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ABSTRACT

Dataset distillation has emerged as a technique aiming to condense informative
features from large, natural datasets into a compact and synthetic form. While
recent advancements have refined this technique, its performance is bottlenecked
by the prevailing class-specific synthesis paradigm. Under this paradigm, syn-
thetic data is optimized exclusively for a pre-assigned one-hot label, creating an
implicit class barrier in feature condensation. This leads to inefficient utilization
of the distillation budget and oversight of inter-class feature distributions, which
ultimately limits the effectiveness and efficiency, as demonstrated in our analysis.
To overcome these constraints, this paper presents the Inter-class Feature Com-
pensator (INFER), an innovative distillation approach that transcends the class-
specific data-label framework widely utilized in current dataset distillation meth-
ods. Specifically, INFER leverages a Universal Feature Compensator (UFC) to
enhance feature integration across classes, enabling the generation of multiple ad-
ditional synthetic instances from a single UFC input. This significantly improves
the efficiency of the distillation budget. Moreover, INFER enriches inter-class
interactions during the distillation, thereby enhancing the effectiveness and gen-
eralizability of the distilled data. By allowing for the linear interpolation of labels
similar to those in the original dataset, INFER meticulously optimizes the syn-
thetic data and dramatically reduces the size of soft labels in the synthetic dataset
to almost zero, establishing a new benchmark for efficiency and effectiveness in
dataset distillation. In practice, INFER demonstrates state-of-the-art performance
across benchmark datasets. For instance, in the ipc = 50 setting on ImageNet-1k
with the same compression level, it outperforms SRe2L by 34.5% using ResNet18.
Codes are available at https://github.com/zhangxin-xd/UFC.

1 INTRODUCTION

The remarkable success of Deep Neural Networks (DNNs) (Yang et al., 2024; Cai et al., 2024;
Zheng et al., 2024; Dosovitskiy et al., 2021) in recent years can largely be attributed to their ability
to extract complex and representative features from vast real-world data (Gao et al., 2020; Benenson
et al., 2019). However, the extensive data requirements for training DNNs pose significant chal-
lenges. These challenges include not only the time-consuming training process (Liu et al., 2021;
Touvron et al., 2021; Tolstikhin et al., 2021), but also the substantial costs associated with data
storage and computational resources (Kaplan et al., 2020; Hoffmann et al., 2022).

In response to the rapid growth of computational and storage demands in training DNNs, dataset
distillation (DD) (Sachdeva & McAuley, 2023; Lei & Tao, 2023; Yu et al., 2023; Liu & Du,
2025) has emerged as an effective solution. Dataset distillation condenses essential features
from extensive datasets into a compact, synthetic form, allowing models to maintain comparable
performance levels with fewer resources (Wang et al., 2018). Recent advancements in dataset
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Figure 1: Performance vs. compression ra-
tio of SOTA dataset distillation methods (G-
VBSM (Shao et al., 2024), SRe2L (Yin et al., 2024),
MTT (Cazenavette et al., 2022)) on three benchmarks.
Performance is measured as the Top-1 accuracy of
ResNet-18 (ConvNet128 for MTT) on the respective
validation sets, trained from scratch using synthetic
datasets. The compression ratio, including the
additional soft labels, is the proportion of the distilled
dataset size to the original dataset size. The star
indicates optimal performance.

distillation encompass techniques such as gradi-
ent matching (Zhao et al., 2021; Zhao & Bilen,
2021; Lee et al., 2022b; Shin et al., 2023), tra-
jectory matching (Cazenavette et al., 2022; Cui
et al., 2023; Du et al., 2023a;b), data factoriza-
tion (Liu et al., 2022; Kim et al., 2022; Wei et al.,
2023; Shin et al., 2024), and kernel ridge re-
gression (Nguyen et al., 2020; 2021; Loo et al.,
2022). These approaches have significantly en-
hanced dataset distillation by compressing dense
knowledge into single data instances. Despite
the diversity of these methods, most of them ad-
here to a uniform paradigm: each synthetic data
instance is class-specific and optimized exclu-
sively for a pre-assigned one-hot label.

While this “one label per instance” paradigm
aligns with the traditional data-label pair struc-
ture of original datasets, it presupposes that
the most effective encapsulation of a dataset’s
knowledge can be achieved through individual
instances representing discrete class identities. When the amount of synthetic data is limited, this
class-specific paradigm benefits distillation by encouraging synthetic data to condense the most dis-
tinctive features of each class. However, as more synthetic instances are assigned to the same class,
they tend to capture significant but similar features rather than diversifying to include unique, rarer
features. This phenomenon, known as “feature duplication” (Jiang et al., 2022; Kim et al., 2022;
Cazenavette et al., 2022), leads to Inefficient Utilization of the Distillation Budget, thereby limiting
the creation of a more diverse and comprehensive synthetic representation.

Another critical downside of the class-specific synthesis paradigm is the “Oversight of Inter-Class

Features”. By focusing on distinctive class-specific characteristics under the “one label per instance”
approach, implicit “Class Barriers” are created between classes. These class barriers prevent the
synthetic data instances from capturing inter-class features that bridge different classes in the orig-
inal dataset. This oversight, inhibits the formation of thin and clear decision boundaries among
classes, which are essential for models to generalize well across complex scenarios. We demon-
strate the visualization of frormed decision boundaries in Figure 2.

Recognizing the aforementioned limitations, we introduce a novel paradigm for dataset distilla-
tion, termed the Inter-class Feature compEnsatoR (INFER). Unlike traditional methods that follow
the “one instance for one class” paradigm and generate separate synthetic instances for each class,
INFER pioneers a “one instance for ALL classes” paradigm by introducing a Universal Feature
Compensator (UFC). The UFC, designed to reflect the general representativeness across all classes
of the original dataset, depreciates the importance of pre-assigned labels. This feature enables UFC
to compensate for inter-class features while INFER randomly incorporates a few natural data in-
stances to enhance intra-class features. Notably, INFER integrates one UFC with multiple natural
data instances from different classes through a simple additive process without auxiliary generator
networks (Liu et al., 2022), allowing the generation of multiple synthetic instances from a single
input. This “one instance for ALL classes” paradigm significantly enhances the efficiency of the
distillation budget.

Furthermore, we have meticulously designed the optimization of UFCs to encompass inter-class fea-
tures. This optimization makes synthetic instances generated from UFCs compatible with MixUp
data augmentation, which promotes inter-class interactions and aids in forming thin, clear decision
boundaries among classes. Prior works applying MixUp to synthetic data (Yin et al., 2024) involve
dynamic generating and storing an extensive amount of soft labels, which can increase storage re-
quirements up to 30-fold. INFER, however, dramatically eliminates the need for such extensive
soft label storage by elegantly adopting the linear interpolation of labels used with natural datasets,
decreasing the storage requirement by 99.3%. This enhancement not only preserves the distilla-
tion budget but also streamlines the entire training process, underscoring INFER’s efficiency and
effectiveness. Notably, INFER achieves 53.3% accuracy on ImageNet-1k with a ResNet-50 model,
training solely on the synthetic dataset, which is only 4.04% the size of the original ImageNet-1k.
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Figure 2: Left: Overview of dataset distillation paradigms. The first illustrates the traditional “one
instance for one class” approach, where each instance is optimized exclusively for its pre-assigned
label, creating implicit class barriers. The second illustrates our INFER method, designed for “one
instance for ALL classes” distillation. Right: t-SNE visualization of the decision boundaries be-
tween the traditional approaches (i.e., SRe2L (Yin et al., 2024)) and our INFER approach. We
randomly select seven classes from CIFAR-100 dataset for the visualization. INFER forms thin
and clear decision boundaries among classes, in contrast to the chaotic decision boundaries of the
traditional approach.

This performance, which does not require dynamically generated soft labels, outperforms existing
approaches in both accuracy and compression ratio.

Our contribution can be summarized as follows:

• We rethink the prevailing “one label per instance” paradigm that exclusively optimizes
each synthetic data instance for a specific class. Through empirically analysis, we identify
and address its two main limitations: inefficient utilization of the distillation budget and
oversight of inter-class features.

• To overcome these issues, we introduce a new paradigm INFER, for “one instance for all
classes” dataset distillation. Our INFER incorporates a novel Universal Feature Compen-
sator (UFC) to efficiently condense and integrate features across multiple classes. Exten-
sive experiments across CIFAR, tiny-ImageNet and ImageNet-1k datasets demonstrate the
state-of-the-art performance of INFER.

2 PRELIMINARIES AND RELATED WORKS

The precursor to dataset distillation in condensing of datasets is coreset selection (Bachem et al.,
2017; Chen et al., 2010; Har-Peled & Kushal, 2005; Sener & Savarese, 2018; Xin et al., 2024).
This method involves selecting a coreset of the original dataset that ideally contains the entire repre-
sentativeness of the population. However, this approach encounters a significant performance drop
when compression ratio is small. A plausible explanation for this could be the low density of rep-
resentativeness within natural data instances. Therefore, dataset distillation seeks to synthesize data
instances with densely packed features. We begin with a brief formulation of dataset distillation.

Problem Formulation. Assume we are given a natural and large dataset T = {(xi,yi)}|T |
i=1, where

each element xi 2 Rd is drawn i.i.d. from a natural distribution D, and the class label yi 2 Y =
{0, 1, . . . , C � 1} with C representing the number of classes. Dataset distillation aims to synthesize
a small dataset S = {(si,yi)}|S|

i=1, where si 2 Rd and yi 2 Y , to serve as an approximate solution
to the following optimization problem:

S = argmin
S⇢Rd⇥Y

E
(x,y)⇠D

[` (f✓S ,x,y)] , (1)

where ✓S represents the converged weights trained with S , and ` is the loss function. The class label
yi is typically a pre-assigned one-hot label (Zhao & Bilen, 2023; Zhao et al., 2021; Zhao & Bilen,
2021; Jiang et al., 2022; Kim et al., 2022; Cazenavette et al., 2022) to encourage si to exhibit more
distinct, class-specific features.

Compression Ratio (CR) = synthetic dataset size / original dataset size (Cui et al., 2022). A lower ratio
indicates a more condensed dataset.
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Pioneering our approach, Wang et al. (Wang et al., 2018) is the first to propose DD, a method that
optimizes S directly after substituting D with T in Equation 1. Due to the limited guidance, this
approach often leads to suboptimal performance, prompting the development of gradient-matching
methods (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022b; Shin et al., 2023). These methods
improve supervision by aligning the models’ gradients. The success of gradient-matching has in-
spired further research into matching the trajectory of gradients (Cazenavette et al., 2022; Cui et al.,
2023; Du et al., 2023a;b), yielding even better performance. Despite these advancements, most of
current dataset distillation methods still primarily focus on generating class-specific synthetic in-
stances. This ongoing adherence to the class-specific paradigm not only constrains the efficiency
of the distillation budget but also results in the neglect of critical inter-class features. These limita-
tions drive our investigation into a new paradigm, aimed at developing a more efficient and effective
dataset distillation solution.

Distillation Budget Consistency. As our INFER depreciates the class-specific paradigm, it be-
comes necessary to establish clear criteria for maintaining consistency in the distillation budget.
Traditional methods adopt Images Per Class (IPC) as described by (Wang et al., 2018; Zhao et al.,
2021; Cazenavette et al., 2022), such that |S| = ipc⇥ C. This approach provides a uniform crite-
rion across various datasets. Therefore, we continue to employ IPC as the criterion to measure the
distillation budget.

However, IPC does not account for the auxiliary generator (Liu et al., 2022; Lee et al., 2022a)
or additional soft labels (Yin et al., 2024) that are used to enhance the performance of a syn-
thetic dataset, resulting in an asymmetric advantage compared to methods that solely utilize the
data-label pair. Therefore, we also employ the compression ratio, as described by (Cui et al.,
2022), to measure the distillation budget. The total bit count of any auxiliary modules and
soft labels will be considered part of the synthetic dataset. To compute the compression ra-
tio, we divide the total bit count of the synthetic dataset, by that of the original dataset, i.e.,
CR = synthetic dataset size/original dataset size.

3 METHODOLOGY

In this section, we introduce our novel distillation paradigm, INFER. We begin by detailing the
limitations associated with the class-specific distillation paradigm, highlighting inefficiencies and
oversight of inter-class feature distributions. Following this, we describe the Universal Feature
Compensator (UFC), the cornerstone of our methodology, designed to integrate inter-class features.
Lastly, we discuss our approach to augmenting synthetic datasets, which aims to facilitate the for-
mation of thin and clear decision boundaries among classes.

3.1 LIMITATIONS IN CLASS-SPECIFIC DISTILLATION

Wang et al. (Wang et al., 2018) established the general approach to solve S as outlined in Equation 1:
Each synthetic data instance si is assigned a one-hot label yi and optimized to capture intra-class
features by minimizing

P
(x,y)2T ` (f✓S ,x,y). Unlike Equation 1, D is replaced by T , given that D

is inaccessible and T ⇠ D. Initially, this class-specific design achieved progress in the early stages.
However, as dataset distillation research has evolved, two major limitations become prominent,
compelling a rethinking of this design.

Inefficient Utilization of Distillation Budget. Recent advancements in dataset distillation (Yin
et al., 2024; Loo et al., 2022; Cui et al., 2023) have enabled individual synthetic data instances to
capture more features specific to a class, particularly notable in highly compressed scenarios where
ipc = 1 (Cui et al., 2023; Loo et al., 2022). However, as ipc increases, additional synthetic data
instances tend to capture distinctive yet duplicated intra-class features, leading to redundancy within
the synthetic dataset. This redundancy explains the marginal performance gains observed in less
compressed scenarios (ipc = 50). SeqMatch (Du et al., 2023b) and DATM (Guo et al., 2023)
addressed this redundancy by dividing the synthetic data into several subsets optimized diversely.
We validate this hypothesis through experiments shown in Figure 4 (a). Ideally, newly optimized
synthetic data instances should capture rare and diversifying features that complement the distinctive
class-specific features.
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Figure 3: Illustration of the integration pro-
cess between Universal Feature Compensators
(UFCs) and natural data instances as described in
Equation 2. The integration is performed through
a simple addition process. Consequently, only
the sets S = (Pk,Uk) need to be stored as the
synthetic dataset. The synthetic dataset S̃k is
generated on-the-fly during training.

Oversight of Inter-class Features. The preva-
lent focus on optimizing synthetic instances for
the most distinctive intra-class features often
leads to the oversight of inter-class features.
This oversight significantly limits the synthetic
data’s ability to represent the feature distribu-
tions that span across different classes, which is
crucial for complex classification tasks. Conse-
quently, the potential for these synthetic datasets
to support the training of models that can gen-
eralize across varied scenarios may be signif-
icantly hampered. As depicted in Figure 2,
this issue is evidenced by the chaotic decision
boundaries formed by the “one label per in-
stance” synthetic dataset, which neglects the
inter-class features necessary for forming thin
and clear decision boundaries.

These limitations drive our investigation into a
new paradigm, aimed at developing a more effi-
cient and effective dataset distillation solution.

3.2 UNIVERSAL FEATURE COMPENSATOR: BREAKING CLASS BARRIERS

The Universal Feature Compensators (UFCs), denoted as U = {ui}|U|
i=1, forms the core of our novel

INFER paradigm, designed specifically to address the inefficiencies and oversight inherent in the
class-specific distillation approach.

Design and Functionality. The primary objective of designing the UFC is to enable the generation
of multiple synthetic instances from a single compensator. To achieve this, our INFER divides the
base synthetic dataset S into K subsets, such that S = S1 [ S2 [ · · · [ SK . Each base subset Sk

consists of a pair (Pk,Uk), where Uk represents the set of UFCs, and Pk ⇢ T contains natural
instances to be integrated with UFCs and |Pk| = C. For actual model training on the synthetic
dataset, we first integrates UFCs with natural data instances as follows:

S̃k = {(s̃i, ỹi) | s̃i = xi + uj ,
for each xi 2 Pk and each uj 2 Uk}, (2)

where S̃k represents the UFCs integrated synthetic dataset. This process is illustrated in Figure 3.
In practice, multiple architectures participate in UFCs’ generation. Assuming the number of archi-
tectures is M , i.e., |Uk| = M , each Sk can be multiplied approximately M times by INFER. We
repeat the intergration process described above K times, once for each subset of S . This structured
approach allows INFER to utilize the distillation budget approximately M times more efficiently
compared to the class-specific paradigm.

Optimization. Under the INFER paradigm, each Pk contains exactly one instance for each class,
randomly selected from the original dataset T . Consequently, Pk effectively captures the intra-class
features with minimal duplication. In contrast, the UFCs are designed to optimize the capture of
inter-class features. Therefore, the elements in Pk uniformly cover each class, allowing the element
Uk to focus on capturing inter-class features by solving the follow minimization problem:

argmin
uj2Rd

X

(xi,yi)2Pk

h
` (f✓T ,xi + uj ,yi) + ↵LBN (f✓T ,xi + uj)

i
, (3)

where LBN (f✓T ,xi + uj) =
X

l
kµl(S̃k

j )� µl(T )k2

+
X

l
k�2

l (S̃k
j )� �2

l (T )k2. (4)

we define S̃k
j = {(s̃i, ỹi) | s̃i = xi + uj , for each xi 2 Pk} which is the generated synthetic

dataset by integrating uj with the corresponding Pk. LBN is the BN loss inspired by SRe2L (Yin
et al., 2024) to regularize the values of generated s̃i to fall within the same normalization distribution
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as those in T . Intuitively, uj serves as the feature compensator for the natural instances in S ,
carrying universal inter-class features that are beneficial for classification.

Algorithm 1 Distillation on synthetic dataset via Inter-class Feature Compensator (INFER)
Require: Target dataset T ; Number of subsets K; Number of classes C; M networks with different

architectures:{f1, f2, · · · , fM}.
1: Initialize S = {}
2: for k = 1 to K do

3: Initialize subset Pk = {}, the UFCs set Uk = {}, and the static labels set Yk = {}
4: Randomly select C instances, one for each class, to form Pk, such that:
5: Pk = {(xi,yi) | (xi,yi) 2 T and each yi is unique in Pk}
6: Initialize Uk with zeros, where each ui has the same dimensions as x:
7: Uk = {uj | uj = 0dim(x), for j = 1, . . . ,M}
8: for each uj in Uk

do

9: . Construct integrated synthetic instance s̃i
10: Let S̃k

j = {(s̃i, ỹi) | s̃i = xi + uj , for each xi 2 Pk}
11: repeat

12: Optimize uj to minimize loss defined in Equation 3
13: until Converge
14: Generate static soft labels ỹi by Equation 6, Yk = Yk [ {ỹi}
15: end for

16: Sk = {Pk,Uk,Yk}
17: S = S [ {Sk}
18: end for

Ensure: Synthetic dataset S

3.3 ENHANCING SYNTHETIC DATA WITH INTER-CLASS AUGMENTATION

Although UFCs are encouraged to encapsulate more inter-class features, their limited size, especially
compared to the size of the original dataset T , restricts the breadth of features crucial for forming
the decision boundaries of neural networks. Therefore, we also leverage MixUP (Zhang et al., 2018)
as a technique to enhance inter-class augmentation.

Data augmentation (Shorten & Khoshgoftaar, 2019) has been well-developed and proven effective in
training neural networks with natural datasets. However, the advancements in data augmentation do
not generalize well to synthetic datasets generated through dataset distillation. DSA (Zhao & Bilen,
2021) designed an adapted augmentation method specialized for dataset distillation, but it is not as
effective as standard data augmentation methods. SRe2L (Yin et al., 2024) applies MixUp (Zhang
et al., 2018) to the synthetic dataset, achieving superior performance across many datasets. Un-
fortunately, the cost of applying MixUp in SRe2L is expensive, due to the massive volume of soft
labels. The soft labels are dynamically generated for each augmented instance in each validation
epoch, resulting enormous storage requirements or extra training efforts. For example, the synthetic
dataset generated by SRe2L for ImageNet-1k requires 0.7GB to store synthetic images, but requires
additional 25.9GB to store the soft labels.

Motivated by this, we aim to apply MixUp to our INFER model in the same way it is used in
natural datasets, which we refer to as “static” soft labels. The linear interpolation of labels can be
represented mathematically as:

f✓T [�s̃i + (1� �)s̃j ]
⇡ �f✓T (s̃i) + (1� �)f✓T (s̃j), 8s̃i, s̃j 2 S̃ (5)

where f✓T (·) represents the logits output, � ⇠ Beta(�,�), and � > 0. To achieve this, we propose
three improvements in INFER: (a) We use Pk, a subset of natural datasets, for integration with
UFCs because natural instances inherently follow the linear interpolation of labels. (b) We make Pk

to span across all the classes, rather than limiting it to instances within the same class. As such, the
optimized UFCs, U , which are integrated with Pk for optimization, also embody the characteristic of
linear label interpolation. (c) We employ M neural networks with various architectures (M = |Uk|)

6



Published as a conference paper at ICLR 2025

Table 1: Comparison with SOTAs on CIFAR-10/100 and Tiny-ImageNet. Except for SRe2L (Yin
et al., 2024), G-VBSM (Shao et al., 2024), and our INFER, all other methods use ConvNet128 for
distillation. The distilled synthetic datasets are then evaluated on ConvNet128 and ResNet18. “IN-
FER+Dyn” denotes the application of INFER using dynamically generated soft labels, as described
in SRe2L (Yin et al., 2024). The best performers in each setting are highlighted in red.

CIFAR-10 CIFAR-100 Tiny-ImageNet
ipc 10 50 10 50 100 10 50

Random 31.0
±0.5

50.6
±0.3

14.6
±0.5

33.4
±0.4

42.8
±0.3

5.0
±0.2

15.0
±0.4

C
on

vN
et

12
8

DC (Zhao et al., 2021) 44.9
±0.5

53.9
±0.5

25.2
±0.3

- - - -

DSA (Zhao & Bilen, 2021) 52.1
±0.5

60.6
±0.5

32.3
±0.3

42.8
±0.4

- - -

KIP (Nguyen et al., 2021) 62.7
±0.3

68.6
±0.2

28.3
±0.1

- - - -

RFAD (Loo et al., 2022) 66.3
±0.5

71.1
±0.4

33.0
±0.3

- - - -

MTT (Cazenavette et al., 2022) 65.4
±0.7

71.6
±0.2

39.7
±0.4

47.7
±0.2

49.2
±0.4

23.2
±0.2

28.0
±0.3

SeqMatch (Du et al., 2023b) 66.2
±0.6

74.4
±0.5

41.9
±0.5

51.2
±0.3

- 23.8
±0.3

-

G-VBSM (Shao et al., 2024) 46.5
±0.7

54.3
±0.3

38.7
±0.2

45.7
±0.4

- - -

INFER
34.0
±0.4

57.0
±0.2

41.0
±0.4

53.8
±0.2

57.0
±0.02

22.8
±0.3

32.3
±0.3

INFER+Dyn 30.1
±0.8

52.4
±0.7

37.2
±0.3

50.7
±0.3

53.4
±0.2

24.9
±0.3

33.9
±0.6

R
es

N
et

18

Random 29.6
±0.9

36.7
±1.7

15.8
±0.2

32.0
±0.0

47.5
±0.0

12.1
±0.3

17.7
±0.0

SRe2L (Yin et al., 2024) 27.2
±0.5

47.5
±0.6

31.6
±0.5

49.5
±0.3

- - 41.1
±0.4

G-VBSM (Shao et al., 2024) 53.5
±0.6

59.2
±0.4

59.5
±0.4

65.0
±0.5

- - 47.6
±0.3

INFER
32.0
±0.5

60.4
±1.6

45.2
±0.04

62.8
±0.4

66.3
±0.1

32.0
±0.1

52.9
±0.1

INFER+Dyn 30.7
±0.3

60.7
±0.9

53.4
±0.6

68.9
±0.1

73.3
±0.2

41.0
±0.4

54.6
±0.4

to relabel the generated synthetic data instance s̃i through averaging, i.e.,

ỹi =
1

M

X

m

fm
✓T (s̃i). (6)

By doing so, INFER does not require the dynamic soft labels for any combinations of [�s̃i + (1 �
�)s̃j ], but only the static soft labels of s̃i, s̃j , which reduces the size of soft labels by up to 99.9%.
Additionally, training on synthetic datasets can follow the same paradigm as training on natural
datasets. More details of synthesizing and training S can be found in Algorithm 1 and Algorithm 2.

4 EXPERIMENTS

To evaluate the effectiveness of our proposed INFER distillation paradigm, we conducted a series
of experiments across multiple benchmark datasets and compared our results with several state-
of-the-art approaches. In this section, we provide details on the experimental setup, the datasets
used, and the results obtained. We summarize our main results in Table 1 and Table 2. Following
this, we perform ablation studies to assess the impact of individual components of our method. All
experiments were conducted using two Nvidia 3090 GPUs and one Tesla A-100 GPU.

4.1 EXPERIMENTAL SETUP

Baselines and Datasets. We conduct the comparison with several representative distillation meth-
ods, including Random, DC (Zhao et al., 2021), DSA (Zhao & Bilen, 2021), KIP (Nguyen et al.,
2021), RFAD (Loo et al., 2022), MTT (Cazenavette et al., 2022), SeqMatch (Du et al., 2023b), G-
VBSM (Shao et al., 2024) and SRe2L (Yin et al., 2024). This evaluation is performed on four popular
classification benchmarks, including CIFAR-10/100 (Krizhevsky et al., 2009), Tiny-ImageNet (Le
& Yang, 2015), and ImageNet-1k (Deng et al., 2009).

Implementation Details. Our INFER uses M = 4, meaning it employs four different architectures
for optimizing UFCs: ResNet18 (He et al., 2016), MobileNetv2 (Sandler et al., 2018), Efficient-
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Table 2: Comparison with SOTAs on ImageNet-1k. SRe2L (Yin et al., 2024), G-VBSM (Shao
et al., 2024), and our INFER use ResNet18 for distillation. The distilled synthetic datasets are
then evaluated on ResNet18, 50, and 101. “INFER+Dyn” denotes the application of INFER using
dynamically generated soft labels, as described in SRe2L (Yin et al., 2024). We also evaluate SRe2L
and G-VBSM under the same compression ratio using our static labeling strategy, denoted as {}⇤.
The best performers in each setting are highlighted in red.

Compression Ratio ResNet18 ResNet-50 ResNet-101
ipc 10 50 10 50 10 50 10 50

Random 0.78% 3.90% 10.5
±0.4

31.4
±0.3

9.3
±0.3

31.5
±0.2

10.0
±0.4

33.1
±0.1

SRe2L⇤ (Yin et al., 2024) 0.81% 4.04% 9.8
±0.1

17.3
±0.5

8.7
±0.3

17.2
±0.4

8.8
±0.2

15.8
±0.2

G-VBSM⇤ (Shao et al., 2024) 0.81% 4.04% 11.9
±0.2

32.9
±0.1

14.5
±0.2

38.1
±0.2

13.9
±0.1

38.9
±0.4

INFER 0.81% 4.04% 28.7
±0.2

51.8
±0.2

26.9
±0.3

53.3
±0.3

26.5
±0.1

52.2
±0.3

SRe2L (Yin et al., 2024) 4.53% 22.67% 21.3
±0.6

46.8
±0.2

28.4
±0.1

55.6
±0.3

30.9
±0.1

60.8
±0.5

G-VBSM (Shao et al., 2024) 4.53% 22.67% 31.4
±0.5

51.8
±0.4

35.4
±0.8

58.7
±0.3

38.2
±0.4

61.0
±0.4

INFER+Dyn 4.53% 22.67% 36.3
±0.3

55.6
±0.2

38.3
±0.5

63.4
±0.3

38.9
±0.5

60.7
±0.1

NetB0 (Tan & Le, 2019), and ShuffleNetv2 (Ma et al., 2018). When distilling ImageNet-1k, only
the first three architectures (M = 3) are involved. For reproducibility, the hyperparameter settings
for the experimental datasets—CIFAR-10/100, Tiny-ImageNet, and ImageNet-1k, are provided in
Appendix A.3. These settings generally follow SRe2L (Yin et al., 2024), with the sole modification
being a proportional reduction in the validation epoch number for the dynamic version to ensure fair
comparison. All other critical hyperparameters remain unchanged.

Consistant Distillation Budget. As we stated in Section 2, the baselines SRe2L (Yin et al., 2024)
and G-VBSM (Shao et al., 2024) use the dynamic generated soft labels from a teacher model in
each validation epoch for enhanced performance. However, these additional dynamic soft labels
are not considered in the “Images Per Class (IPC)” distillation budget. Therefore, we also adopt the
compression ratio (CR = synthetic dataset size/original dataset size (Cui et al., 2022)) for consistant
distillation budget. As the size of the soft labels is proportional to the number of validation epochs,
we only report the CR in ImageNet-1k dataset, as shown in Table 2.

Our INFER also employs the soft labels as shown in Equation 6. However, INFER only stores one
soft label per instance, which equals one epoch dynamic soft labels. We term it as static soft labels
in contrast to the dynamic soft labels generated across every validation epochs. Therefore, INFER
reduces the size of soft labels by up to 99.3% in ImageNet-1k dataset (from 300 epoch to 1 epoch).
We also implement the dynamic soft labels under INFER, denoted as “INFER+Dyn”. As increasing
the validation epoch can improve the performance, but it incurs a larger size of soft labels. Another
point to note is, to ensure fair comparison, we reduce the validation epoch to 1

M , as INFER generates
M -fold synthetic instances by integrating UFC (M is 3 for ImageNet-1k). Lastly, we also average
the number of UFCs into ipc and adjust K = bipc⇥ C

C+M c for fair comparison.

4.2 MAIN RESULTS

Performance results on CIFAR-10/100 and Tiny-ImageNet are summarized in Table 1. While most
previous methods rely on ConvNet128 due to resource constraints, SRe2L (Yin et al., 2024), G-
VBSM (Shao et al., 2024), and our INFER method use ResNet18 for synthesis. INFER significantly
outperforms competitors. With ipc=50, ResNet18 trained on the distilled CIFAR-100 achieves
68.9% and 62.8% accuracy, surpassing SRe2L by 19.4% and 13.3%, respectively. INFER also
outperforms G-VBSM by 5.3% on Tiny-ImageNet. Despite reducing 99.3% of dynamic soft labels,
INFER still outperforms methods using dynamic labels. Static labels suffice for simpler networks
and datasets, but dynamic labels provide stronger supervision for complex architectures.

Table 2 provides a detailed performance comparison between SRe2L (Yin et al., 2024), the pi-
oneering method for scaling dataset distillation to large datasets like ImageNet-1k, its extension
G-VBSM (Shao et al., 2024), and our proposed INFER approach. These methods use ResNet18 for
dataset distillation, and their performance is evaluated on three architectures: ResNet18, ResNet50,
and ResNet101. The table highlights the advantages of our INFER method, which consistently
outperforms SRe2L across all evaluation settings. Notably, when distilling datasets with ipc=50,
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Figure 4: Left: The change in feature duplication with the increase of ipc. To measure the level of
feature duplication, we employ the averaged cosine similarities between each pair of synthetic data
instances within the same class. Therefore, a greater value represents higher feature duplication, as
SRe2L (Yin et al., 2024) shows. In contrast, our INFER obtains a lower feature duplication, which
is closer to the level observed in natural datasets. Right: The ablation study of UFC. The first two
groups are under the ipc = 10 setting, while the other two are under ipc = 50. The purple

annotations indicate the performance gains contributed by our UFC.

Table 3: Ensemble of architectures for UFC generation. “R”, “M”, “E”, and “S” represent
ResNet18 (He et al., 2016), MobileNetv2 (Sandler et al., 2018), EfficientNetB0 (Tan & Le, 2019),
and ShuffleNetV2 (Ma et al., 2018), respectively. 4 indicates the network architectures participating
in UFC generation. " denotes the performance gain contributed by the current ensembles compared
with the baseline (only ResNet18). These experiments are conducted on CIFAR-100 dataset.

ipc = 10 ipc = 50
R M E S INFER " INFER+Dyn " INFER " INFER+Dyn "

4 40.9
±0.1 + 0.0 38.1

±1.7 + 0.0 59.7
±0.2 + 0.0 65.3

±0.2 + 0.0
4 4 43.2

±0.2 + 2.3 46.2
±0.4 + 8.1 61.2

±0.04 + 1.5 67.3
±0.1 + 2.0

4 4 4 44.8
±0.5 + 3.9 50.6

±0.7 + 12.5 61.7
±0.1 + 2.0 68.3

±0.2 + 3.0
4 4 4 4 45.2

±0.04 + 4.3 53.4
±0.6 + 16.3 62.8

±0.4 + 3.1 68.9
±0.1 + 3.6

INFER achieves a substantial 5.0% performance improvement on ResNet18 while maintaining an
extremely compact synthetic dataset—only 4.04% of the original size. When matched to the same
compression ratio, the performance gap further widens to 34.5%. This result showcases the superior
efficiency and effectiveness of INFER in large-scale dataset distillation, particularly in compressing
datasets while maintaining performance.

4.3 ABLATION STUDY

Compensator Generation. We examine the effectiveness of the proposed UFC. As shown in Fig-
ure 4 (b), regardless of the ipc setting and the labeling strategy, our UFC significantly enhances the
quality of the distilled dataset. For example, the Top-1 classification accuracy of the model trained
with static labels is improved by 25.6% with ipc = 10. We also study the influence of network
architectures participating compensator generation. According to the results provided in Table 3,
performance consistently improves with the addition of more ensembled networks. This trend is
particularly pronounced with dynamic labeling. For instance, the ensemble of four architectures
enhances performance by 4.3% with static labeling and by 16.3% with dynamic labeling. To align
with the multi-model-aided compensator generation, we also employ multiple networks for soft la-
bel generation. Table 6 in Appendix A.5 presents the model performance trained with soft labels
generated by various architecture ensembles.

Cross-Architecture Generalization. Table 4 presents the performance evaluation of synthetic
CIFAR-100 dataset across different architectures, trained from scratch. When ipc=10 , our IN-
FER+Dyn and INFER methods outperform SRe2L across all architectures. For instance, IN-
FER+Dyn achieves an accuracy of 52.3% on ResNet50, significantly higher than the 22.4% achieved
by SRe2L. For ipc=50, the performance advantage of INFER+Dyn and INFER remains evident.
INFER+Dyn reaches an accuracy of 70.0% on ResNet50, far surpassing SRe2L. Our INFER shows
a well generalization abilities across different architectures. The cross-architecture results on Ima-
geNet, shown in Table 2, further confirm the effectiveness of our methods. Specifically, INFER+Dyn
and INFER demonstrate superior performance compared to SRe2L and G-VBSM across various
ResNet architectures on ImageNet-1k.
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Table 4: Cross-architecture performance of distilled dataset. Here, the synthetic CIFAR-100 datasets
are evaluated by training ResNet-50, ResNet-101 (He et al., 2016), MobileNetV2 (Sandler et al.,
2018), EfficientNetB0 (Tan & Le, 2019), and ShuffleNetV2 (Ma et al., 2018) from scratch. The best
performers in each setting are highlighted in red.

ipc = 10 ipc = 50
Networks SRe2L INFER INFER+Dyn SRe2L INFER INFER+Dyn

ResNet50 22.4
±1.3

43.3
±0.4

52.3
±0.4

52.8
±0.7

62.4
±0.6

70.0
±0.2

MobileNetV2 16.1
±0.5

46.7
±0.1

43.3
±0.7

43.2
±0.2

64.1
±0.2

67.2
±0.2

EfficientNetB0 11.1
±0.3

32.5
±0.3

34.9
±0.8

24.9
±1.7

55.0
±0.5

62.7
±0.4

ShuffleNetV2 11.8
±0.7

38.7
±0.2

30.9
±0.5

27.5
±1.1

61.5
±0.2

62.1
±0.2

Figure 5: Visualizations of loss landscapes in pixel space on CIFAR-100 dataset. The optimal
decision boundary is supposed to have a rapid change in cross-entropy loss at the edge, indicating
a clear and distinctive decision boundary. Left: A distinctive decision boundary trained on the
original dataset T . Middle: A less distinctive decision boundary trained on the synthetic dataset of
outstanding class-specific approach SRe2L. Right: An improved decision boundary trained on the
synthetic dataset of INFER.

4.4 MORE DISCUSSIONS WITH SOTA METHOD SRE2L

Feature Duplication Study. We verify our hypothesis that synthetic data instances tend to cap-
ture distinctive yet duplicated intra-class features under the traditional class-specific distillation
paradigm. We measure feature duplication by averaging the cosine similarities between each pair of
synthetic data instances within the same class. Our experimental results, as shown in Figure 4(a),
support our hypothesis: the class-specific approach SRe2L exhibits higher feature duplication as
the number of ipc increases. Conversely, our INFER, achieves improved feature uniqueness, more
closely resembling natural datasets. This reduction in intra-class feature duplication significantly
enhances the diversity of the distilled dataset, which, in turn, improves the training performance.

Visualization on Decision Boundaries. To verify our hypothesis regarding the “oversight of inter-
class features” in the traditional class-specific distillation paradigm, we visualize the decision bound-
aries of ResNet-18 models trained with synthetic datasets generated by SRe2L and our INFER,
respectively. We randomly select seven classes from the CIFAR-100 dataset and use the t-SNE ap-
proach for visualization. As illustrated in Figure 2, INFER forms thin and clear decision boundaries
between classes, in contrast to the chaotic decision boundaries produced by the traditional approach.
Additionally, we visualized the 3D loss landscape in pixel spaces of the decision boundaries in
Figure 5, which further supports our hypothesis from a different perspective.

For further analysis, refer to Appendix A.6, where we provide additional insights into the perfor-
mance improvements of INFER.

5 CONCLUSION

In this work, we rethink the current “one class per instance” paradigm in dataset distillation and
identified its limitations, including inefficient utilization of the distillation budget and oversight of
inter-class features. These issues arise as distillation techniques advance, leading to synthetic data
that often captures duplicated class-specific features. To address these limitations, we introduce a
novel paradigm INFER that employs a Universal Feature Compensator (UFC) for “one instance for
all classes” distillation. Our experimental results demonstrate that INFER improves the efficiency
and effectiveness of dataset distillation, achieving state-of-the-art results in several datasets, reduc-
ing resource requirements while maintaining high performance. Future work will focus on scaling
INFER for extremely large dataset and exploring its application in various real-world scenarios.
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