ for ImageNet motion

deblur. The difference between these two methods is that MCG

additionally applied data consistency steps as Euclidean projections

onto the measurement set.

DDRM: We apply 20 NFEs DDIM [47] sampling with 𝜂 =

0.85, 𝜂𝐵 = 1.0 for all experiment as suggested in the paper.

LGD-MC: We follow the implementation of the algorithm in

[49] to use a Monte Carlo estimate of the gradient correction to

amend the denoising process. The number of Monte Carlo samples

is set to 20.

DiffPIR: We use the original code and pre-trained models pro-

vided by [61]. We set the hyper-parameters consistent with the

noiseless situation in the paper, i.e., SR: 𝜁 = 0.3, 𝜆 = 6.0 / motion

deblur: 𝜁 = 0.9, 𝜆 = 7.0 / Gaussian deblur: 𝜁 = 0.4, 𝜆 = 12.0/ inpaint-

ing: 𝜁 = 1.0/𝜆 = 7.0. Besides, we designate the sub_1_analytic as

False in the motion deblurring task, since it directly leverages the

pseudo-inverse of the fast Fourier transform, resulting in an unfair

boost in performance [34].

D.2 Parameter Setting
Here, we list the hyper-parameter values for different tasks and

datasets in Table 5.

Table 5: Hyper-parameter 𝜆𝑡 for each problem setting.

Dataset FFHQ 256x256 ImgaeNet 256x256

Inpaint 1.0 1.0

Deblur (Gaussian) 1.0 0.5

Deblur (motion) 1.0 0.3

SR (×4) 1.0 1.0

D.3 Parameter Size and Speed
The results for computational time and parameter sizes on the

FFHQ model are presented in Table 6. The parameter sizes of the

diffusion-based methods remain consistent as the same model was

used.
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Figure 8: More visual comparison of inpainting and deblurring on ImageNet.

Figure 9: We report the average value of ∥
√
𝛼𝑡−1x0 −

𝝁𝜃 (x𝑡 , 𝑡, y)∥𝐹 on SR (×4) task. The results show that our
method achieves better predictive accuracy and reduces error
accumulation.

Table 6: Computational time and parameter size comparison

Method PnP-ADMM Score-SDE MCG DDRM DPS DiffPIR Ours

Parameter (M) 0.56 93.56 93.56 93.56 93.56 93.56 93.56

Speed (s) 1.71 28.78 56.41 4.79 56.36 3.40 57.25

D.4 Source Code
Our implementation is now available at https://github.com/74587887/

DPPS_code.

E Limitations and Future Work
Our approach notably enhances perceptual metrics, yet it demon-

strates a less substantial improvement in distortion metrics and, in

certain tasks, experiences a slight decline. While this observation

aligns with the perception-distortion trade-off phenomena as de-

scribed in the literature [3], we acknowledge it as a noteworthy

issue that warrants further investigation in our subsequent studies.

In addition, subsequent work of this paper aims to extend the ap-

plication to diverse domains, including but not limited to medical

image reconstruction.

F More Visual Results
In this section, we provide supplementary visual results to show the

effectiveness of our proposed method. Figures 10 and 11 indicate

that our method produces images with better details and quality

as 𝑛 increases. Figure 12 to Figure 15 show the robustness of our

method across different random seeds, in line with the claims made

in the paper. Figure 8 provides one more visual comparison for

inpainting and Gaussian deblurring tasks.
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Figure 10: Qualitative results to illustrate the effectiveness of our proposed method and the impact of 𝑛 on SR (×4) task with
𝜎𝑦 = 0.01.
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Figure 11: Qualitative results to illustrate the effectiveness of our proposed method and the impact of 𝑛 on SR (×4) task with
𝜎𝑦 = 0.01.
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Figure 12: Qualitative inpainting results (Left FFHQ, Right ImageNet) with 𝜎𝑦 = 0.01.
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Figure 13: Qualitative SR (×4) results (Left FFHQ, Right ImageNet) with 𝜎𝑦 = 0.01.



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Hongjie Wu et al.

Figure 14: Qualitative motion deblurring results (Left FFHQ, Right ImageNet) with 𝜎𝑦 = 0.01.
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Figure 15: Qualitative Gaussian deblurring results (Left FFHQ, Right ImageNet) with 𝜎𝑦 = 0.01.


