
A Licenses726

The code used for benchmarking is released under MIT license. The code of AutoAttack [26] that our727

benchmark relies on has been released under the MIT license as well. The classifiers in the Model728

Zoo are added according to the permission given by the authors with the license they choose: most of729

the models have MIT license, other have more restrictive ones such as Attribution-NonCommercial-730

ShareAlike 4.0 International, Apache License 2.0, BSD 3-Clause License. The details can be found at731

https://github.com/RobustBench/robustbench/blob/master/LICENSE. The CIFAR-10732

and CIFAR-100 datasets [69] are obtained via the PyTorch loaders [96], while CIFAR-10-C and733

CIFAR-100-C [53], with the common corruptions, are downloaded from the official release (see734

https://zenodo.org/record/2535967#.YLYf9agzaUk and https://zenodo.org/record/735

3555552#.YLYeJagzaUk).736

B Maintenance plan737

Here we discuss the main aspects of maintaining RobustBench and the costs associated with it:738

• Hosting the website (https://robustbench.github.io/): we host our leaderboard739

using GitHub pages2 which is a free service.740

• Hosting the library (https://github.com/RobustBench/robustbench): the code of741

our library is hosted on GitHub3 which offers the basic features that we need to maintain the742

library for free.743

• Hosting the models: to ensure the availability of the models from the Model Zoo, we host744

them in our own cloud storage on Google Drive4. At the moment, they take around 24 GB745

of space which fits into the 100 GB storage plan that costs 2 USD per month.746

• Running evaluations: we run all evaluations on the GPU servers that are available to our747

research groups which incurs no extra costs.748

Moreover, as we mention in the outlook (Sec. 5), we also plan to expand the benchmark to new749

datasets and threat models which can slightly increase the required maintenance costs since we may750

need to upgrade the storage plan. We also expect the benchmark to be community-driven and to751

encourage this we have provided instructions5 on how to submit new entries to the leaderboard and to752

the Model Zoo.753

C Reproducibility and runtime754

Here we discuss the main aspects of the reproducibility of the benchmark.755

First of all, the code to run the benchmark on a given model is available in our repository, and an756

example of how to run it is given in the README file. The installation instructions are also provided757

in the README file and the requirements will be installed automatically. We only leave to the758

user the installation of the PyTorch and torchvision libraries to allow for the installation of the most759

appropriate versions for the user’s hardware (e.g. CUDA vs CPU versions). To satisfy other points760

from the reproducibility checklist6 which are applicable to our benchmark, we also discuss next the761

variability of the robust accuracy over random seeds and the average runtime of the benchmark.762

Evaluation of the accuracy on common corruptions [53] is deterministic if we do not take into account763

non-deterministic operations on computational accelerators such as GPUs7 which, however, do not764

affect the resulting accuracy. On the other hand, robustness evaluation using AutoAttack has an765

element of randomness since it relies on random initializations of the starting points and also on766

the randomness in the update of the Square Attack [4]. To show the effect of randomness on the767

2https://pages.github.com/
3http://github.com/
4https://www.google.com/drive/
5https://github.com/RobustBench/robustbench#adding-a-new-model
6https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
7https://pytorch.org/docs/stable/notes/randomness.html
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robust accuracy given by AutoAttack, we repeat evaluation over four random seeds on three models768

available in the Model Zoo from different threat models. In Table 2 we report the average robust769

accuracy with its standard deviation. We observe that different seeds lead to very similar results.770

Moreover, we indicate the runtime of each evaluation, which is largely influenced by the size of the771

model and the computing infrastructure (every run uses a single Tesla V100 GPU, and we set a batch772

size of 500). Moreover, less robust models require less time for evaluation which is due to the fact773

that AutoAttack does not further attack a point if an adversarial example is already found by some774

preceding attack in the ensemble.

Table 2: Statistics about the standardized evaluation with AutoAttack when repeated for four random
seeds. We can see that the robust accuracy has very small fluctuations. We also report the runtime for
the different models which is much smaller for less robust models.

Dataset Leaderboard Paper Architecture Clean acc. Robust acc. Time
CIFAR-10 `∞ Gowal et al. [46] WRN-28-10 89.48% 62.82% ± 0.016 11.8 h
CIFAR-10 `2 Rebuffi et al. [100] WRN-28-10 91.79% 78.80% ± 0.000 15.1 h
CIFAR-100 `∞ Wu et al. [140] WRN-34-10 60.38% 28.84% ± 0.018 6.6 h

775

D Additional analysis776

In this section, we show more results on different datasets and/or threat models and discuss some im-777

plementation details related to the analysis from Sec. 4. We also additionally analyze the smoothness778

and transferability properties of the models from the Model Zoo.779

Progress on adversarial defenses. As done in the main part for the `∞-robust models on CIFAR-10,780

we show here the same statistics but for `2-robust models on CIFAR-10 in Fig. 8 and for `∞-robust781

models on CIFAR-100 in Fig. 9. We observe a few differences compared to the `∞-robust models on782

CIFAR-10 reported in Fig. 2. First of all, the amount of robustness overestimation is not large and783

in particular there are no models that have zero robust accuracy. Second, we can see that the best784

`2-robust models on CIFAR-10 has even higher standard accuracy than a standard model (95.74%785

vs 94.78%) while having a significantly higher robust accuracy (82.32% vs 0.00%) and leaving a786

relatively small gap between the standard and robust accuracy. Finally, we note that the progress on787

the `∞-threat model on CIFAR-100 is more recent and there are only a few published papers that788

report adversarial robustness on this dataset.
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Figure 8: Visualization of the robustness and accuracy of 13 CIFAR-10 models from the
RobustBench `2-leaderboard. Robustness is evaluated using `2-perturbations with ε2 = 0.5.

789

Robustness across distribution shifts. We measure robust accuracy on various distribution shifts790

using four dataset, namely CIFAR-10, CINIC-10, CIFAR-10.1, and CIFAR-10-C. In particular, we791

compute the robust accuracy in the same threat model as for the original CIFAR-10 dataset, and report792

the results in Fig. 10. Interestingly, one can observe that `p adversarial robustness is maintained under793

the distribution shifts, and it highly correlates with the robustness on the dataset the models were794

trained on (i.e. CIFAR-10).795

Calibration. We compute the expected calibration error (ECE) using the code of [47]. We use796

their default settings to compute the calibration error which includes, in particular, binning of the797

probability range onto 15 equally-sized bins. However, we use our own implementation of the798
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Figure 9: Visualization of the robustness and accuracy of 12 CIFAR-100 models from the
RobustBench `∞-leaderboard. Robustness is evaluated using `∞-perturbations with ε∞ = 8/255.
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Figure 10: Robust accuracy of the robust classifiers, trained against `∞ and `2 threat model, respec-
tively, from our Model Zoo on various distribution shifts. The data points with 0% robust accuracy
correspond to a standardly trained model.

temperature rescaling algorithm which is close to that of [7]. Since optimization of the ECE over the799

softmax temperature is a simple one-dimensional optimization problem, we can solve it efficiently800

using a grid search. Moreover, the advantage of performing a grid search is that we can optimize801

directly the metric of interest, i.e. ECE, instead of the cross-entropy loss as in [47] who had to802

rely on a differentiable loss since they used LBFGS [78] to optimize the temperature. We perform803

a grid search over the interval t ∈ [0.001, 1.0] with a grid step 0.001 and we test both t and 1/t804

temperatures. Moreover, we check that for all models the optimal temperature t is situated not at the805

boundary of the grid.806

We show additional calibration results for `2-robust models in Fig. 11. The overall trend of the ECE807

is the same as for `∞-robust models: most of the `2 models are underconfident (since the optimal808

temperature is less than one) and lead to worse calibration before and after temperature rescaling.809

The main difference compared to the `∞ threat model is that among the `2 models there are two810

models that are better-calibrated: one before (Engstrom et al. [35] with 1.41% ECE vs 3.71% ECE811

of the standard model) and one after (Gowal et al. [46] with 1.00% ECE vs 1.11% ECE of the812

standard model) temperature rescaling. Moreover, we can see that similarly to the `∞ case, the only813

overconfident models are either the standard one or models that maximize the margin instead of using814

norm-bounded perturbations, i.e. Ding et al. [32] and Rony et al. [103].
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Figure 11: Expected calibration error (ECE) before (left) and after (middle) temperature rescaling,
and the optimal rescaling temperature (right) for the `2-robust models.

815

Out-of-distribution detection. Fig. 12 complements Fig. 5 and shows the ability of `2-robust models816

trained on CIFAR-10 to distinguish inputs from other datasets (CIFAR-100, SVHN, Describable817

Textures). We find that `2 robust models have in general comparable OOD detection performance818

19



to standardly trained models, while the model by Augustin et al. [7] achieves even better perfor-819

mance since their approach explicitly optimizes both robust accuracy and worst-case OOD detection820

performance.
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Figure 12: Visualization of the quality of OOD detection (higher AUROC is better) for the `2-robust
models on three different OOD datasets: CIFAR-100 (left), SVHN (middle), Describable Textures
(right).

821

Fairness in robustness. We report the results about fairness for robust models in the `2-threat model822

in Fig. 13, similarly to what done for `∞ above. We see that the difference in robustness among823

classes is similar to what observed for the `∞ models. Also, the RSD of robustness over classes824

decreases, which indicates that the disparity among subgroups is reduced, as the average robust825

accuracy improves. To compute the robustness for the experiments about fairness we used APGD on826

the targeted DLR loss [26] with 3 target classes and 20 iterations each on the whole test set. Note827

that even with this smaller budget we achieve results very close to that of the full evaluation, with an828

average difference smaller than 0.5%.
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Figure 13: Left: classwise standard (dotted lines) and robust (solid) accuracy of `2-robust models.
Right: relative standard deviation (RSD) of robust accuracy over classes vs its average.

829

Privacy leakage. We use membership inference accuracy, referred to as inference accuracy, as a830

measure of the leakage of training data details from pre-trained neural networks. It measures how831

successfully we can identify whether a particular sample was present in the training set. We closely832

follow the methodology described in Song and Mittal [118] to calculate inference accuracy. In833

particular, we measure the confidence in the correct class for each input image with a pre-trained834

classifier. We measure the confidence for both training and test set images and calculate the maximum835

classification accuracy between train and test images based on the confidence values. We refer to this836

accuracy as inference accuracy using confidence. We also follow the recommendation from Song837

et al. [119] where they show that adversarial examples are more successful in estimating inference838

accuracy on robust networks. In our experiments, we also find that using adversarial examples leads839

to higher inference accuracy than benign images (Figure 14). We also find that robust networks in840

the `2 threat model have relatively higher inference accuracy than robust networks in the `∞ threat841

model.842

A key reason behind privacy leakage through membership inference is that deep neural networks often843

end up overfitting on the training data. One standard metric to measure overfitting is the generalization844

gap between train and test set. Naturally, this difference in the accuracy on the train and test set is845

the baseline of inference accuracy. We refer to it as inference accuracy using label and report it in846

Figure 15. We consider both benign and adversarial images. When using benign images, we find847

confidence information does lead to higher inference accuracy than using only labels. However, with848
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adversarial examples, which achieve higher inference accuracy than benign images, we find that849

inference accuracy based on confidence information closely follows the inference accuracy calculate850

from labels.851
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Figure 14: Comparing privacy leakage of different networks. We compare membership inference
accuracy from benign and adversarial images across both `∞ and `2 threat model.
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Figure 15: Comparing privacy leakage with different output statistics. We measure privacy
leakage using membership inference accuracy, i.e., classification success between train and test set.
We measure it using two baselines 1) based on correct prediction i.e., using predicted class label
and 2) based on classification confidence in correct class. We also measure it using both benign and
adversarial images.

Smoothness. Previous work [146] has shown that smoothness of a model, together with enough852

separation between the classes of the dataset for which it is trained, is necessary to achieve both853

natural and robust accuracy. They use local Lipschitzness as a measure for model smoothness, and854

observe empirically that robust models are more smoother than models trained in a standard way.855

Our Model Zoo enables us to check this fact empirically on a wider range of robust models, trained856

with a more diverse set of techniques, in particular with and without extra training data. Moreover, as857

we have access to the model internals, we can also compute local Lipschitzness of the model up to858

arbitrary layers, to see how smoothness changes between layers.859

We compute local Lipschitzness using projected gradient descent (PGD) on the following optimization860

problem:861

L =
1

N

N∑
i=1

max
x1:‖x1−xi‖∞≤ε,
x2:‖x2−xi‖∞≤ε

‖f(x1)− f(x2)‖1
‖x1 − x2‖∞

, (2)

where xi represents each sample around which we compute local Lipschitzness, N is the number of862

samples across which we average (N = 256 in all our experiments), and f represents the function863

whose Lipschitz constant we compute. As mentioned above, this function can be either the full model,864

or the model up to an arbitrary intermediate layer.865

Since the models can have similar smoothness behavior, but at a different scale, we also consider866

normalizing the models outputs. One such normalization we use is given by the projection of the867

model outputs on the unit `2 ball. This normalization aims at capturing the angular change of the868

output, instead of taking in consideration also its magnitude. We compute the “angular” version of869

the Lipschitz constant as870

L =
1

N

N∑
i=1

max
x1:‖x1−xi‖∞≤ε,
x2:‖x2−xi‖∞≤ε

∥∥∥ f(x1)
‖f(x1)‖2 −

f(x2)
‖f(x2)‖2

∥∥∥
1

‖x1 − x2‖∞
. (3)

For both variations of Lipschitzness, we compute it with ε = 8/255, running the PDG-like procedure871

for 50 steps, with a step size of ε /5.872
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Figure 16: Lipschitzness. Computation of the local Lipschitz constant of the WRN-28-10 `∞-robust
models in our Model Zoo with ε = 8/255. The color coding of the models is the same across both
figures. For the correspondence between model IDs (shown in the legend) and papers that introduced
them, see Appendix E.
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Figure 17: Lipschitzness vs Robustness. Local Lipschitz constant of the output layer vs. robust
accuracy of a subset of the `∞-robust models in our Model Zoo.

In Fig. 16 we compute the layerwise Lipschitzness for all `∞ models trained on CIFAR-10 from873

the Model Zoo that have the WRN-28-10 architecture. We observe that the standard model is the874

least smooth at all the layers, and that all the robustly trained models are smoother. Moreover, we875

can notice that in Fig. 16a there are two models in the middle ground: these are the models by876

Gowal et al. [46] and Rebuffi et al. [100], which are the most robust ones, up to the last layer, the877

smoothest. Nonetheless, in the middle layers, they are the second and third least smooth, according878

to the unnormalized local Lipschitzness. This can be due to the different activation function used in879

these models (Swish vs ReLU). For this reason, we also compute “angular” Lipschitzness according880

to Eq. 3. Indeed, in Fig. 16b, all the robust models are in the same order of magnitude at all layers.881

Finally, we also show the Lipschitz constants of the output layer for a larger set of `∞ models from882

the Model Zoo that are not restricted to the same architecture. We plot the Lipschitz constant vs. the883

robust accuracy for these models in Fig 17. We see that there is a clear relationship between robust884

accuracy and Lipschitzness, hence confirming the findings of Yang et al. [146].885

Transferability. We generate adversarial examples for a network, referred to as source network, and886

measure robust accuracy of every other network, referred to as target network, from the model zoo887

on them. We also include additional non-robust models8, to name a few, VGG19, ResNet18, and888

DenseNet121, in our analysis. We consider both ten step PGD attack and FGSM attack to generate889

adversarial examples as two transferability baselines commonly used in the literature.890

We present our results in Figure 18, 19 where the correspondence between model IDs and papers891

that introduced them can be found in Appendix E. We find that transferability to each robust target892

network follows a similar trend where adversarial examples transfer equally well from another robust893

networks. Though slight worse than robust network, adversarial example from non-robust network894

8We train then for 200 epochs and achieve 93-95% clean accuracy for all networks on the CIFAR-10 dataset.
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also transfer equally well to robust networks. We observe a strong transferability among non-robust895

networks with adversarial examples generated from PGD attacks. Adversarial examples generated896

using the FGSM attack also transfer successfully. However, they achieve lower robust accuracy on897

the target network. Intriguingly, we observe the weakest transferability from a robust to a non-robust898

network. This observation holds for all robust source networks across both FGSM and PGD-attack in899

both `∞ and `2 threat model.900

E Leaderboards901

We here report the details of all the models included in the various leaderboards, for the `∞-, `2-threat902

models and common corruptions. In particular, we show for each model the clean accuracy, robust903

accuracy (either on adversarial attacks or corrupted images), whether additional data is used for904

training, the architecture used, the venue at which it appeared and, if available, the identifier in the905

Model Zoo (which is also used in some of the experiments in Sec. D).906

Table 3: Leaderboard for the `∞-threat model, CIFAR-10.
Model Clean AA Extra data Architecture Venue Model Zoo ID

1 Rebuffi et al. [100] 92.23 66.56 Y WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_extra
2 Gowal et al. [46] 91.10 65.87 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_70_16_extra
3 Rebuffi et al. [100] 88.50 64.58 N WRN-106-16 arXiv, Mar 2021 Rebuffi2021Fixing_106_16_cutmix_ddpm
4 Rebuffi et al. [100] 88.54 64.20 N WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_ddpm
5 Gowal et al. [46] 89.48 62.76 Y WRN-28-10 arXiv, Oct 2020 Gowal2020Uncovering_28_10_extra
6 Rebuffi et al. [100] 87.33 60.73 N WRN-28-10 arXiv, Mar 2021 Rebuffi2021Fixing_28_10_cutmix_ddpm
7 Wu et al. [139] 87.67 60.65 Y WRN-34-15 arXiv, Oct 2020 N/A
8 Wu et al. [140] 88.25 60.04 Y WRN-28-10 NeurIPS 2020 Wu2020Adversarial_extra
9 Zhang et al. [154] 89.36 59.64 Y WRN-28-10 ICLR 2021 Zhang2020Geometry

10 Carmon et al. [18] 89.69 59.53 Y WRN-28-10 NeurIPS 2019 Carmon2019Unlabeled
11 Sehwag et al. [112] 85.85 59.09 N WRN-34-10 arXiv, Apr 2021 Sehwag2021Proxy
12 Gowal et al. [46] 85.29 57.14 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_70_16
13 Sehwag et al. [110] 88.98 57.14 Y WRN-28-10 NeurIPS 2020 Sehwag2020Hydra
14 Gowal et al. [46] 85.64 56.82 N WRN-34-20 arXiv, Oct 2020 Gowal2020Uncovering_34_20
15 Wang et al. [133] 87.50 56.29 Y WRN-28-10 ICLR 2020 Wang2020Improving
16 Wu et al. [140] 85.36 56.17 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
17 Uesato et al. [129] 86.46 56.03 Y WRN-28-10 NeurIPS 2019 N/A
18 Hendrycks et al. [55] 87.11 54.92 Y WRN-28-10 ICML 2019 Hendrycks2019Using
19 Sehwag et al. [112] 84.38 54.43 N ResNet-18 arXiv, Apr 2021 Sehwag2021Proxy_R18
20 Pang et al. [93] 86.43 54.39 N WRN-34-20 ICLR 2021 N/A
21 Pang et al. [92] 85.14 53.74 N WRN-34-20 NeurIPS 2020 Pang2020Boosting
22 Cui et al. [28] 88.70 53.57 N WRN-34-20 arXiv, Nov 2020 Cui2020Learnable_34_20
23 Zhang et al. [153] 84.52 53.51 N WRN-34-10 ICML 2020 Zhang2020Attacks
24 Rice et al. [102] 85.34 53.42 N WRN-34-20 ICML 2020 Rice2020Overfitting
25 Huang et al. [58] 83.48 53.34 N WRN-34-10 NeurIPS 2020 Huang2020Self
26 Zhang et al. [152] 84.92 53.08 N WRN-34-10 ICML 2019 Zhang2019Theoretically
27 Cui et al. [28] 88.22 52.86 N WRN-34-10 arXiv, Nov 2020 Cui2020Learnable_34_10
28 Qin et al. [97] 86.28 52.84 N WRN-40-8 NeurIPS 2019 N/A
29 Chen et al. [21] 86.04 51.56 N ResNet-50 CVPR 2020 Chen2020Adversarial
30 Chen et al. [20] 85.32 51.12 N WRN-34-10 arXiv, Oct 2020 Chen2020Efficient
31 Sitawarin et al. [117] 86.84 50.72 N WRN-34-10 arXiv, Mar 2020 Sitawarin2020Improving
32 Engstrom et al. [35] 87.03 49.25 N ResNet-50 GitHub, Oct 2019 Engstrom2019Robustness
33 Singh et al. [116] 87.80 49.12 N WRN-34-10 IJCAI 2019 N/A
34 Mao et al. [82] 86.21 47.41 N WRN-34-10 NeurIPS 2019 N/A
35 Zhang et al. [149] 87.20 44.83 N WRN-34-10 NeurIPS 2019 Zhang2019You
36 Madry et al. [79] 87.14 44.04 N WRN-34-10 ICLR 2018 N/A
37 Andriushchenko et al. [3] 79.84 43.93 N ResNet-18 NeurIPS 2020 Andriushchenko2020Understanding
38 Pang et al. [90] 80.89 43.48 N ResNet-32 ICLR 2020 N/A
39 Wong et al. [138] 83.34 43.21 N ResNet-18 ICLR 2020 Wong2020Fast
40 Shafahi et al. [113] 86.11 41.47 N WRN-34-10 NeurIPS 2019 N/A
41 Ding et al. [32] 84.36 41.44 N WRN-28-4 ICLR 2020 Ding2020MMA
42 Kundu et al. [70] 87.32 40.41 N ResNet-18 ASP-DAC 2021 N/A
43 Atzmon et al. [6] 81.30 40.22 N ResNet-18 NeurIPS 2019 N/A
44 Moosavi-Dezfooli et al. [85] 83.11 38.50 N ResNet-18 CVPR 2019 N/A
45 Zhang and Wang [150] 89.98 36.64 N WRN-28-10 NeurIPS 2019 N/A
46 Zhang and Xu [151] 90.25 36.45 N WRN-28-10 OpenReview, Sep 2019 N/A
47 Jang et al. [59] 78.91 34.95 N ResNet-20 ICCV 2019 N/A
48 Kim and Wang [66] 91.51 34.22 N WRN-34-10 OpenReview, Sep 2019 N/A
49 Wang and Zhang [132] 92.80 29.35 N WRN-28-10 ICCV 2019 N/A
50 Xiao et al. [141] 79.28 18.50 N DenseNet-121 ICLR 2020 N/A
51 Jin and Rinard [60] 90.84 1.35 N ResNet-18 arXiv, Mar 2020 N/A
52 Mustafa et al. [87] 89.16 0.28 N ResNet-110 ICCV 2019 N/A
53 Chan et al. [19] 93.79 0.26 N WRN-34-10 ICLR 2020 N/A
54 Alfarra et al. [2] 91.03 0.00 N WRN-28-10 arXiv, Jun 2020 N/A
55 Standard 94.78 0.0 N WRN-28-10 N/A Standard
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Robust accuracy on transferred adversarial examples (CIFAR-10, Linf, pgd)
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Robust accuracy on transferred adversarial examples (CIFAR-10, Linf, fgsm)
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Figure 18: Measuring transferability of adversarial examples (`∞, ε = 8/255). We use a ten step
PGD attack in top figure and FGSM attack in bottom figure. Lower robust accuracy implies better
transferability. 24
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Robust accuracy on transferred adversarial examples (CIFAR-10, L2, pgd)
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Figure 19: Measuring transferability of adversarial examples (`2, ε = 0.5). We use a ten step
PGD attack in top figure and FGSM attack in bottom figure. Lower robust accuracy implies better
transferability.
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Table 4: Leaderboard for the `2-threat model, CIFAR-10.
Model Clean AA Extra data Architecture Venue Model Zoo ID

1 Rebuffi et al. [100] 95.74 82.32 Y WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_extra
2 Gowal et al. [46] 94.74 80.53 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra
3 Rebuffi et al. [100] 92.41 80.42 N WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_ddpm
4 Rebuffi et al. [100] 91.79 78.80 N WRN-28-10 arXiv, Mar 2021 Rebuffi2021Fixing_28_10_cutmix_ddpm
5 Sehwag et al. [112] 90.31 76.12 N WRN-34-10 arXiv, Apr 2021 Sehwag2021Proxy
6 Gowal et al. [46] 90.90 74.50 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering
7 Wu et al. [140] 88.51 73.66 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
8 Sehwag et al. [112] 89.52 73.39 N ResNet-18 arXiv, Apr 2021 Sehwag2021Proxy_R18
9 Augustin et al. [7] 91.08 72.91 Y ResNet-50 ECCV 2020 Augustin2020Adversarial
10 Engstrom et al. [35] 90.83 69.24 N ResNet-50 GitHub, Sep 2019 Engstrom2019Robustness
11 Rice et al. [102] 88.67 67.68 N ResNet-18 ICML 2020 Rice2020Overfitting
12 Rony et al. [103] 89.05 66.44 N WRN-28-10 CVPR 2019 Rony2019Decoupling
13 Ding et al. [32] 88.02 66.09 N WRN-28-4 ICLR 2020 Ding2020MMA
14 Standard 94.78 0.0 N WRN-28-10 N/A Standard

Table 5: Leaderboard for common corruptions, CIFAR-10.
Model Clean Corr. Extra data Architecture Venue Model Zoo ID

1 Calian et al. [14] 94.93 92.17 Y ResNet-50 arXiv, Apr 2021 N/A
2 Hendrycks et al. [56] 95.83 89.09 N ResNeXt29_32x4d ICLR 2020 Hendrycks2020AugMix_ResNeXt
3 Hendrycks et al. [56] 95.08 88.82 N WRN-40-2 ICLR 2020 Hendrycks2020AugMix_WRN
4 Kireev et al. [67] 94.77 88.53 N ResNet-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLATAugMixNoJSD
5 Gowal et al. [46] 94.74 87.68 Y WRN-70-16 arXiv, Oct 2020 N/A
6 Kireev et al. [67] 94.97 86.60 N ResNet-18 arXiv, Mar 2021 Kireev2021Effectiveness_AugMixNoJSD
7 Kireev et al. [67] 93.24 85.04 N ResNet-18 arXiv, Mar 2021 Kireev2021Effectiveness_Gauss50percent
8 Gowal et al. [46] 90.90 84.90 N WRN-70-16 arXiv, Oct 2020 N/A
9 Kireev et al. [67] 93.10 84.10 N ResNet-18 arXiv, Mar 2021 Kireev2021Effectiveness_RLAT
10 Gowal et al. [46] 91.10 81.84 Y WRN-70-16 arXiv, Oct 2020 N/A
11 Gowal et al. [46] 85.29 76.37 N WRN-70-16 arXiv, Oct 2020 N/A
12 Standard 94.78 73.46 N WRN-28-10 N/A Standard

Table 6: Leaderboard for the `∞-threat model, CIFAR-100.
Model Clean AA Extra data Architecture Venue Model Zoo ID

1 Gowal et al. [46] 69.15 36.88 Y WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering_extra
2 Rebuffi et al. [100] 63.56 34.64 N WRN-70-16 arXiv, Mar 2021 Rebuffi2021Fixing_70_16_cutmix_ddpm
3 Rebuffi et al. [100] 62.41 32.06 N WRN-28-10 arXiv, Mar 2021 Rebuffi2021Fixing_28_10_cutmix_ddpm
4 Cui et al. [28] 62.55 30.20 N WRN-34-20 arXiv, Nov 2020 Cui2020Learnable_34_20_LBGAT6
5 Gowal et al. [46] 60.86 30.03 N WRN-70-16 arXiv, Oct 2020 Gowal2020Uncovering
6 Cui et al. [28] 60.64 29.33 N WRN-34-10 arXiv, Nov 2020 Cui2020Learnable_34_10_LBGAT6
7 Wu et al. [140] 60.38 28.86 N WRN-34-10 NeurIPS 2020 Wu2020Adversarial
8 Hendrycks et al. [55] 59.23 28.42 Y WRN-28-10 ICML 2019 Hendrycks2019Using
9 Cui et al. [28] 70.25 27.16 N WRN-34-10 arXiv, Nov 2020 Cui2020Learnable_34_10_LBGAT0
10 Chen et al. [20] 62.15 26.94 N WRN-34-10 arXiv, Oct 2020 Chen2020Efficient
11 Sitawarin et al. [117] 62.82 24.57 N WRN-34-10 ICML 2020 Sitawarin2020Improving
12 Rice et al. [102] 53.83 18.95 N Pre-activation ResNet 18 ICML 2020 Rice2020Overfitting

Table 7: Leaderboard for common corruptions, CIFAR-100.
Model Clean Corr. Extra data Architecture Venue Model Zoo ID

1 Hendrycks et al. [56] 78.90 65.54 N ResNeXt29_32x4d ICLR 2020 Hendrycks2020AugMix_ResNeXt
2 Hendrycks et al. [56] 76.28 64.63 N WRN-40-2 ICLR 2020 Hendrycks2020AugMix_WRN
3 Gowal et al. [46] 69.15 56.72 Y WRN-70-16 arXiv, Oct 2020 N/A
4 Gowal et al. [46] 60.86 50.17 N WRN-70-16 arXiv, Oct 2020 N/A
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