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A APPENDIX

A.1 TRAINING WITH SYNTHETIC DATASET

Algorithm 2 Training with synthetic dataset via Inter-class Feature Compensator (INFER)
Require: Synthetic dataset S; A network f✓ with weights ✓; Mini-batch size b; Learning rate ⌘;

Parameter � for MixUP.
1: Initialize S̃ = {}
2: for each {Pk,Uk,Yk} in S do

3: . Construct integrated synthetic instance
4: S̃k = {(s̃i, ỹi) | s̃i = xi + uj , for each xi 2 Pk and each uj 2 Uk, ỹi 2 Yk}
5: S̃ = S̃ [ S̃k

6: end for

7: . Start training network f✓
8: for e = 1 to E do

9: Randomly shuffle the synthetic dataset S̃
10: for each mini-batch {(s̃(b)i , ỹ(b)

i )} do

11: . Augmented synthetic dataset by MixUP without additional relabel
12: {(s̃(b)i , ỹ(b)

i )} = MIXUP({(s̃(b)i , ỹ(b)
i )})

13: Compute loss function L(f✓; s̃(b)i , ỹ(b)
i ) . KL Loss

14: Update the weights: ✓  ✓ � ⌘r✓L
15: end for

16: end for

Ensure: The network f✓ with converged weights ✓
17: function MIXUP({(x(b)

i ,y(b)
i )},�)

18: {(x0(b)
i ,y0(b)

i )} shuffle
�
{(x(b)

i ,y(b)
i )}

�
. Shuffle the batch of inputs and labels

19: Sample � from Beta(�,�) for the batch
20: �0  max(�, 1� �) . Ensure symmetry
21: for i = 1 to b do

22: x̃i  �0xi + (1� �0)x0
i

23: ỹi  �0yi + (1� �0)y0
i . Linear interpolation of labels

24: end for

return {(x̃(b)
i , ỹ(b)

i )}
25: end function

A.2 MORE RELATED WORKS

The goal of dataset distillation is to create a condensed dataset that, despite its significantly reduced
scale, maintains comparable performance to the original dataset. This concept was first introduced
by Wang et al. (Wang et al., 2018) as a bi-level optimization problem. Building on this foundational
work, recent advancements have broadened the range of techniques available for effectively and
efficiently condensing representative knowledge into compact synthetic datasets. Techniques such
as gradient matching (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022b; Shin et al., 2023)
optimize synthetic data to emulate the weight parameter gradients of the original dataset, while tra-
jectory matching (Cazenavette et al., 2022; Cui et al., 2023; Du et al., 2023a;b) aims to replicate
gradient trajectories to tighten synthesis constraints, showcasing the focus on effectiveness. Addi-
tionally, factorized methods (Liu et al., 2022; Kim et al., 2022; Wei et al., 2023; Shin et al., 2024)
use specialized decoders to generate highly informative images from condensed features, enhancing
both the utility and efficiency of distilled datasets. Another strategy, distribution matching (Wang
et al., 2022; Zhao & Bilen, 2023; Sajedi et al., 2023; Sun et al., 2024; Deng et al., 2024), optimizes
synthetic data to align its feature distribution with that of the original dataset on a class-wise basis.
Although its efficiency has significantly improved, the performance of this method may still lag
behind those using gradient or trajectory matching. Despite these innovations, most methods con-
tinue to grapple with balancing final accuracy and computational efficiency, presenting challenges
for their application to large-scale and real-world datasets.
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Table 5: Training recipes of CIFAR-10/100, Tiny-ImageNet, and ImageNet-1k.

Optimizer Learning Rate Batch Size Epoch/Iteration Augmentation Architectures
C

IF
A

R
-1

0/
10

0 Syn Adam
{�1, �2} = {0.5, 0.9}

0.25
cosine decay 100 Iteration:1000 - {ResNet18, MobileNetv2,

EfficientNetB0, ShuffleNetV2}

Val AdamW
weight decay = 0.01

0.001
cosine decay 64 Epoch:400

RandomCrop

RandomHorizontalFlip

MixUp

{ResNet18, MobileNetv2,
EfficientNetB0, ShuffleNetV2}

Val+dyn AdamW
weight decay = 0.01

0.001
cosine decay 64 Epoch:80

RandomCrop

RandomHorizontalFlip

MixUp

{ResNet18, MobileNetv2,
EfficientNetB0, ShuffleNetV2}

Ti
ny

-I
m

ag
eN

et Syn Adam
{�1, �2} = {0.5, 0.9}

0.1
cosine decay 200 Iteration:2000 RandomResizedCrop

RandomHorizontalFlip

{ResNet18, MobileNetv2,
EfficientNetB0, ShuffleNetV2}

Val SGD
weight decay = 0.9

0.2
cosine decay 64 Epoch:200

RandomResizedCrop

RandomHorizontalFlip

MixUp

{ResNet18, MobileNetv2,
EfficientNetB0, ShuffleNetV2}

Val+dyn SGD
weight decay = 0.9

0.2
cosine decay 64 Epoch:50

RandomResizedCrop

RandomHorizontalFlip

MixUp

{ResNet18, MobileNetv2,
EfficientNetB0, ShuffleNetV2}

Im
ag

eN
et

-1
k Syn Adam

{�1, �2} = {0.5, 0.9}
0.25

cosine decay 1000 Iteration:2000 RandomResizedCrop

RandomHorizontalFlip

{ResNet18, MobileNetv2,
EfficientNetB0}

Val AdamW
weight decay = 0.01

0.001
cosine decay 32 Epoch:300

RandomResizedCrop

RandomHorizontalFlip

MixUp

{ResNet18, MobileNetv2,
EfficientNetB0}

Val+dyn AdamW
weight decay = 0.01

0.001
cosine decay 32 Epoch:75

RandomResizedCrop

RandomHorizontalFlip

MixUp

{ResNet18, MobileNetv2,
EfficientNetB0}

To further enhance dataset distillation for large datasets like ImageNet-1k (Deng et al., 2009), re-
searchers have developed various innovative strategies to overcome inherent challenges. Cui et
al. (Cui et al., 2023) introduced unrolled gradient computation with constant memory usage to man-
age computational demands efficiently. Following this, Yin et al. (Yin et al., 2024) developed the
SRe2L framework, which decouples the bi-level optimization of models and synthetic data dur-
ing training to accommodate varying dataset scales. Recognized for its excellent performance and
adaptability, this framework has spurred further research. Further, Yin et al. proposed the Cur-
riculum Data Augmentation (CDA) (Yin & Shen, 2023), a method that enhances accuracy without
substantial increases in computational costs. Based on SRe2L, Zhou et al. (Zhou et al., 2024) de-
veloped SC-DD, a Self-supervised Compression framework for dataset distillation that enhances
the compression and recovery of diverse information, leveraging the potential of large pretrained
models. Additionally, Xuel et al. (Xue et al., 2024) focused on improving the robustness of dis-
tilled datasets by incorporating regularization during the squeezing stage of the SRe2L process. In
Generalized Various Backbone and Statistical Matching (G-VBSM) (Shao et al., 2024), Shao et al.
introduced a ”local-match-global” matching technique based on SRe2L, which yields more precise
and effective results, producing a synthetic dataset with richer information and enhanced generaliza-
tion capabilities. Most recently, the Curriculum Dataset Distillation (CUDD) (Ma et al., 2024) was
introduced, employing a strategic, curriculum-based approach to distillation that balances scalability
and efficiency. This framework systematically distills synthetic images, progressing from simpler to
more complex tasks.

A.3 TRAINING RECIPES

The hyperparameter settings for the experimental datasets CIFAR-10/100, Tiny-ImageNet, and
ImageNet-1k are listed in Table 5.

A.4 VISUALIZATION OF GENERATED COMPENSATOR

To offer a clearer understanding of how the compensator enhances distillation outcomes, we visu-
alize the compensators in Figure 7 and Figure 6. These visualizations reveal varying compensator
patterns across different models and initialization instances.
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Figure 6: Visualizations of generated inter-class compensators of different models.

Figure 7: Visualizations of generated inter-class compensators using different initialization in-
stances.

A.5 ENSEMBLE OF ARCHITECTURES FOR SOFT LABEL GENERATION

A.6 MORE DISCUSSIONS WITH SOTA METHOD SRE2L

Generalization to Varying Sample Difficulties. As illustrated in Figure 8, the x-axis shows the
cross-entropy loss from a pretrained model, indicating sample difficulty. The graph reveals that IN-
FER consistently outperforms SRe2L across all levels of sample difficulty, from easy to challenging.
This demonstrates that INFER’s performance improvements are comprehensive, providing a robust
enhancement regardless of sample complexity.

Adaptability to Static Labeling. Figure 9 shows the Kullback-Leibler divergence (KLD) between
dynamic and static labels. A smaller KLD indicates that our method adapts better to static labeling,
making high compression rates feasible. In contrast, SRe2L relies heavily on dynamic labeling,
which is more memory-intensive. This explains why our method achieves high compression rates
while maintaining satisfactory performance.
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Table 6: Ensemble of architectures for soft label generation. “R”, “M”, “E”, and “S” represent
ResNet18 (He et al., 2016), MobileNetv2 (Sandler et al., 2018), EfficientNetB0 (Tan & Le, 2019),
and ShuffleNetV2 (Ma et al., 2018), respectively. 4 indicates the network architectures participating
in soft labels generation. " denotes the performance gain contributed by the current ensembles
compared with the baseline (only ResNet18). These experiments are conducted on CIFAR-100
dataset.

ipc = 10 ipc = 50
R M E S INFER " INFER+Dyn " INFER " INFER+Dyn "

4 37.6
±0.5

+ 0.0 46.4
±0.2

+ 0.0 57.8
±0.1

+ 0.0 69.0
±0.1

+ 0.0

4 4 42.7
±0.1

+ 5.1 53.2
±1.0

+ 6.8 61.3
±0.3

+ 3.5 70.2
±0.3

+ 1.2

4 4 4 44.1
±0.5

+ 6.5 53.0
±0.6

+ 6.6 61.8
±0.2

+ 4.0 69.0
±0.1

+ 0.0

4 4 4 4 45.2
±0.4

+ 7.6 53.4
±0.6

+ 7.0 62.8
±0.4

+ 5.0 68.9
±0.1

- 0.1

Figure 8: Performance on the validation set. The bars represent the number of samples correctly
classified by SRe2L and our INFER, in each CE loss interval.

Figure 9: Kullback-Leibler divergence (KLD) between dynamic labels and static labels.
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