
A AWE Pseudocode396

We provide the complete pseudocode for AWE in Algorithm 1.397

Algorithm 1 Automatic Waypoint Extraction (AWE)
input: D; // expert demonstrations
input: L, f, ⌘;
// waypoint selection via dynamic programming
def get waypoints(⌧, ⌘,M):

if ⌧ 62M then
// check if the endpoints are valid waypoints
if L(f({⌧.start, ⌧.end}), ⌧)  ⌘ then

M [⌧] = {⌧.start, ⌧.end};
// try all intermediate states as waypoints, and return the smallest set
else

// initialize length of current shortest subsequence
m 1;
// loop over all intermediate states as waypoints
for w 2 ⌧.mid do

Wbefore get waypoints(⌧.before(w), ⌘);
Wafter get waypoints(⌧.after(w), ⌘);
// dedupe w, as it is in both of them
W (Wbefore\{w}) [Wafter;
if |W| < m then

m |W|;
M [⌧] W;

returnM [⌧];

// construct dataset for next waypoint prediction
def preprocess traj(W, ⌧):

Daug {};
for (ot, xt) 2 ⌧ do

// select the nearest future waypoint in W
w W.next waypoint(t);
Daug Daug [{(ot, xt, w)};

return Daug;

Dnew {};
for ⌧ 2 D do

M {}; // memoize waypoints for efficient dynamic programming
Dnew Dnew [preprocess traj(get waypoints(⌧, ⌘,M), ⌧)

output: Dnew

B Hyperparameters398

B.1 Error Budget Threshold399

The only hyperparameter we need for waypoint selection is ⌘, the error threshold (Table 4). ⌘ is the400

same for all data sizes {30, 50, 100, 200} across all tasks on RoboMimic, i.e. ⌘ = 0.005. We also401

use a consistent ⌘ for both scripted data and human data on both tasks in the Bimanual Manipulation402

benchmark, i.e. ⌘ = 0.01. Two out of three real-world tasks also use the same ⌘; however, on the403

Coffee Making task, we opt for a lower ⌘ to select more waypoints due to the high-precision nature404

of the task.405

11

Table 4: Hyperparameter for waypoint selection.

Task Error thresholod (⌘)
Lift 0.005
Can 0.005
Square 0.005
Cube Transfer 0.01
Bimanual Insertion 0.01
Screwdriver Handover 0.01
Wiping Table 0.01
Coffee Making 0.008

B.2 ACT in Bimanual Simulation Suite406

We use the same hyperparameters as the ACT paper [6], shown in Table 5, except reducing the chunk407

size from 100 to 50. Intuitively, as the length of trajectories reduces after running AWE, the chunk408

size can also be reduced to represent the same wall-clock time.409

Hyperparameter ACT AWE +ACT
learning rate 1e-5 1e-5
batch size 8 8
encoder layers 4 4
decoder layers 7 7
feedforward dimension 3200 3200
hidden dimension 512 512
heads 8 8
chunk size 100 50
beta 10 10
dropout 0.1 0.1

Table 5: Hyperparameters of AWE +ACT and ACT. The only difference is reduction in chunk size

B.3 Diffusion Policy in RoboMimic410

We use the exact same set of training hyperparameters as Diffusion Policy [5] (Table 6). The only411

additional hyperparameter we added is the “control multiplier” (bottom row), which allows the412

low-level controller to take more steps to reach the target position at the inference time. This can be413

useful when predicted waypoints are far apart.414

C Implementation and Experiment Details415

C.1 Controller416

We use an Operation Space Controller (OSC) in RoboMimic, which allows position and orientation417

control of the robot’s end effector. It takes in the desired absolute position and orientation of the418

end-effector, and computes the necessary torques and velocities.419

We use the default joint position controller in the Bimanual Manipulation benchmark. On real-world420

tasks, we made no change to the controller except for the Coffee Making task, where we increased421

DT from 0.02 to 0.1. This allows the controller operate similarly to a blocking controller, which422

continues to execute low-level actions until reaching the desired joint position.423

C.2 Loss Function424

To determine the distance between potential waypoints and the ground truth trajectory, we project the425

ground truth state onto the linearly interpolated waypoint trajectory and compute the L2 distance for426

xyz position. For orientation, we convert the axis angles to quaternions and slerp two ground truth427

12

H-Param Lift Can Square
Ctrl Pos Pos Pos
To 2 2 2
Ta 8 8 8
Tp 10 10 10
#D-params 9 9 9
#V-params 22 22 22
#Layers 8 8 8
Emb Dim 256 256 256
Attn Dropout 0.3 0.3 0.3
Lr 1e-4 1e-4 1e-4
WDecay 1e-3 1e-3 1e-3
D-Iters Train 100 100 100
D-Iters Eval 100 100 100
Control Multiplier 10 1 10

Table 6: Hyperparameters for Diffusion Policy. Ctrl: position or velocity control To: observation
horizon Ta: action horizon Tp: action prediction horizon #D-Params: diffusion network number
of parameters in millions #V-Params: vision encoder number of parameters in millions Emb Dim:
transformer token embedding dimension Attn Dropout: transformer attention dropout probability Lr:
learining rate WDecay: weight decay (for transformer only) D-Iters Train: number of training diffu-
sion iterations D-Iters Eval: number of inference diffusion iterations Control Multiplier: multiplier
for the low-level control steps.

quaternions to determine the projection. Then we sum the position and orientation distances as the428

state loss. For the trajectory loss, we take a max over all states.429

C.3 Computation Cost430

Computing waypoints is inexpensive, especially compared to the training budget. The wall clock431

time for labeling one trajectory in Lift is 0.8 seconds on average.432

Figure 8: Performance scaling with demonstrations. We compare how the performance scale for
diffusion policy [5] with and ithout AWE. Training on waypoints generated by AWE consistently
improves the performance, with improvements being larger on the harder task (Square).

13

	Introduction
	Related Work
	Preliminaries
	Automatic Waypoint Extraction for Imitation Learning
	Experiments
	Bimanual Simulation Suite
	RoboMimic Suite
	Real-World Bimanual Tasks
	Analysis

	Conclusion
	AWE Pseudocode
	Hyperparameters
	Error Budget Threshold
	ACT in Bimanual Simulation Suite
	Diffusion Policy in RoboMimic

	Implementation and Experiment Details
	Controller
	Loss Function
	Computation Cost

