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Supplementary Figures

Figure S1: Linear regression model. The number of updates required for reducing the error to
1/10000 of the initial error in linear regression setting. Dotted horizontal lines are Eq. 9.

Figure S2: Scalability of NP in deep linear networks. A) Same as Fig. 2A, but plotted in a wider
parameter range. Solid lines are the closed form solutions (Eq. 13), while the orange dotted line was
obtained by numerically solving the mean-field dynamics (Eq. 68). Points are empirical estimations.
Simulations results were (obtained only for small Lh, due to high computational cost for large hidden
layer size). B) The optimal learning rates – the rates that achieve the minimum training time depicted
in Fig. S2A and Fig. 2A. As in panel A, solid lines are closed-form solutions, and the orange dotted
line is obtained by numerically solving the mean-field dynamics.
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Figure S3: Nonlinear networks solving SARCOS. A) The number of epochs under SGD, until
either the error reaches the minimum or 104 epochs is exceeded (horizontal dashed line). This plot
show that under SGD, the error either starts to increases from the first epoch (filled squares) or keeps
decreasing on average for at least 104 epochs (unfilled squares). B) The number of epochs, under NP,
required to reach the target test error (✏ = 5.0) under various learning rates and hidden layer widths.
C) Learning curves of NP and SGD under a small learning rate (⌘ = 10�6). D) Linear dimensionality
of the hidden layer activity under NP (orange) and SGD (blue), on the learning trajectories depicted
in panel C (see Appendix C.1 for details).
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Figure S4: Nonlinear networks solving MNIST. A) Cosine similarity between NP and SGD
under various hidden layer widths. Solid and dashed lines represent the similarity at two different
performance levels (solid: 97.5%, dashed: 90.0%). B) Learning dynamics of NP: mean-squared
test error versus the input weight norm kW1k

2
F . The purple line ends at 104 epochs; the other lines

end when the error exceeded 0.018. C) The number of epochs, under NP, until the error starts to
increase (black points), and returns to the initial error level (gray points). D) The number of epochs,
under SGD, until either the error returns to chance level or 104 epochs is exceeded (horizontal dashed
line). This plot indicates that under SGD, the error either remains at chance level (filled circles), or
stays above it for at least 104 epochs (unfilled circles). E) Linear dimensionality of hidden layer
activity under NP and SGD at a low learning rate, ⌘ = 10�5. The inset shows the learning trajectories
in the same simulations (the orange line is hidden under the blue line). F) Comparison of weight
normalization (black line; Eq. 108) and weight decay (colored lines) in a network with three hidden
layers. Weight decay was implemented by W  (1� ⌘d)W at each update, and the learning rate
was fixed at ⌘ = 3.2⇥ 10�5. G) The same as Fig. 5A, but here we plotted the mean-squared error in
a log-log scale.
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Figure S5: Convolutional networks solving CIFAR-10. A) NP learning curves under various
learning rates. B) Effect of weight decay. Here we fixed the learning rate to ⌘ = 2 ⇥ 10�3. The
black line corresponds to the green line in panel A. In both panels, shadows represent the standard
deviation over 5 random seeds. We used a three layer convolutional neural network each having 32
channels of 3x3 convolution. The output of the last convolutional is projected to fully connected
layer with 8192 neurons, then to the output layer. Convolutional network implementation of NP was
adopted from https://anonymous.4open.science/r/nodepert-82E3.
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Appendix

A Analysis of nonlinear feedforward neural networks in arbitrary tasks

A.1 NP is unbiased

As described in the main text, we consider a vanilla deep feedforward network

xk = fk(Wkxk�1), k = 1, 2, ...,K (16)

where x0 and xK are the input and the output respectively, and fk(·) is an element-wise activation
function. Here, the k-th layer activity xk and pre-synaptic weight Wk satisfy xk 2 RLk and
Wk 2 RLk⇥Lk�1 , where Lk is the size of the k-th layer. Throughout the paper, we used bold italic
lower case letters to denote column vectors and bold italic upper case letters to denote matrices.
Adding a small Gaussian perturbation �⇠k to each layer except the input layer, gives us the perturbed
activity

exk = fk(Wkexk�1 + �⇠k), k = 1, 2, ...,K. (17)

Under a loss function `(xK ,x0), the node perturbation update is defined as

�W np
k = �

⌘

�
(`(exK ,x0)� `(xK ,x0)) ⇠kx

T
k�1. (18)

In the limit � ! 0,

x̃K = xK + �
KX

k=1

@xK

@hk
⇠k, (19)

where

hk ⌘Wkxk�1. (20)

Thus, denoting

gk ⌘
@`

@xK

@xK

@hk
, (21)

where gk 2 RLk , in the small � limit the NP update becomes

�W np
k = �⌘

KX

l=1

⇠k⇠
T
l glx

T
k�1. (22)

As in the main text, taking expectation over ⇠ gives us

h�W np
k i⇠ = �⌘gkx

T
k�1. (23)

On the other hand, the SGD update is given by

�W sgd
k = �⌘

@`(xK ,xo)

@Wk
= �⌘

@`(xK ,xo)

@hk
xT
k�1 = �⌘gkx

T
k�1. (24)

Therefore, NP is unbiased against SGD. Moreover, because SGD with i.i.d. samples is unbiased
against the true gradient, NP is also unbiased against it.
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A.2 Cosine angle between SGD and NP updates

By definition,
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In the second equation, we used
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where Ik is the size Lk identity matrix. Note that, the (µ, ⌫)-th element of matrix h⇠k⇠Tk ⇠k⇠
T
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The cosine of the angle between SGD and NP update is thus estimated as
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This is a good approximation if the higher-order terms stem from the coupling between the numerator
and the denominator are negligible.

A.3 Covariance of SGD and NP updates

Another way to characterize noise in SGD and NP updates is to calculate the covariance of the weight
change under each update rule. The true gradient is written as

�W gd
k = �⌘

⌦
gkx

T
k�1

↵
x
. (29)

Therefore, the noise covariance of SGD updates between the k-th and l-th layers is given by

Csgd
kl =

⌦�
gkx

T
k�1 �

⌦
gkx

T
k�1

↵
x

�
⌦
�
glx
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⌦
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↵
x
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x
. (30)

where, as in the main text, ⌦ represents a tensor product (see comments following Eq. 7). Here, we
write the covariance matrix as a fourth-order tensor for clarity. If the true gradient is smaller than
SGD variance [43], this simplifies to

Csgd
kl ⇡

⌦
gkx

T
k�1 ⌦ glx

T
l�1

↵
x
. (31)
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Similarly, noticing that
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the covariance of NP update is derived as
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Focusing on the ⇠ dependent term, we have
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In the last line, we used
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Thus, taking a transpose between the second and the third dimension, the covariance tensor is written
as
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where [·]2$3 in the second line denotes a transpose between the second and the third dimension. In
the last line, we assumed that

⌦
gkxT

k�1

↵
⇡ 0, as in Eq. 31. Notably, if the activity at each layer

is whitened as xk�1xT
k�1 ⇡ Ik�1, the second term in the last line is diagonal, meaning that NP

predominantly increases auto-covariance of the update at each synapse compared to SGD while
keeping the noise correlation between the updates at different synapses comparable to SGD.

A.4 Noise in over-parameterized networks

In convex optimization, noise in the gradients becomes more harmful as the dimensionality of the
system goes up [33, 29]. However, in an over-parameterized neural network, most directions in
parameter space are irrelevant to learning [44, 45], so noise might not be all that harmful after all. To
further study how noise affects the change in loss function, note that both SGD and NP are written as

�w = �⌘(rL+ z), (37)

where the noise term is approximately Gaussian (z ⇠ N(0,C)). Under the second order approxima-
tion, the change in the loss function is given as

�L ⌘ [w + �w]� L[w] ⇡ rL[w] · �w +
1

2
�wT
r

2L[w]�w. (38)
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Taking an expectation over the noise,

h�Liz ⇡ �⌘ krL[w]k2 +
⌘2

2
(rL[w])Tr2L[w]rL[w] +

⌘2

2
tr
⇥
r

2L ·C
⇤
. (39)

Thus, the noise affects the update only through the inner product with the Hessian r2L. This means
that if the noise is in the direction of a major positive eigenvector of the Hessian, the noise is harmful,
but otherwise, noise is likely to be benign.

B Analysis of one hidden layered linear networks in the student teacher
setting

B.1 Problem setting

Here we consider a student-teacher setting. The student network is given by

y = W2W1x, (40)

where W2 and W1 are matrices of size Ly ⇥Lh and Lh ⇥Lx, respectively. For the teacher network,
we add up noise as,

y⇤ = Ax+ �tz, (41)

where z is a zero mean independent Gaussian random variable (z ⇠ N(0, I)) and �t is the noise
amplitude. The teacher noise is introduced to replicate the mismatch between the student and the
teacher models that typically exists in a general setting. For analytical tractability, we sampled the
input, x, from an independent Gaussian distribution (x ⇠ N(0, I)).

We use the MSE error as the loss function,

`(x;W ) =
1

2
ky � y⇤

k
2 , (42)

and denote the signed weight error as

E ⌘W2W1 �A . (43)

To track the learning dynamics, we introduce the following order-parameters,

✏ ⌘
1

LxLy
tr[ETE], � ⌘

�1

LxLy
tr[(W2W1)

TE], (44a)

↵ ⌘
1

Lx
tr[W T

1 W1], � ⌘
1

Ly
tr[W2W

T
2 ]. (44b)

Here ✏ is the error, � is the projection of the student model in the direction of the error, and ↵ and
� represent the weight norm of the input weight and the output weight, respectively. Below, we
study how these four order parameters evolve under NP and SGD in the limit where both the input
and output dimensions are large, Lx � 1 and Ly � 1, and the hidden layer dimension is large
compared to both of them, Lh � Lx and Lh � Ly. In the simulations, we generated A randomly
with Aij ⇠ N(0, 2/(Lx+Ly)), and we used this condition in Appendix B.3. However, the analytical
results depicted in Appendices B.2 and B.4 don’t rely on the random teacher assumption.

B.2 Mean-field dynamics under NP

When we add small perturbations to the both intermediate and the output layers, the perturbed output
becomes

ỹ = W2 (W1x+ �⇠1) + �⇠2. (45)

At the small perturbation limit (� ! 0), the difference between the perturbed and the original loss is

`(ỹ,x)� `(y,x) ⇡ �
�
⇠T2 + ⇠T1 W

T
2

�
(Ex+ �tz). (46)
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Note that here we flipped the sign of z, because z is a zero-mean random Gaussian variable. Thus,
NP learning rule is given by

�W1 = �⌘
�
⇠1⇠

T
1 W

T
2 + ⇠1⇠

T
2

� �
ExxT + �tzx
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�
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�
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T
2 + ⇠2⇠

T
1 W

T
2

� �
ExxT + �tzx

T
�
W T

1 . (48)

Below, we investigate how the order parameters defined in Eq. 44 change during learning. We work
to second order in the learning rate, ⌘, which corresponds to second order in �W1 and �W2. First,
the change in the input weight norm is estimated as
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The first term simplifies to
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The second equality follows from the definition of � (Eq. 44). The noise term, on the other hand, is
somewhat more complicated,
1

Lx

⌦
tr[�W T

1 �W1]
↵
=
⌘2

Lx

⌦
tr[(xxTET + �txz

T )(W2⇠1⇠
T
1 + ⇠2⇠

T
1 )(⇠1⇠

T
1 W

T
2 + ⇠1⇠

T
2 )(ExxT + �tzx

T )]
↵

=
⌘2

Lx

⌦
tr[(W2⇠1⇠

T
1 ⇠1⇠

T
1 W

T
2 + ⇠2⇠

T
1 ⇠1⇠

T
2 )(ExxTxxTET + �2

t zx
TxzT )]

↵

⇡
⌘2

Lx
tr[Lh(W2W

T
2 + Iy)Lx(EET + �2

t Iy)].

= ⌘2Lh

�
Ly[1 + �]�2

t + LxLy✏+ tr[W2W
T
2 EET ]

�
. (51)

Note that, by taking the expectation over ⇠, z, and x, the second line of the equation above is rewritten
as tr

⇥�
[Lh + 2]W2W T

2 + LhIy
� �

[Lx + 2]EET + �2
tLxIy

�⇤
. Approximating Lh+2 with Lh and

Lx + 2 with Lx using the assumption Lx, Lh � 1, we get the third line of the equation. Because
"+2" terms dropped in the approximation come from higher-order moments of Gaussian random
variables, we call this approximation dropping the higher-order terms.

To express the average change in ↵ in terms of �, ✏, and �, we need to express tr[W2W T
2 EET ] in

terms of the order parameters. To do that, we introduce the following, rather severe, approximation
(see Appendix B.5 for the details),

tr[W2W
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2 EET ] ⇡
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Ly
tr[W2W

T
2 ]tr[EET ] = LxLy�✏ (52)

In the large Lh limit, this approximation holds early in learning if W1 and W2 are initialized as
zero-mean random Gaussian matrices. Moreover, if the elements of the weight updates �W1 and
�W2 are zero-mean Gaussian random variables, the approximation is still valid (Appendix B.5).
Because the weight update under NP is dominated by noise (Appendix A.2), and the noise covariance
matrix is nearly diagonal (Eq. 36a), this assumption approximately holds under NP. By contrast, its
applicability to SGD is limited, especially under a mini-batch formulation. Even under NP, after
many weight updates, the approximation ceases to hold.

Using Eq. 52, the average change in the input weight norm is estimated as
h�↵i ⇡ 2⌘Ly�+ ⌘2LhLy(1 + �)(Lx✏+ �2

t ). (53)
This result suggests that the input weight norm expands rapidly when the hidden layer size Lh is
large. Notably, this Lh dependence is absent under SGD (see Eq. 88).

Similarly, the average change in � after one update is written as,
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As is straightforward to show, the signal term given by (2/Ly)
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In the last line, we again used Eq. 52. Thus, the average change in � is
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The dynamics of the error ✏ is, up to the second order term with respect to ⌘, given by

h�✏i =
2

LxLy

⌦
tr[ET (W2�W1 + �W2W1)]

↵
+

2

LxLy

⌦
tr[ET �W2�W1]

↵

+
1

LxLy

⌦
tr[(W2�W1 + �W2W1)

T (W2�W1 + �W2W1)]
↵
. (56)

Using an approximation parallel to Eq. 52,
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By dropping higher-order terms using Lh, Lx, Ly � 1, and then applying the approximations Eqs.
52 and 57, the rest of noise terms are calculated as

1

LxLy

⌦
tr[W T

1 �W
T
2 �W2W1]

↵
⇡

⌘2

LxLy
tr[Ly(Iy +W2W

T
2 )(EET + �2

t Iy)]tr[W
T
1 W1W

T
1 W1]

⇡ ⌘2Ly↵2(1 + �)(Lx✏+ �2
t ), (60a)

1

LxLy

⌦
tr[�W T

1 W T
2 W2�W1]

↵
⇡

⌘2

LxLy
tr[W T

2 W2]tr[(W2W
T
2 + Iy)Lx(EET + �2

t Iy)]

⇡ ⌘2Ly�(1 + �)(Lx✏+ �2
t ), (60b)

1

LxLy

⌦
tr[�W T

1 W T
2 �W2W1]

↵
⇡

⌘2

LxLy
tr[W T

1 W1]tr[2W2W
T
2 (EET + �2

t Iy)]

⇡ 2⌘2↵�(Lx✏+ �2
t ). (60c)
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At the top equation, we defined ↵2 by

↵2 ⌘
1

Lx
tr[W1W

T
1 W1W

T
1 ]. (61)

The dynamics of ↵2 is written down as

h�↵2i ⇡ 4⌘Ly↵�+ 2⌘2(Lh + Lx)Ly(Lx✏+ �2
t )↵(1 + �) + 2⌘2Ly(Lx[Ly�

2 + ↵✏] + �2
t [↵+  ]).

(62)

However, we approximate ↵2 by ↵2 ⇡ ↵2 below for simplicity. Summing up the noise terms
calculated above, the average change in the error follows

h�✏i = �2⌘(↵+ �)✏� 4⌘2�(LxLy✏+ �2
t ) + ⌘2

�
Ly[1 + �][↵2 + �] + 4↵�

�
(Lx✏+ �2

t ). (63)

Thus, the error dynamics doesn’t directly depend on the hidden layer size Lh. However, the noise
term scales with the weight norms ↵, which increases rapidly with time under a large Lh (see Eq. 53).

Similarly, the mean dynamics of � follows

h��ix,⇠,z =
�1

LxLy

⌦
tr
⇥�
ET +W T

1 W T
2

�
(�W2W1 +W2�W1)

⇤↵

�
1

LxLy

⌦
tr
⇥�
ET +W T

1 W T
2

�
�W2�W1

⇤↵
(64)

�
1

LxLy

D
tr
h
(�W2W1 +W2�W1)

T (�W2W1 +W2�W1)
iE

.

The first noise term of the projection, �, is
�1

LxLy

⌦
tr[(ET +W T

1 W T
2 )�W2�W1]

↵

⇡
�2⌘2

LxLy

�
tr[W T

1 W T
2 E]tr[(ET +W T

1 W T
2 )E] + �2

t tr[(ET +W T
1 W T

2 )W2W1]
�

⇡ 2⌘2
�
LxLy�[✏� �] + �2

t [��  ]
�
, (65)

where

 ⌘
1

LxLy
tr[W T

1 W T
2 W2W1] =

1

LxLy
kAk2F � (✏+ 2�), (66)

and the rest of the noise terms are the same as those for h�✏i. Thus,

h��i ⇡ ⌘(↵+ �)(✏� �) + 2⌘2
�
LxLy�[✏� �]� �

2
t [ � �]

�
(67)

� ⌘2 (Ly[1 + �][↵2 + �] + 4↵�) (Lx✏+ �2
t ).

In summary, the learning dynamics of NP is described by following order parameter dynamics:

h�↵i ⇡ 2⌘Ly�+ ⌘2LhLy(1 + �)(Lx✏+ �2
t ) , (68a)

h��i ⇡ 2⌘Lx�+ ⌘2LxLy↵(1 + �)(Lx✏+ �2
t ) , (68b)

h�✏i ⇡ �2⌘(↵+ �)✏� 4⌘2�(LxLy✏+ �2
t ) + ⌘2

�
Ly[1 + �][↵2 + �] + 4↵�

�
(Lx✏+ �2

t ) ,
(68c)

h��i ⇡ ⌘(↵+ �)(✏� �) + 2⌘2
�
LxLy�[✏� �]� �

2
t [ � �]

�
(68d)

� ⌘2
�
Ly[1 + �][↵2 + �] + 4↵�

�
(Lx✏+ �2

t ) .

By tracking the dynamics of the order parameters, we can accurately predict the minimum training
time required for reaching a target performance (dotted lines in Figs. S2A and S2B).

B.3 Learning dynamics under Xavier-Glorot initialization

Under the Xavier-Glorot initialization [37], the initial weights are given by

W (1)
ij ⇠ N

✓
0,

2

Lx + Lh

◆
, W (2)

ij ⇠ N

✓
0,

2

Lh + Ly

◆
. (69)
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We also assume that the teacher weights follow the same random initialization:

Aij ⇠ N

✓
0,

2

Lx + Ly

◆
. (70)

Then, at the initial state, ↵, �, and ✏ are O(1) with respect to Lh, while � is O(L�1
h ):

↵init ⇡
2Lh

Lx + Lh
, �init ⇡

2Lh

Lh + Ly
,

✏init ⇡
4Lh

(Lx + Lh)(Lh + Ly)
+

2

Lx + Ly
, �init ⇡

�4Lh

(Lx + Lh)(Lh + Ly)
. (71)

Equations above follow from Eq. 44, by approximating the summation over weights with the
expectation over Gaussian random variables. Notably, the initial output of the student model scales
with O

⇣
L�1/2
h

⌘
, which is significantly smaller than the target output (unless Ly � Lx).

Let us reparameterize ⌘ and ↵ as

⌘ = ⌘oL
�⇢
h , ↵ = aL

h, (72)

with ⇢ > 0 and  > 0, to separate out the Lh dependence of both variables. By substituting ⌘ and ↵
with the equations above, and ignoring terms that disappear at the large Lh limit, we arrive at

�a ⇡ 2⌘oL
�(⇢+)
h Ly�+ ⌘2oL

1�(2⇢+)
h Ly(1 + �)(Lx✏+ �2

t ), (73a)

�� ⇡ ⌘oL
�⇢
h Lx�+ ⌘2oL

�(2⇢�)
h LxLya(1 + �)(Lx✏+ �2

t ), (73b)

�✏ ⇡ �2⌘oL
�(⇢�)
h a✏+ ⌘2oL

�2(⇢�)
h Lya

2(1 + �)(Lx✏+ �2
t ), (73c)

�� ⇡ ⌘oL
�(⇢�)
h a(✏� �)� ⌘2oL

�2(⇢�)
h Lya

2(1 + �)(Lx✏+ �2
t ). (73d)

Importantly, the first equation indicates that 1 � (2⇢ + )  0 is necessary for preventing a from
exploding, while from the third equation, �✏ < 0 requires ⇢ � . To achieve the fastest convergence,
we should use the largest learning rate. Hence, we should choose the smallest stable ⇢. The smallest
⇢ that satisfies the two conditions above is ⇢ = 1

3 , at which  = 1
3 . Then, assuming � ⇠ O(1), we

get �� ⇠ O(L�1/3
h ). Thus, unless the number of weight updates satisfies nth > O(L1/3

h ), � can be
regarded as a constant. We can also ignore �, because it doesn’t influence the dynamics of other
variables in this limit. Therefore, the dynamics of the error is captured by the following two equations.

an+1 = an + ⌘2oLy(1 + �o)(Lx✏n + �2
t ), (74a)

✏n+1 = ✏n � 2⌘oan✏n + ⌘2oLy(1 + �o)a
2
n(Lx✏n + �2

t ). (74b)

Notably, the Lh dependence disappears in the above equations, which indicates that the minimum
learning time is independent of Lh.

In the limit of ⌘o ! 0, the update rules derived above can be written down as a set of differential
equations. Moreover, as we show below, when �2

t = 0, we can obtain an analytical expression of the
minimum learning time because there is a conserved quantity in the differential equations. Hence,
below we first consider ⌘o ! 0 and �2

t = 0 limit, then study the effect of non-zero noise later. In this
limit, the update rules become,

ȧ = ⌘oLxLy(1 + �o)✏, (75a)

✏̇ = �(2a� ⌘oLxLya
2[1 + �o])✏. (75b)

Denoting

co ⌘ ⌘oLxLy(1 + �o), (76)

these equations become

ȧ = co✏, (77a)
✏̇ = �(2� coa)a✏. (77b)
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This dynamical system has the following conserved quantity:

d

dt

✓
✏+

1

co
a2 �

1

3
a3
◆

= 0. (78)

This means that a follows

ȧ = co

✓
✏tot �

1

co
a2 +

1

3
a3
◆
, (79)

where ✏tot is a constant that only depends on the initial values of ✏ and a. Therefore, the minimum
learning time Tnp, required for reaching target error ✏tg from initial error ✏init, is given as

Tnp =
1

⌘o

Z atg

ainit

da

co✏tot + (co/3)a3 � a2
, (80)

where ainit and atg are the normalized input weight norm at ✏ = ✏init and ✏ = ✏tg , respectively:

✏tot = ✏init �
(ainit)3

3
+

(ainit)2

co
= ✏tg �

(atg)3

3
+

(atg)2

co
. (81)

In Eq. 13 in the main text, we used 1
⌘o

= LxLy
1+�o

co
, which follows from Eq. 76. Moreover,

for achieving a convergence without a resurgence of the error, the weight norm a has to satisfy
atg < 2/co at ✏ = ✏tg . This means that the coefficient co should satisfy

✏tot = ✏init +
a2init
co
�

a3init
3

< ✏tg +
1

co

✓
2

co

◆2

�
1

3

✓
2

co

◆3

= ✏tg +
4

3c3o
,

,

✓
[✏init � ✏tg]�

a3init
3

◆
c3o + a2initc

2
o �

4

3
< 0. (82)

Denoting the positive root of this equation as c⇤o, the critical learning rate ⌘⇤ is given as

⌘⇤ =
c⇤oL

�1/3
h

LxLy(1 + �o)
. (83)

Numerically estimated optimal learning rates match well with this prediction (Fig. S2B). Note that
the optimal learning rate ⌘̂ that minimizes the training time becomes roughly the same as the critical
learning rate ⌘⇤ in this setting because the norm a expands rapidly during learning.

In the presence of noise (ie �2
t > 0), on the contrary, the learning dynamics approximately follows

ȧ = co(✏+ �2
t /Lx), (84a)

✏̇ = �2a✏+ coa
2(✏+ �2

t /Lx). (84b)

Thus, the nullcline of the error ✏ is given as

✏ =
coa�2

t

Lx(2� coa)
. (85)

B.4 Mean-field dynamics under SGD

Under SGD, the weight dynamics follows

�W1 = �⌘W T
2

�
ExxT + �tzx

T
�
, (86)

�W2 = �⌘
�
ExxT + �tzx

T
�
W T

1 . (87)

Hence, using the approximation introduced in Eqs. 52 and 57, we get the mean-field description as
below. First, taking the expectation over x and z, the dynamics of ↵ is given as

h�↵i =
�2⌘

Lx
tr[W T

1 W T
2 E] +

⌘2

Lx

⌦
tr[x(xTET + �tz

T )W2W
T
2 (Ex+ �tz)x

T ]
↵

=
�2⌘

Lx
tr[W T

1 W T
2 E] + ⌘2tr[W2W

T
2 (EET + �2

t I)]

⇡ 2⌘Ly�+ ⌘2Ly�(Lx✏+ �2
t ). (88)
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Similarly, the dynamics of � follows

h��i =
�2⌘

Ly
tr[W T

2 EW T
1 ] +

⌘2

Ly

⌦
tr[W1x(x

TET + �tz
T )(Ex+ �tz)x

TW T
1 ]
↵

⇡ 2⌘Lx�+ ⌘2Lx↵(Lx✏+ �2
t ). (89)

As before, up to the second-order term, the error variable ✏ follows

�✏ =
2

LxLy
tr[ET (�W2W1 +W2�W1)] +

2

LxLy
tr[ET �W2�W1]

+
1

LxLy
tr[(�W2W1 +W2�W1)

T (�W2W1 +W2�W1)], (90)

where each term is estimated as

2

LxLy

⌦
tr[ET (�W2W1 +W2�W1)]

↵
⇡ �2⌘(↵+ �)✏, (91a)

2

LxLy

⌦
tr[ET �W2�W1]

↵
=

2⌘2

LxLy

⌦
tr[ET (Ex+ �tz)x

TW T
1 W T

2 (Ex+ �tz)x
T ]
↵

⇡ �2⌘2(LxLy✏+ �2
t )�, (91b)

1

LxLy

⌦
tr[W T

1 �W
T
2 �W2W1]

↵
=

⌘2

LxLy

⌦
tr[W T

1 W1x(x
TETEx+ �2

t z
Tz)xTW T

1 W1]
↵

⇡ ⌘2(Lx✏+ �2
t )↵2, (91c)

1

LxLy

⌦
tr[�W T

1 W T
2 W2�W1]

↵
=

⌘2

LxLy

⌦
tr[W T

2 W2W
T
2 (ExxTxxTE + �2

t zx
TxzT )W2]

↵

⇡ ⌘2(Lx✏+ �2
t )�2, (91d)

2

LxLy

⌦
tr[�W T

1 W T
2 �W2W1]

↵
=

2

LxLy

⌦
tr[xT (xTET + �tz

T )W2W
T
2 (Ex+ �tz)x

TW T
1 W1]

↵

⇡ 2⌘2↵�(Lx✏+ �2
t ). (91e)

Here, we defined �2 by �2 ⌘ 1
Ly

tr[W2W T
2 W2W T

2 ]. As in the case of ↵2, we approximate �2 with
�2 below (see Eq. 94). Summing up,

h�✏i ⇡ �2⌘(↵+ �)✏� 2⌘2(LxLy✏+ �2
t )�+ ⌘2(Lx✏+ �2

t )(↵2 + 2↵� + �2). (92)

Similarly, taking the expectation over x and z, the dynamics of � follows

h��i ⇡ ⌘(↵+ �)(✏� �) + ⌘2(LxLy�[✏� �]� �
2
t [ � �])� ⌘

2(Lx✏+ �2
t )(↵2 + 2↵� + �2),

(93)

where  is defined in Eq. 66. Noticing that, so far ↵2 and �2 only appeared on the noise term of h�✏i
and h��i as ↵2 + 2↵� + �2, by introducing an additional approximation:

↵2 + 2↵� + �2 ⇡ (↵+ �)2, (94)

we get a closed-form dynamics of ↵,�, ✏, and �, from Eqs. 88, 89, 92, 93, and 66.

Because h�↵i doesn’t depend on Lh (Eq. 88), we regard ↵ as a constant, ↵ ⇡ ↵init, in addition to
� ⇡ �init. Moreover, because �init ⇠ O(1/Lh), the second term of Eq. 92 is negligible. Therefore,
in the �2

t = 0 limit, the error dynamics follows

h�✏i ⇡ �2⌘(↵init + �init)✏+ ⌘2(↵init + �init)
2Lx✏. (95)

Thus, the optimal learning rate and the minimum training time are given as

⌘̂ =
1

Lx(↵init + �init)
, Tsgd[✏o ! ✏tg] = Lx log(✏o/✏tg). (96)
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B.5 Random update approximation

Let us initialize W1 and W2 as random matrices, where the elements of W1 and W2 are sampled
independently from zero-mean Gaussian distribution with the variance �2

(1) and �2
(2), respectively.

Then, the error on the approximation Eq. 52 is estimated as
*✓

tr[W2W
T
2 EET ]�

1

Ly
tr[W2W

T
2 ]tr[EET ]

◆2
+

W1,W2

 2

*✓
tr[W2W

T
2 AAT ]�

1
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tr[W2W

T
2 ]tr[AAT ]

◆2
+

+ 2

*✓
tr[W2W

T
2 W2W1W

T
1 W T

2 ]�
1

Ly
tr[W2W

T
2 ]tr[W2W1W

T
1 W T

2 ]

◆2
+

+ 4

*✓
tr[W2W

T
2 W2W1A

T ]�
1

Ly
tr[W2W

T
2 ]tr[W2W1A

T ]

◆2
+
. (97)

The first term of the equation above is further decomposed into
*✓

tr[W2W
T
2 AAT ]�

1

Ly
tr[W2W

T
2 ]tr[AAT ]

◆2
+

 2

*0
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LyX

i
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T
2 ]ii[AAT ]ii

1

A
2+

+ 2

*0

@
LyX

i

[W2W
T
2 ]ii[AAT ]ii �

1

Ly
tr[W2W

T
2 ]tr[AAT ]

1

A
2+

, (98)

and the two terms are evaluated as

*0
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LyX
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[W2W
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2 ]ii[AAT ]ii

1
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=
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A
2+

= O

⇣
Lh�

4
(2)

⌘
,
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i
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1
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tr[W2W

T
2 ]tr[AAT ]

1

A
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=
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@
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i

LhX
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⇣
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⌘✓
[AAT ]ii �

1
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◆1

A
2+

= O

⇣
Lh�

4
(2)

⌘
.

Applying the same decomposition, the second term of Eq. 97 satisfies
*✓
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2 W2W1W

T
1 W T
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.
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Finally, the cross-term of Eq. 97 follows
*✓

tr[W2W
T
2 W2W1A

T ]�
1

Ly
tr[W2W

T
2 ]tr[W2W1A

T ]

◆2
+

 2
D�
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T
2 W2W1A

T ]
�2E

+
2

L2
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D�
tr[W2W

T
2 ]tr[W2W1A
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�2E
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= O

⇣
L3
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2
(1)�

6
(2)

⌘

Therefore, we have

tr[W2W
T
2 EET ] =

1

Ly
tr[W2W

T
2 ]tr[EET ] +O

⇣
max

n
L1/2
h �2

(2), L
3/2
h �(1)�

3
(2)

o⌘
. (99)

Applying the same calculation for Eq. 57, we get

tr[W T
1 W1E

TE] =
1

Lx
tr[W T

1 W1]tr[ETE] +O

⇣
max

n
L1/2
h �2

(1), L
3/2
h �3

(1)�(2)
o⌘

. (100)

Therefore, under the Xavier-glorot initialization, where �2
(1) = O

�
L�1
h

�
and �2

(1) = O
�
L�1
h

�
, these

two approximations hold. More precisely, if �2
(2) = O

�
L�1
h

�
, then �2

(1) = o
⇣
L�2/3
h

⌘
is sufficient

for the approximation.

Suppose we add up random matrices �W1 and �W2 onto W1 and W2, where the elements of �W1

and �W2 are sampled from a zero-mean Gaussian distribution. Then, as long as the variances of W1

and W2 satisfy the conditions above, these approximations is still valid. Although the weight updates
�W1 and �W2 in NP are dominated by Gaussian noise from the perturbations, they are not random.
Thus, these approximations cease to hold eventually.

B.6 NP and SGD in linear regression

Here, we briefly sketch the analysis of SGD and NP in linear regression setting, studied in [12].
Let us consider a linear regression problem where the teacher network is given as y⇤ = Ax, while
the student network is y = Wx, and input x is sampled independently from Gaussian distribution
xi ⇠ N(0, 1). Given L-2 loss ✏ = 1

2

D
ky � y⇤

k
2
E
= 1

2 kW �Ak2F , SGD and NP updates are given
by

�W sgd = �⌘(W �A)xxT , (101a)

�Wnp = �⌘⇠⇠T (W �A)xxT . (101b)

Let us assume that the size of input and output layers, Lx and Ly , satisfy Lx, Ly � 1. Then, after t
steps of training, the loss ✏sgd and ✏np follow (see [12] for the details)

✏sgdt = (1� 2⌘ + Lx⌘
2)t✏sgdo , (102a)

✏npt = (1� 2⌘ + LxLy⌘
2)t✏npo . (102b)

Therefore, the training time from the initial error ✏o to a target error ✏tg is given as

Tsgd [✏o ! ✏tg] =
log (✏tg/✏o)

log (1� 2⌘ + Lx⌘2)
, Tnp [✏o ! ✏tg] =

log (✏tg/✏o)

log (1� 2⌘ + LxLy⌘2)
. (103)

At the optimal learning rates that minimize the training time, ⌘̂sgd = 1
Lx

and ⌘̂np = 1
LxLy

, the
training times follow:

Tsgd [✏o ! ✏tg] = Lx log (✏o/✏tg) , Tnp [✏o ! ✏tg] = LxLy log (✏tg/✏o) . (104)

Please note that, the critical learning rates, the largest stable rates, are twice larger than the optimal
rates in linear regression: ⌘⇤sgd = 2

Lx
and ⌘⇤np = 2

LxLy
.
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C Model setting details

C.1 Model implementation

Implementation of NP

We implemented the node perturbation algorithm using Eq. 3. In nonlinear networks, we also trained
bias parameters by

�bnpk = �
⌘

�
(`(exK ,x0)� `(xK ,x0)) ⇠k, (105)

where bk represent the bias of the k-th layer. In both regression and classification tasks, we defined
the loss by the squared error: `(xK ,x⇤

K) = 1
2 kxK � x⇤

Kk
2, where x⇤

K is the supervised output. We
set the perturbation amplitude � to � = 10�6 in deep linear models, and � = 10�4 in deep nonlinear
models.

Student-teacher model

In the simulations, we generated the teacher network randomly with

Aij ⇠ N

✓
0,

2

Lx + Ly

◆
. (106)

We initialized the weights W1, W2 of the student network with the Xavier-Glorot initialization [37]:

W (1)
ij ⇠ N

✓
0,

2

Lx + Lh

◆
, W (2)

ij ⇠ N

✓
0,

2

Ly + Lh

◆
. (107)

Weight normalization

In both linear and nonlinear networks, we implemented weight normalization by

wk
i !

��wk
i

��
��wk

i + �wk
i

�� (w
k
i + �wk

i ), (108)

where wk
i is the input weight vector of i-th node in the k-th layer, and �wk

i is the weight update
calculated by either NP or SGD. Note that, this normalization biases the update from the original
update �wk

i . In deep nonlinear networks, we applied the normalization only to the weight parameters,
not to the bias parameters.

It should be also noted that the neuron-wise weight normalization is rewritten as

wk
i ! wk

i �

✓
1�

kwk
i k

kwk
i + �wk

i k

◆
wk

i +
kwk

i k

kwk
i + �wk

i k
�wk

i . (109)

Therefore, the weight normalization we employed can be considered as adaptive weight decay, which
is largely consistent with experimentally-observed synaptic scaling mechanisms [46].

Linear dimensionality

We calculated the linear dimensionality by the participation ratio: tr[⌃h]2/tr[⌃2
h], where ⌃h is the

covariance of the hidden layer activity over the training dataset. Analyzing the eigenspectrum of
the covariance matrix, we found that the contribution of the principal eigenvalue is larger under
NP than SGD. This is consistent with excessive weight expansion under NP, because the principal
eigen-component of ReLU units activity typically captures overall non-negativity of the activity,
which is modulated by the weight norm.

Code availability

Simulation codes are made available at https://github.com/nhiratani/node_perturbation.
All simulations were performed on standard laboratory CPUs and GPUs.
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C.2 Figure details

Figure 1

Neural architecture: 100-10000-10.
Activation: Linear (all layers).
Task: Student-teacher with zero noise (see Appendix B.1).

In panel A, the solid lines are the average trajectory over 10 independent simulations. In panels B
and C, we depicted learning trajectories under ten different random seeds for each learning rate.

Figure 2

Neural architecture: 100-Lh-10 (A), 100-10000-Ly (B).
Activation: Linear (all layers).
Task: Student-teacher with zero noise.

In both panels A and B, the target error was set to ✏tg = 10�4✏o. In the simulation, we estimated the
minimum training time by optimizing the learning rate ⌘ between 10�2⌘⇤  ⌘  10⌘⇤, where ⌘⇤ is
the analytically estimated critical learning rate (Eq. 83). For each learning rate, we estimated the
minimum training time by taking the average over ten random seeds.

Figure 3

Neural architecture: 100-10000-10 (A, B, C), 100-Lh-10 (D).
Activation: Linear (all layers).
Task: Student-teacher with noise �2

t = 0.1.

In panel A, the purple line stops in the middle because we terminated the simulation after 106

iterations. Both in panels A and B, ⌘⇤ is the critical learning rate in the absence of noise (�2
t = 0).

In panel D, the learning rate was set to the critical learning rate under each hidden layer size. In D,
weight normalization was introduced to every neurons at every update. The learning trajectories in
panels A and D are the average trajectories over 10 random seeds.

Figure 4

Neural architecture: 21-Lh-7 (A, E, F), 21-800-7 (B, C, D).
Activation: ReLU (the hidden layer), Linear (the last layer),
Task: SARCOS.

In all simulations, we set the mini-batch size to 100, and initialized the weights by the Xavier-Glorot
initialization [37]. In panel A, we trained the network with SGD until the error reaches ✏ = 50.0 (solid
lines) and ✏ = 5.0 (dashed lines), then calculated the cosine similarity between SGD and NP updates.
In panel E, We first estimated the average learning trajectory by binning the data over 10 consecutive
epochs, and taking average over 5 simulation with different random seeds. We then defined the
required number of epochs by the point at which the average error goes down below the threshold for
the first time. We calculated this required number of epochs under various different learning rates
(see Fig. S3B), then defined the minimum training time as the minimum among them. For SGD, we
did not bin the data over epochs. In panel F, we used ⌘ = 3.6⇥ 10�5, 2.4⇥ 10�5, 1.8⇥ 10�5 for
Lh = 400, 800, 1600, respectively, to make sure that the error diverges around the same time in the
absence of the weight normalization. Here (in panel F), we initialized the input weight W1, ten times
larger than the standard Xavier-Glorot initialization. We observed qualitatively the same dynamics
under the standard Xavier-Glorot initialization, but the convergence under the standard initialization
was slightly worse.

Figure 5

Neural architecture: 784-800-10 (A), 784-Lh-10 (B), 784-300-10 to 784-300-300-300-300-10 (C).
Activation: ReLU (the hidden layers), Softmax (the last layer).
Task: MNIST.
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In all simulations, we set the mini-batch size to 1000, and initialized the weights by the Xavier-Glorot
initialization. In panels B and C, the minimum training time was estimated in the same manner as in
Fig. 4E.

Figure S1

Neural architecture: 100-10
Activation: Linear
Task: Linear regression with �t = 0. The teacher model was generated randomly via Eq. 106.

Figure S2

Neural architecture: 100-Lh-10.
Activation: Linear (all layers).
Task: Student-teacher with zero-noise.

Figure S3

Neural architecture: 21-800-7 (A,C,D), 21-Lh-7 (B).
Activation: ReLU (the hidden layer), Linear (the last layer).
Task: SARCOS.

In all simulations, we set the mini-batch size to 100, and initialized the weights by the Xavier-Glorot
initialization. In panel C and D, we set the learning rate of both SGD and NP to ⌘ = 10�6.

Figure S4

Neural architecture: 784-Lh-10 (A), 784-800-10 (B-E), 784-300-300-300-10 (F).
Activation: ReLU (the hidden layer), Softmax (the last layer).
Task: MNIST.

As in the main text, in all simulations, we set the mini-batch size to 1000, and initialized the weights
by the Xavier-Glorot initialization. In panel C, we evaluated the error by the mean-squared error on
the test data, and estimated the points at which the error becomes minimum (black points) and the
error returns to the initial level (✏ = 0.15; gray points).

Figure S5

Neural architecture: Three convolutional layer with 32 channels each and one fully connected layer.
Activation: ReLU (the hidden layers), Sigmoid (the last layer)
Task: CIFAR-10.
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