
Under review as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 Bayesian Networks and Predictive Coding 2

2.1 Predictive Coding Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Causal Inference via Predictive Coding 3

3.1 Structural Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Structure Learning 6

4.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

5 Related Work 9

6 Conclusion 9

Appendix 14

A Learning on PC Graphs 15

B Proof of Theorem 1 15

C Interventional and Counterfactual Inference 16

D Experiments on Common Causal Graphs 19

E Classification Experiments 35

F Robustness Experiments 36

G Structure Learning 37

G.1 Experiments on Random Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

G.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

H End-to-end Causal Learning 43

14



Under review as a conference paper at ICLR 2024

Algorithm 1 Learning a datapoint Sdata = si1 , . . . , sin
Require: (xi1,t, . . . ,xin,t) is fixed to (si1 , . . . , sin) for every t.

1: for t = 1 to T do

2: for each vertex i do

3: update xi,t to minimize Ft via Eq. equation 8
4: end for

5: if t = T then

6: update every Wi,j to minimize Ft via Eq. equation 9.
update every ai,j to minimize Ft via Eq. equation 10.

7: end if

8: end for

Appendix

A LEARNING ON PC GRAPHS

Given a labeled point, two phases are needed to perform a single weight update. The first one,
called inference, is used both in the training phase, to compute the best configuration of value nodes
to perform a weight update, and in the prediction phase, to compute an output when provided a
specific input. The inference phase corresponds to Query by conditioning, as described in Section 2.
During this phase, the weights are frozen, and only the internal value nodes are updated to minimize
the free energy. The second phase happens after the inference has converged, and hence the ’best‘
neural activities are computed. Here, the opposite happens: all the value nodes are now frozen,
and a single weight update is performed to further minimize the same energy function. If we are
considering models with an adjacency matrix A, we also update its parameters. We will now provide
a more formal description of the two phases.

Let us assume we are presented with a datapoint Sdata = si1 , . . . , sin . First, the value nodes of the
vertices vi1 , . . . , vin are fixed to be equal to the entries of Sdata for the whole duration of the training
process, i.e., for every t. Second, the variational free energy is minimized via gradient descent on the
value nodes, During this phase, the weights are fixed, and the value nodes are updated as follows:

�xi,t = ��
@Ft

@xi,t
= � · (�ei,t + f 0(xi,t)

P
k2ch(i)ek,tWi,k), (8)

where � is the a positive real number that indicates a learning rate. When the inference phase is
completed, the value nodes get fixed, and a single weight update is performed as follows:

�Wi,j = �↵ · @Ft

@Wi,j
= ↵ · ei,T f(xj,T ). (9)

To conclude, the update of the entries of the adjacency matrix (without the priors), are the following:

�ai,j = ��
@Ft

@ai,j
= � · ei,TW>f(xj,T ). (10)

We provide the pseudocode of the training process on PC graphs in Algorithm 1.

B PROOF OF THEOREM 1

Proof of Theorem 1. We seek to prove:

E(xj | do(xi = s)) = E(xj,T | 8t : xi,t = s, ei,t = 0).

Let G0 be the mutilated graph structure of the Bayesian network G after a do-operation. Then, by
definition of the expectation of interventional distributions, we have that

E(xj | do(xi = s))G = E(xj | xi = s)G0 ,

15



Under review as a conference paper at ICLR 2024

where the expectations are computed, respectively, on graph G and G0. We utilize the value node
update rule for �xi,t defined in Eq. 8. Our aim is to demonstrate that the node values in the PC
graphs defined on G (with ei = 0) and G0 follow the same update dynamics and thus have identical
distributions.

Case 1: Parents of the Intervention Node xi

In G, the value node update rule for any parent xj of xi is:

�xG
j,t = � · (�ej,t + f 0(xj,t)

X

k2ch(j)

ek,tWj,k).

When ei = 0, the term involving ei is omitted, yielding:

�xG
j,t = � · (�ej,t + f 0(xj,t)

X

k2ch(j)\{i}

ek,tWj,k).

In G0, xi is removed due to the do-operation, resulting in an identical update rule:

�xG0

j,t = �xG
j,t.

Case 2: The Intervention Node xi Itself

In both G and G0, the value xi remains constant at s, making its update rule irrelevant.

Case 3: Children of the Intervention Node xi

For a child xj of xi in G, the update rule is:

�xG
j,t = � · (�ej,t + f 0(xj,t)

X

k2ch(j)

ek,tWj,k).

This update rule remains unchanged in G0:

�xG0

j,t = �xG
j,t.

By addressing all three cases, we show that value nodes in G (with ei = 0) and G0 follow identical
update dynamics. Therefore, the distributions of remaining variables in G0 and G (with ei = 0) are
the same, completing the proof.

C INTERVENTIONAL AND COUNTERFACTUAL INFERENCE

Here, we provide a detailed discussion on the experiments proposed in Section 3, where we test
the ability of PC graphs to model interventional and counterfactual queries. The core of decision
making is to be able to determine which intervention/action results in an outcome of interest. As
such, being able to answer causal queries on a variety of DAG structures and intervention nodes
in a DAG is essential. The causal inference approach that we propose only requires knowledge
of the causal structure in the form of parent-child relationships among endogenous variables x. We
assume the parameters of the structural equations, F , to be unknown. We make the causal sufficiency
assumption, meaning that there is no hidden confounding (Peters et al., 2017). This is achieved by
having an independent exogenous variable for each endogenous variable.

Setup. We test the associational, interventional, and counterfactual query capabilities of our
method on different common causal graph structures with N endogenous nodes, namely (i) col-
lider (N = 3), (ii) confounder (N = 3), (iii) mediator (N = 3), (iv) chain (N = 3), (v) fork
(N = 3), (vi) M-bias (N = 5), and (vii) butterfly bias (N = 5). Each of these structures is visual-
ized in Fig. 7. For every structure, we generate datasets from a linear SCM with additive Gaussian
noise and no restrictions on the location and scale parameters. We use observational training data,
X, to fit the PC model. We learn each structural equation, Fi, via a training scheme in which we
infer the exogenous variables, u, given observed endogenous variables, x, from the training dataset.
As such, the SCM is fitted by estimating the parameters of each exogenous variable according to
ui ⇠ N (µi,�i). This way, we learn to approximate the distribution of the SCM’s exogenous vari-
ables u. Note that during the training process, we do not use the factual data once the abduction step

16



Under review as a conference paper at ICLR 2024

(a)    Causal graph: fork

(e)    Causal graph: mediator(d)    Causal graph: chain

(b)    Causal graph: collider (c)    Causal graph: confounder

(f)    Causal graph: M-bias

Figure 7: Additional graph structures used in experiments of Section 3. White nodes are endogenous
variables and observed. Shaded nodes denote independent, exogenous variables for which we do not
observe data unless they have no parents in which case xi := ui.

is completed. Instead, we replace node values of factual data with inferred values, x̂, by applying
the currently learned set of structural equations F̂ to the inferred exogenous node values, û. We
use associational (obs), interventional (do), and counterfactual (cf ) test datasets {Xobs, Xdo, Xcf

} to evaluate our method. The interventions required for Xdo and Xcf are randomly sampled from
µi + �(xi) ⇥ {�1.0,�0.5,�0.1, 0, 0.1, 0.5, 1.0} to ensure realistic intervention values in the sup-
port of the each observed marginal distribution. Here, µi and �(xi), represent the empirical mean
and standard deviation of xi from the training data. To generate an interventional or counterfactual
sample, we perform do-operation on individual nodes only, one variable at a time.

For every SCM, we repeat experiments over five different seeds, each using a different PC model
initialization. We report error metrics with mean and standard deviation, both multiplied by 100 for
clarity. The PC graph is trained with 3000 samples for 1000 epochs with a batch size of 128. We
use the vanilla stochastic gradient descent (SGD) optimizer for the node values with a learning rate
of � = 3e � 3 and T = 8 iterations for inference of node values during training and testing. For
the weights, we use the AdamW optimizer with a learning rate of ↵ = 8e � 3 and a weight decay
of �w = 1e � 4. For linear data, we fit the model using one-dimensional linear layers for each
connection between the endogenous and exogenous variables of the SCM according to the causal
structure defined given by the adjacency matrix A. In the case of linear data, our approach does
not require the use of neural networks with many hidden layers. This makes our causal PC graph
transparent, efficient, and lightweight, because we only learn parameters that define the structural
equations F of the true data generating SCM. For the nonlinear experiments, we do not assume any
detailed parametric knowledge about the SCMs and our method is feasible with general MLPs as
structural equations. Hence, when learning nonlinear data, we replace the linear layers with small
MLPs. Each MLP has 2 hidden layers with 16 neurons each and we use ELU (Clevert et al., 2015) as
activation function. Note that, despite the large amount of epochs considered, every model converges
in less than two minutes. All results are averaged over five random seeds.

Metrics. We now specify the metrics used to evaluate performance in estimating associational,
interventional, and counterfactual distributions, as detailed in Section 3. Observational metrics are
computed by comparing the true and estimated values of exogenous variables, using the available
endogenous node data. Furthermore, note that for interventions and counterfactuals only the descen-
dants, des(xi), of an intervened node xi are affected. Therefore, the causal order of a DAG becomes

17



Under review as a conference paper at ICLR 2024

important when assessing performance on interventional and counterfactual queries. As such, we
report metrics with respect to the descendants of the intervention node, as per the adjacency matrix.
We follow the works in the related literature (Sánchez-Martin et al., 2022; Chao et al., 2023) and
report the following metrics:

• mean absolute error (MAE),

• maximum mean discrepancy (MMD) (Gretton et al., 2012),

• estimation squared error for the mean (MeanE),

• estimation squared error for standard deviation (StdE),

• mean of the squared error (MSE),

• standard deviation of the squared error (SSE).

We use MAE as a generic metric to assess the error between the estimated query and the ground
truth query. The MMD metric is a sample-based distance measure between distributions. We use
MMD to assess the match between the estimated distribution and the true distribution. The idea is
to compare the means of both samples, bX and X, in a higher-dimensional feature space defined by
a kernel function k.

For a pair of samples from each distribution, we compute the MMD as follows:

MMD(X, bX) =

�����
1

M

MX

i=1

�(xi)� 1

M

MX

i=1

�(x̂i)

�����

2

(11)

=
1

M2

MX

i=1

MX

j=1

k(x̂i, x̂j)� 2

M2

MX

i=1

MX

j=1

k(xi, x̂j) +
1

M2

MX

i=1

MX

j=1

k(xi,xj). (12)

Here, � is the feature map of the kernel function k, and xi and x̂i are the i-th samples from the
ground truth and the inferred data, respectively. Each x̂i and xi is a vector of N features, one for
each endogenous node in the DAG. The kernel function k measures the similarity between data
points in the feature space. In our implementation, we use a mixture of RBF (Gaussian) kernels
with varying bandwidth parameters (Gretton et al., 2012).

We use MeanE and StdE to assess the estimated interventional distributions. MeanE and StdE
measure the average squared error between the true and estimated mean and standard deviation of
an interventional distribution, respectively. Both metrics are computed as averages across a set of
intervention indices, I, that correspond to nodes in the DAG that have descendants and thus are not
leaf nodes.

Given the empirical means, E [xi|do(xj)] and E [x̂i|do(xj)], and the empirical standard deviations,
SD [xi|do(xj)] and SD [x̂i|do(xj)], for node, xi, with intervention on node, xj , with index j, the
MeanE and StdE are computed in the following way:

MeanE =
1

|I|
X

j2I

1

|des(j)|
X

i2des(j)

(E [xi|do(xj)]� E [x̂i|do(xj)])
2, (13)

StdE =
1

|I|
X

j2I

1

|des(j)|
X

i2des(j)

(SD [xi|do(xj)]� SD [x̂i|do(xj)])
2. (14)

We denote the number of intervention nodes in the DAG as |I|, and des(j) is the the set of de-
scendants of the intervention node with index j. Finally, to assess the performance for the coun-
terfactuals, we report the MSE and SSE for the descendants of an intervention node with index j.
Both metrics are computed as averages across all intervention nodes in I. We use the Frobenius

norm, Tj = kxdes(j) � x̂des(j)kF , to measure the difference between true and estimated values of a
counterfactual query with intervention on node index j. Defining the average of the empirical mean

18



Under review as a conference paper at ICLR 2024

of Tj as E [Tj ] and the average of the empirical standard deviation of Tj as SD [Tj ], we retrieve the
MSE and SSE metrics as:

MSE =
X

j2I

1

|des(j)| E [Tj ] , (15)

SSE =
X

j2I

1

|des(j)| SD [Tj ] . (16)

To summarize, for associational inference, we report MMD on the observational test set. For in-
terventional inference, we report MMD, MeanE, and StdE. For counterfactual inference, we report
MSE and SSE. Additionally, we report MAE on the associational and interventional inference as
well as MSE and SSE for our method’s estimates of exogenous noise distributions, which are in-
ferred in the abduction step while performing counterfactual inference. While not all the above
metrics are required to evaluate a model’s causal inference performance, we still include them for
benchmark comparison against state-of-the-art methods (Sánchez-Martin et al., 2022; Khemakhem
et al., 2021; Karimi et al., 2020). Across all metrics, lower values indicate better performance.

D EXPERIMENTS ON COMMON CAUSAL GRAPHS

To generate data from a causal graph, we first sample a value for each of the N exogenous variables
that follow ui ⇠ N (µi,�i). Then, we use the deterministic structural equation, Fi, of node xi to
compute its value as xi := Fi(par(xi),ui). Each Fi is a linear equation with additive noise of the
form Fi =

P
j2par(xi)

wjixj+ui, where par(xi) denotes the direct parents of node xi according to
the causal graph structures provided in Fig. 7. We follow the same procedure for the non-linear SCM,
however, instead of using linear structural equations, Fi, we use non-linear structural equations with
additive noise. The non-linear structural equations used to generate the non-linear SCM data are
shown in Table 1.

Graph F1 := X1 F2 := X2 F3 := X3 F4 := X4 F5 := X5

Fork U1 �1 + 3
1+exp (�2X1)

+ U2 0.25X2
1 + U3 - -

Collider U1 U2 0.05X1 + 0.25X2
2 + U3 - -

Confounder U1 �1 + 3
1+exp (�2X1)

+ U2 X1 + 0.25X2
2 + U3 - -

Chain U1 �1 + 3
1+exp (�2X1)

+ U2 0.25X2
2 + U3 - -

Mediator U1 1� cosh (0.5X1) + U2 X1 + 0.25X2
2 + U3 - -

M-bias U1 U2 0.5X2
1 �X2 + U3 X1 + 0.5X2

1 + U4 �1.5X2
2 + U5

Butterfly U1 U2 0.5X2
1 �X2 + U3 X1 + 0.5X2

1 � 0.25X2
3 + U4 �1.5X2

2 + 0.25X2
3 + U5

Table 1: Structural equations for non-linear SCM data generation.

For the causal inference experiments with the common causal graphs in Fig. 7 as well as the butterfly
graph presented in the main body of the paper, we focused on performing interventions on nodes that
are interesting. By interesting we mean that we want to show experimental results for interventions
and counterfactuals on nodes that are neither root nodes nor leaf nodes. The reason being that
interventions on such nodes either correspond to (a) regular conditional (associational) queries, as
is the case with interventions on root nodes or (b) counterfactual queries that are not differentiable
from interventional queries, as is the case for interventions on leaf nodes. Consequently, we provide
results for the following causal inference scenarios: (i) chain graph with intervention on the node
x2, (ii) confounder graph with intervention on node x2, (iii) collider graph with intervention on root
node x1, (iv) fork graph with intervention on node x1, (v) mediator graph with intervention on node
x2, (vi) M-bias graph with intervention on node x1, and (vii) butterfly bias graph with intervention
on node x3. The x3 intervention in the butterfly graph is interesting and challenging because x3

is a collider and confounder at the same time. Finally, to provide a better understanding of the
datasets, what an intervention entails, and how the associational, interventional, and counterfactual
distributions differ from each other for each of the causal graphs depicted in Fig. 7, we provide the

19



Under review as a conference paper at ICLR 2024

histograms of each graph-intervention scenario in Figs. 11 to 14. The distribution of each exogenous
variable is depicted in the first row as ui. The histograms show the difference between observational
distribution (second row), interventional distribution (third row), and counterfactual distribution (last
row), which are denoted as xobs, xdo(xj)

i , xxi
0

i , respectively (for the purpose of these figures).

Results. The experiments in this section display that our method is able to infer correctly asso-
ciational, interventional, and counterfactual distributions. More specifically, we show how we can
(1) learn the parameters of the SCM (structural equations and exogenous distributions) and (2) de-
ploy the error nodes of a fitted PC model in such a way that allows us to manipulate a structural
equation to answer causal queries. First, in Figs. 15 and 16, we show the convergence of our pre-
dictive coding network while learning the parameters of the SCM for all three and five node causal
graphs. In the left column, we can see that our method converges for all graph structures and that we
do not overfit the training data. Moreover, we observed that a low free energy does not correspond
to a converged model. The MAE continues to decrease, while the energy changes minimally after
50 epochs. The right column shows that the convergence is stable and smooth among all nodes
in the causal graph. We show the free energy by node for all exogenous and endogenous variables.
Second, in Figs. 17 and 18, we show the causal inference performance of our method by tracking the
MAE for associational, interventional, and counterfactual test queries throughout the SCM learning
process. We perform interventions on all types of nodes to show that our model is able to correctly
infer causal queries on: root nodes with no parents, intermediate nodes with parents and children,
and leaf nodes with no children. Note that the left column represents the associational inference
error on the exogenous nodes only because during training we are provided with data of the en-
dogenous variables. Third, in Figs. 19 and 20, we plot the MAE metric for test interventions and
counterfactuals during the SCM learning process. We choose intervention nodes that are non-trivial
by selecting, wherever available, intervention nodes that are neither root nor leaf nodes.

To conclude, in Table 2, we summarize our results and compare our method to state-of-the-art mod-
els on all common causal graphs of this work. First, we see that our method consistently outperforms
all state-of-the-art methods, on all causal graph structures, for all types of causal queries. Second,
we see that a further advantage of our method is that our PC network is parameter efficient as it
requires only a fraction of the parameters required for the state-of-the-art methods (Sánchez-Martin
et al., 2022; Khemakhem et al., 2021; Karimi et al., 2020), which employ thousands of parameters
to infer causal distributions. For example, in the linear case, we only need to learn the parameters of
the exogenous distributions plus one parameter for each adjacency weight that connects two nodes
in the causal graphs.

Discussion. Our proposed method does not require more parameters than the number of param-
eters that define the true structural equations of the SCM. As such, our model is lightweight and
simple to train. Having explored various hyperparameters, we found that our model is not prone to
overfitting nor does it require hyperparameter tuning or model selection to infer causal distributions.
The metrics reported in Table 2 show that our method is consistent with the increasing complexity
of DAG structures and able to well capture observational, interventional and counterfactual dis-
tributions for all graphs. We experimented with varying Gaussian distribution parameters for the
exogenous variables and found that our causal inference approach is robust to arbitrary Gaussians.
As such, our method does not require the assumption of standard normally distributed exogenous
variables as is the case in some of the related literature (Sánchez-Martin et al., 2022; Saha & Garain,
2022; Chao et al., 2023). Furthermore, our model is minimal as in being the simplest model that
adequately explains the data which is shown by the number of parameters our model architectures
require. Therefore, we provide an Occam’s razor like solution (Blumer et al., 1987) for causal in-
ference with linear SCMs. Finally, we do not rely on complex approximators, such as GNN, VAE,
gradient boosted regressor or normalizing flow models that require extensive hyperparameter tuning,
to learn causal relationships between the observed variables.

20



Under review as a conference paper at ICLR 2024

Figure 8: Causal hierarchy of distributions for chain SCM with intervention on x2. First row: Exoge-
nous distribution. Second row: Associational distribution. Third row: Interventional distribution.
Last row: Counterfactual distribution.

21



Under review as a conference paper at ICLR 2024

Figure 9: Causal hierarchy of distributions for confounder SCM with intervention on x2. First
row: Exogenous distribution. Second row: Associational distribution. Third row: Interventional
distribution. Last row: Counterfactual distribution.

22



Under review as a conference paper at ICLR 2024

Figure 10: Causal hierarchy of distributions for collider SCM with intervention on x1. First row:
Exogenous distribution. Second row: Associational distribution. Third row: Interventional distribu-
tion. Last row: Counterfactual distribution.

23



Under review as a conference paper at ICLR 2024

Figure 11: Causal hierarchy of distributions for fork SCM with intervention on x1. First row: Exoge-
nous distribution. Second row: Associational distribution. Third row: Interventional distribution.
Last row: Counterfactual distribution.

24



Under review as a conference paper at ICLR 2024

Figure 12: Causal hierarchy of distributions for mediator SCM with intervention on x2. First row:
Exogenous distribution. Second row: Associational distribution. Third row: Interventional distribu-
tion. Last row: Counterfactual distribution.

25



Under review as a conference paper at ICLR 2024

Figure 13: Causal hierarchy of distributions for M-bias SCM with intervention on x1. First row:
Exogenous distribution. Second row: Associational distribution. Third row: Interventional distribu-
tion. Last row: Counterfactual distribution.

26



Under review as a conference paper at ICLR 2024

Figure 14: Causal hierarchy of distributions for butterfly SCM with intervention on x3. First row:
Exogenous distribution. Second row: Associational distribution. Third row: Interventional distribu-
tion. Last row: Counterfactual distribution.

27



Under review as a conference paper at ICLR 2024

(a) 
Chain

(b) 
Confounder

(c) 
Collider

(d) 
Fork

(e) 
Mediator

Figure 15: Convergence of energy and MAE by node for causal graphs with three nodes. Left
column: Convergence of total train and test MAE in comparison to free energy. Right column:
Energy by node.

28



Under review as a conference paper at ICLR 2024

Figure 16: Convergence of energy and MAE by node for causal graphs with five nodes. Left column:
Convergence of total train and test MAE in comparison to free energy. Right column: Energy by
node.

29



Under review as a conference paper at ICLR 2024

(a) Chain

(b) Confounder

(c) Collider

(d) Fork

(e) Mediator

Figure 17: Causal inference performance throughout SCM learning process. We track MAE for
all interventions of all three node causal graphs. For association plots (left column) inference is
performed on exogenous nodes given factual test data.

30



Under review as a conference paper at ICLR 2024

(a) M-bias

(b) Butterfly bias

Figure 18: Causal inference performance throughout SCM learning process. We track MAE for
all interventions of all five node causal graphs. For association plots (left column) inference is
performed on exogenous nodes given factual test data.

31



Under review as a conference paper at ICLR 2024

Figure 19: Performance of interventional and counterfactual inference throughout SCM learning
process. For each three node causal graph we choose a specific intervention node, if available a
node that is neither a root nor leaf node, and track MAE by node.

32



Under review as a conference paper at ICLR 2024

Figure 20: Performance of interventional and counterfactual inference throughout SCM learning
process. For each five node causal graph we choose a specific intervention node, if available a node
that is neither a root nor leaf node, and track MAE by node.

33



Under review as a conference paper at ICLR 2024

Observational Interventional Counterfactual
SCM Model MMD # MMD # MeanE # StdE # MSE # SSE # Params. # #

chain (LIN) Ours 0.02 ± 0.02 0.09 ± 0.11 0.25 ± 0.30 0.00 ± 0.00 0.97 ± 0.52 0.68 ± 0.36 8

MultiCVAE 7.98 ± 1.16 62.66 ± 6.47 75.74 ± 3.94 40.53 ± 1.09 57.74 ± 12.24 25.92 ± 7.01 7145
CAREFL 14.81 ± 0.63 19.70 ± 0.28 1.29 ± 0.40 89.53 ± 1.88 36.58 ± 5.17 29.78 ± 4.10 1488

VACA 4.73 ± 1.01 14.65 ± 4.54 8.34 ± 2.43 19.78 ± 0.72 98.21 ± 8.85 6.08 ± 2.06 2045

chain (NLIN) Ours 0.35 ± 0.03 0.34 ± 0.30 0.26 ± 0.22 0.02 ± 0.01 5.81 ± 1.36 6.90 ± 0.76 648

MultiCVAE 9.25 ± 3.33 86.64 ± 6.13 129.40 ± 8.63 86.03 ± 1.65 22.66 ± 5.05 12.39 ± 2.50 7145
CAREFL 15.56 ± 4.35 12.01 ± 1.89 1.00 ± 0.26 84.36 ± 4.43 34.12 ± 9.98 27.53 ± 6.93 1488

VACA 1.97 ± 0.82 8.86 ± 5.90 0.76 ± 0.39 18.03 ± 0.56 8.24 ± 1.94 8.04 ± 0.44 2045

confounder (LIN) Ours 0.07 ± 0.08 0.23 ± 0.32 1.07 ± 1.35 0.02 ± 0.02 2.18 ± 1.00 1.57 ± 0.73 9

MultiCVAE 4.35 ± 0.63 56.68 ± 3.86 135.05 ± 5.03 45.62 ± 1.00 52.40 ± 11.85 23.11 ± 3.65 7209
CAREFL 16.48 ± 0.72 26.04 ± 1.03 0.91 ± 0.38 96.90 ± 2.56 32.59 ± 6.41 32.05 ± 10.56 1488

VACA 4.48 ± 1.59 10.94 ± 6.06 5.43 ± 1.56 17.85 ± 0.49 78.80 ± 14.23 5.34 ± 1.58 2454

confounder (NLIN) Ours 0.34 ± 0.11 0.09 ± 0.05 0.17 ± 0.12 0.03 ± 0.01 4.64 ± 1.02 5.65 ± 0.85 969

MultiCVAE 7.70 ± 0.55 61.17 ± 3.60 146.56 ± 11.79 76.75 ± 1.38 29.15 ± 4.46 16.64 ± 2.05 7209
CAREFL 13.90 ± 2.48 12.94 ± 2.11 1.02 ± 0.17 84.52 ± 4.19 32.94 ± 12.42 25.37 ± 8.61 1488

VACA 4.43 ± 3.72 8.75 ± 11.57 1.75 ± 2.55 19.18 ± 1.57 19.27 ± 2.89 8.70 ± 1.01 2454

collider (LIN) Ours 0.01 ± 0.00 0.04 ± 0.03 0.11 ± 0.08 0.01 ± 0.00 1.48 ± 0.08 1.10 ± 0.06 8

MultiCVAE 10.41 ± 1.25 47.12 ± 10.20 58.73 ± 3.57 68.06 ± 3.22 81.63 ± 15.99 49.35 ± 7.12 7145
CAREFL 12.39 ± 0.73 10.50 ± 0.14 1.15 ± 0.31 94.69 ± 3.53 31.06 ± 5.18 30.51 ± 5.13 1488

VACA 4.13 ± 2.70 9.79 ± 6.99 4.96 ± 3.02 34.51 ± 0.78 97.74 ± 21.20 12.53 ± 2.82 2045

collider (NLIN) Ours 0.33 ± 0.06 0.02 ± 0.01 0.03 ± 0.02 0.01 ± 0.01 2.05 ± 0.28 2.86 ± 0.29 648

MultiCVAE 14.01 ± 5.91 62.31 ± 10.55 70.09 ± 16.79 78.85 ± 3.06 45.48 ± 5.72 33.83 ± 4.77 7145
CAREFL 13.38 ± 2.37 9.06 ± 1.22 0.64 ± 0.16 96.07 ± 4.46 29.72 ± 7.02 29.87 ± 8.78 1488

VACA 9.15 ± 10.17 11.32 ± 4.45 2.69 ± 1.06 34.03 ± 0.68 12.67 ± 1.90 8.07 ± 1.10 2045

fork (LIN) Ours 0.03 ± 0.01 0.04 ± 0.03 0.06 ± 0.06 0.01 ± 0.00 2.02 ± 0.41 1.41 ± 0.32 8

MultiCVAE 11.28 ± 1.44 46.91 ± 10.52 59.04 ± 4.35 67.76 ± 3.32 81.16 ± 15.48 49.10 ± 7.04 7145
CAREFL 11.39 ± 0.65 10.44 ± 0.47 0.77 ± 0.25 94.62 ± 3.68 29.51 ± 5.34 31.22 ± 2.88 1488

VACA 5.26 ± 3.12 9.19 ± 7.00 4.67 ± 2.92 34.41 ± 0.72 97.62 ± 23.12 13.97 ± 3.10 2045

fork (NLIN) Ours 0.23 ± 0.03 0.04 ± 0.03 0.01 ± 0.01 0.03 ± 0.02 4.56 ± 1.12 5.00 ± 1.18 648

MultiCVAE 9.57 ± 2.55 57.24 ± 7.56 62.72 ± 4.39 18.06 ± 0.98 143.31 ± 25.70 64.05 ± 12.13 7145
CAREFL 11.72 ± 2.31 12.57 ± 2.07 0.93 ± 0.29 66.72 ± 2.58 88.89 ± 3.00 70.55 ± 1.70 1488

VACA 5.22 ± 1.18 6.85 ± 2.79 2.00 ± 0.72 13.73 ± 0.25 103.97 ± 14.61 39.92 ± 6.15 2045

mediator (LIN) Ours 0.02 ± 0.01 0.08 ± 0.08 0.28 ± 0.28 0.01 ± 0.00 1.59 ± 0.24 1.11 ± 0.18 9

MultiCVAE 5.93 ± 0.88 55.31 ± 3.57 134.42 ± 5.23 46.64 ± 1.50 52.18 ± 11.70 23.19 ± 3.89 7209
CAREFL 13.60 ± 0.64 26.04 ± 1.03 0.91 ± 0.38 96.90 ± 2.56 34.93 ± 8.19 36.05 ± 13.23 1488

VACA 6.25 ± 2.06 10.94 ± 6.06 5.43 ± 1.56 17.85 ± 0.49 78.69 ± 14.21 5.61 ± 1.70 2454

mediator (NLIN) Ours 0.27 ± 0.06 0.05 ± 0.04 0.04 ± 0.05 0.03 ± 0.03 5.55 ± 0.56 6.62 ± 0.95 969

MultiCVAE 10.39 ± 3.34 56.63 ± 13.31 46.48 ± 2.68 53.77 ± 6.83 1187.64 ± 109.46 2044.01 ± 334.22 7209
CAREFL 17.10 ± 4.38 13.22 ± 1.30 3.21 ± 0.53 89.96 ± 3.33 1001.70 ± 2.95 1753.10 ± 2.59 1488

VACA 4.90 ± 2.92 16.87 ± 3.64 6.38 ± 1.07 21.08 ± 0.74 1072.91 ± 13.33 1732.35 ± 2.07 2454

M-bias (LIN) Ours 0.02 ± 0.00 0.07 ± 0.07 0.09 ± 0.12 0.01 ± 0.00 1.75 ± 0.12 1.16 ± 0.09 14

MultiCVAE 16.20 ± 2.69 63.95 ± 7.35 58.02 ± 1.90 32.36 ± 2.73 47.15 ± 10.02 19.55 ± 4.99 11951
CAREFL 19.47 ± 1.63 15.62 ± 0.74 0.92 ± 0.23 67.21 ± 3.04 26.39 ± 2.63 20.73 ± 0.58 3080

VACA 2.50 ± 0.46 6.60 ± 1.53 3.35 ± 0.93 12.53 ± 0.22 62.26 ± 4.97 6.53 ± 2.36 3681

M-bias (NLIN) Ours 0.31 ± 0.01 0.19 ± 0.04 0.31 ± 0.09 0.06 ± 0.04 7.83 ± 0.71 6.27 ± 0.44 1294

MultiCVAE 20.06 ± 6.48 397.97 ± 12.76 4197.87 ± 98.51 205.02 ± 36.38 268.85 ± 5.36 64.28 ± 7.94 11951
CAREFL 21.09 ± 3.33 258.57 ± 2.50 189.33 ± 5.01 105.67 ± 2.86 240.42 ± 1.67 80.93 ± 0.58 3080

VACA 3.01 ± 0.65 384.20 ± 7.41 191.00 ± 3.45 13.97 ± 0.59 234.23 ± 11.24 52.50 ± 3.51 3681

butterfly (LIN) Ours 0.14 ± 0.02 0.21 ± 0.14 0.41 ± 0.25 0.03 ± 0.00 4.66 ± 1.33 3.24 ± 1.02 16

MultiCVAE 16.85 ± 3.31 83.44 ± 10.15 139.98 ± 5.83 79.49 ± 11.86 55.45 ± 3.50 24.49 ± 2.64 12079
CAREFL 22.03 ± 2.28 38.93 ± 1.16 1.23 ± 0.17 88.59 ± 3.31 23.52 ± 3.20 18.14 ± 1.48 3080

VACA 4.16 ± 0.55 6.89 ± 1.25 3.83 ± 0.90 8.73 ± 0.11 57.40 ± 3.84 4.16 ± 0.94 4499

butterfly (NLIN) Ours 0.32 ± 0.01 0.73 ± 0.24 0.67 ± 0.25 0.58 ± 0.42 19.77 ± 1.43 17.46 ± 1.55 1936

MultiCVAE 17.28 ± 4.59 119.05 ± 16.82 2067.99 ± 86.70 2107.67 ± 398.55 355.31 ± 7.86 262.08 ± 2.56 12079
CAREFL 24.79 ± 3.97 30.66 ± 2.30 2.68 ± 0.39 85.71 ± 3.33 297.32 ± 3.19 267.70 ± 1.06 3080

VACA 4.01 ± 0.41 13.47 ± 3.77 3.65 ± 1.07 12.11 ± 1.24 385.53 ± 17.39 235.63 ± 3.87 4499

Table 2: Comparing our model with state-of-the-art methods across various SCM structures for
observational, interventional, and counterfactual distributions. All values are scaled by 100. Mean
and standard deviation are calculated over five seeds. LIN and NLIN denote linear and nonlinear
SCMs, respectively.

34



Under review as a conference paper at ICLR 2024

E CLASSIFICATION EXPERIMENTS

Here, we provide all the information needed to reproduce the results of the classification experiments
provided in the main body of the paper. Furthermore, we also provide a more detailed study on how
the results are affected when changing the parameters of the model.

Setup. The primary focus of our experiments is on the training of fully-connected neural network
models with 2000 neurons on two datasets: MNIST and FashionMNIST. The chosen architecture
for the models is a simple fully connected PC graph. For the models, we conducted an exhaustive
hyperparameter search. We opted for a grid search approach, examining several combinations of
learning rates for the weights and the latent variables, and subsequently training the models for each
combination. The chosen learning rates for the weights were {0.0001, 0.00005, 0.00001}. As for
the latent variables, the learning rates tested were {1, 0.5}, and every batch of 128 examples was
observed for T 2 {3, 5, 7} iterations. To optimize the weights of our models, we have used the Adam
optimizer; for the value nodes, we have used SGD; as an activation function, ReLU. To conclude,
have also tested incremental predictive coding (iPC), a variation of PC that updates the weight
parameters at every time step t. This method has been shown to improve both the performance
and the stability of predictive coding models (Salvatori et al., 2022c). Training was performed for
20 epochs for each combination of learning rates in the grid search. It is important to note that
training always converged before the 20th epoch, ensuring a stable model for each hyperparameter
combination. At every epoch of the training process, we have computed the test accuracy using both
interventional queries and conditional queries.

Results. The results of our experiments showed a clear pattern: regardless of the combination of
hyperparameters, interventional queries consistently outperformed conditional queries. This pattern
was observed across all models and datasets, suggesting that interventional queries might be a more
effective tool for PC graphs. The best results were obtained using a learning rate of the value nodes
of 0.5, and T = 3. The learning rate of the parameters slightly affected the performance, unless we
consider values outside the proposed range. As a learning algorithm, we observe that iPC is indeed
more performing and stable, as shown in Figure 21.

FashionMNIST MNIST

PC iPCiPCPC

Figure 21: Difference in performance and stability of iPC and PC on classification tasks.

35



Under review as a conference paper at ICLR 2024

F ROBUSTNESS EXPERIMENTS

Recent work has shown that available deep-learning-based methods fail to obtain sufficient perfor-
mance on counterfactual queries under specific circumstances, and proposed novel techniques to
overcome this shortcoming (De Brouwer, 2022). Here, we show that predictive coding achieves the
same state-of-the-art results, while requiring a simpler architecture with no ad hoc training tech-
niques. To do so, we test PC graphs on the colored-MNIST dataset introduced in (De Brouwer,
2022). The dataset consists of tuples (x,uz, T ,y, T 0,y0), where x is the original MNIST image,
T is the assigned treatment, uz is a hidden exogenous random variable that determines the color of
the observed outcome image y, and y0 is the counterfactual response obtained when applying the
alternative treatment T 0.

Setup. To replicate the experiment, we have used a PC graph with a structure that is equivalent
to the 4-nodes SCM used in the original work, and trained it with Algorithm 1. We used nodes
with the ground truth number of dimensions (i.e., 784, 1, and 784 respectively) to represent the
observed variables x, T , and y. Instead, we left the dimension of the remaining hidden node h
as a hyperparameter dh as the value uz is never observed by the model. The edges between the
nodes in the PC graph represent feedforward networks. Figure 5 summarizes the architecture used.
We experimented with different depths, widths, and activation functions, without experiencing any
unexpected results (e.g., deeper and wider networks would have slightly better performance). The
architecture can be seen as an encoder-decoder structure. The nodes x, T , and uz are encoded
using respectively 3, 1, and 1 fully connected layers with a hidden dimensions of 1024 and tanh

as activation function. Then, the embedding is decoded into y using 3 other fully connected layers
with the same hidden dimension of 1024. The experiment was conducted as follows:

• During training, we fix the nodes x, T , and y to the corresponding observed variables and
we initialize h to 0. We train for 128 epochs with a batch size of 256. We train using iPC

and T = 16. We set the nodes learning rate to � = 0.005 and the weights learning rate to
↵ = 0.00005. We use the SGD optimizer for the nodes and the Adamw optimizer for the
weights. Consequently, the model has never direct access to any of uz , T 0, or y0.

• The inference process is divided in two phases. Firstly, we repeat the same procedure as
above, while setting ↵ = 0.0, so that the weights of the model are not changed. This allows
the network to adapt to the provided y by storing its extra information (i.e., the color, in this
instance) in the hidden node uz . Secondly, for each sample in a batch, after T = 16 steps,
we replace T with T 0 to compute the counterfactual y0 and compare it with the ground
truth image. To obtain y0, we simply forward through the network the information stored
in the nodes x, T , and uz during the first phase. To produce the digits in Fig. 5, we fixed
the node T to each angle 2 {0�, 10�, 20�, 30�, 40�}. Furthermore, our model is able to
produce counterfactual not only by modifying the rotation T , but also the color encoded by
uz . To show this, we take the value of the node uz computed for the a sample and use it to
generate all the remaining y0 in the batch.

Results. We obtain results comparable with the ones in (De Brouwer, 2022). Our method has the
advantage of using a straightforward multi-layer perceptron architecture trained with an unmodi-
fied version of the predictive coding learning algorithm. This shows the capability and versatility
of predictive coding to work in various tasks in which other deep-learning techniques tend to fail,
such as Diff-SCM (Sanchez & Tsaftaris, 2022), Deep-SCM (Pawlowski et al., 2020), and Deep-ITE
(Shalit et al., 2017). Figure 5 in the main body shows a magnified example of counterfactual recon-
structions that demonstrate that our method is robust with respect to interventions on either rotation
or color. Compared to (De Brouwer, 2022), we are able to generalize to rotations of 40�, even if
this introduces some noise in the generated output. Furthermore, contrary to the model presented
in (De Brouwer, 2022), our architecture is robust with respect to the choice of the hyperparameter
linked to uz and does not necessitate to perform a hyperparameter sweep to find the right value.

36



Under review as a conference paper at ICLR 2024

G STRUCTURE LEARNING
G.1 EXPERIMENTS ON RANDOM GRAPHS

In this section, we show results on the convergence behavior of structure learning with a PC graph
to understand the relationship between variational free energy and the approximation error of the
weighted adjacency matrix. Furthermore, we describe in detail the metrics used to evaluate the esti-
mated weighted adjacency matrix as well as accuracy metrics for assessing the learned relationships
and directions of the adjacency matrix. We also provide all details on the model and training param-
eters used to reproduce our structure learning experiments. Finally, we compare our method against
established structure learning algorithms for random graphs of various types and complexities.

Setup. Our causal structure learning method only requires observational data as input. The two
types of random graphs that we consider for our experiments are (1) Erdős-Rényi (ER) with either
1 or 2 expected edges per node, denoted as ER1 and ER2, and (2) scale-free (SF) graphs with either
2 or 4 expected edges per node, denoted as SF2 and SF4, respectively. We use graphs with N 2
{10, 15, 20} nodes and generate datasets with 2000 samples. These two graph types are selected to
demonstrate the versatility and robustness of our method in handling various graph structures.

We generate synthetic data by first sampling a binary adjacency matrix, A, for a DAG. Next, we
place uniformly random edge weights onto the binary adjacency matrix, to obtain a weighted adja-
cency matrix, W. Finally, we sample observational data based on a set of linear structural equations
with additive Gaussian noise, u ⇠ N (0, IN ), such that

x = WTx+ u 2 RN .

To fit the PC model to the observational data, we use the stochastic gradient descent (SGD) optimizer
for the node values with a learning rate of � = 1e � 4 and T = 16. For the weights, we use
the Adamw optimizer with a learning rate of ↵ = 5e � 3. We enforce two penalties onto our
learning algorithm. First, a DAG penalty to ensure that the discovered graph is acyclic and directed,
as proposed in (Zheng et al., 2018). Second, an L1 penalty that encourages the PC network to
find a causal structure that is sparse. We add both penalties into the predictive coding objective.
The penalties are each weighted by �L1 = 5e � 6 and �DAG = 200, for L1 and DAG penalty,
respectively.

Structure learning metrics Here, we describe the metrics used to evaluate the performance for
estimating causal graph structures in the experiments of Section 4. First, for the weighted adjacency
matrix of a DAG with N nodes, we report the mean absolute error (MAE) between the true, W, and
the estimated, cW, weighted adjacency matrix as the average of the absolute differences between
corresponding entries in the two matrices:

MAE(W, cW) =
1

N2

NX

i=1

NX

j=1

|Wij � cWij |. (17)

Second, to evaluate the correctness of the learned edge directions and the adjacency relationships in
the causal graph, we report metrics on the estimated binary adjacency matrix, bA, that is obtained via
thresholding as follows:

bAij =

(
1 if cWij > !
0 otherwise.

We use the same data as proposed in (Zheng et al., 2018), and we follow their procedure and use
! = 0.3 in all experiments. We report the following graph metrics: (i) F-score (F1), (ii) structural
Hamming distance (SHD), (iii) false discovery rate (FDR), (iv) true positive rate (TPR), (iv) false
positive rate (FPR), and (v) number of directed edges discovered (NNZ). Each metric is computed
between the true adjacency matrix, A, and the estimated adjacency matrix, bA. To compute each
metric, we first need the following quantities:

• true positive (TP): a discovered edge, with correct direction,
• reverse (R): a discovered edge, with incorrect direction,

37



Under review as a conference paper at ICLR 2024

• false positive (FP): a discovered edge, not present in A,
• true negative (TN): a non-discovered edge, not present in A,
• false negative (FN): a non-discovered edge, present in A,
• missing (M): a non-discovered edge, present in A.

Based on these quantities, each metric is computed as follows:

• F1 = 2TP
2TP+FP+FN ,

• SHD = R + M + FP =
PN

i=1

PN
j=1 |Aij � bAij |,

• FDR = FP+R
FP+TP ,

• FPR = FP+R
FP+TN ,

• TPR = TP
TP+FN ,

• NNZ = TP + FP.

Results. First, we show results on learning the causal structure for the two most difficult graphs of
our experiments, namely, ER2 and SF4 graphs, each with N = 20. We see that PC graphs are able
to learn good approximations of the ground truth weighted adjacency matrix of complex random
graphs. This is depicted in the left columns of Figs. 22 and 23, respectively. The right columns
in Figs. 22 and 23 shows how the MAE decreases as the predictive coding objective converges. In
all cases, we observe that while the energy converges early on, the causal discovery performance
(MAE) keeps improving. Second, in Table 3, we compare our method against established and recent
causal discovery algorithms. In contrast to the baselines, our method consistently exhibits a good
performance across various graph structures and does not deteriorate strongly for graphs of vary-
ing complexity by maintaining its causal structure learning abilities despite irregular node degree
distributions and an increasing number of edges and nodes. This is reflected in the high accuracy
metrics (F1) and low structural hamming distance (SHD) obtained with our method. From our ex-
periments, we observed that our method performs very well on scale-free graphs different to most of
the benchmarks, which struggle on such random graphs. To conclude, the causal structure learning
experiments conducted demonstrate that our method can learn arbitrary DAG structures of vary-
ing characteristics and levels of complexity. The complexity is determined by factors such as the
number of nodes in the graph and the degree distribution of each node. Furthermore, our method
demonstrates a robust performance even in the face of challenges such as increasingly uneven degree
distributions and growing node cardinality. This distinguishes our approach from the baseline meth-
ods, thereby further highlighting the effectiveness of our predictive coding framework for causal
structure learning.

38



Under review as a conference paper at ICLR 2024

(a) ER2 10 nodes

(b) ER2 15 nodes

(c) ER2 20 nodes

Figure 22: Learned structures and convergence behavior (energy vs. MAE) for ER2 graphs of vari-
ous complexity.

39



Under review as a conference paper at ICLR 2024

(a) SF4 10 nodes

(b) SF4 15 nodes

(c) SF4 20 nodes

Figure 23: Learned structures and convergence behavior (energy vs. MAE) for SF4 graphs of various
complexity.

40



Under review as a conference paper at ICLR 2024

G.2 CLASSIFICATION

In the main body of this work, we showed that pruning unnecessary connections in a complete
graph results in a hierarchical structure with improved performance. In this section, we provide
further details to reproduce our results.

The classification experiments are performed on the MNIST, FashionMNIST, and 2-MNIST
datasets. The latter is obtained by pairing the image x̂ in each sample (x̂, ŷ) of the MNIST dataset
with a new digit image x̂0 sampled uniformly from the dataset (while maintaining the train and test
splitting intact). Thus, a data point of the 2-MNIST dataset consists of the tuple (x̂, x̂0, ŷ).

We consider a predictive coding graph with 6 nodes, one of dimension 784 (input dimension), one
of dimension 10 (output dimension), and 4 hidden nodes of dimension d. In the case of 2-MNIST,
we have two nodes of dimension 784, and only three of dimension d. The results reported in this
work were obtained with d = 128. During training, we used a batch size of 512 and T = 32. To
start from a complete graph, as the one defined in Section 3, we define a fully connected layer fi,j ,
with gelu activation function, going from node i to node j for each ordered pair of nodes (i, j). The
output of each layer fi,j is then multiplied by a scaling factor ai,j that determines the strength of the
connection from node i to node j. Together, the factors ai,j determine the adjacency matrix A. To
enforce sparse connectivity and prune unnecessary edges, we add to the matrix A the L1 regularizer
l(A). Consequently, the loss function to optimize becomes L = F+! · l(A), where ! is a weighting
factor.

Figure 24: Examples of degenerate
networks, where the label predicts it-
self either via self loops, or via cycles.

Degenerate Example. We start our discussion by show-
ing a degenerate example, which arises when we do not use
either negative examples, or a prior that forces an acyclic
structure, but only the prior l(A) which enforces sparsity.
In this case, the modes is unable to learn the causal depen-
dency between input and output, and converges towards a
degenerate structure, where each output node predicts itself
via a cyclic structure, which can be a self loop, or a closed
loop with length larger than one. As each node either pre-
dicts itself or is unused, the total variational free energy of
the network is going to be close to 0, despite the network
being randomly guessing the output. An example of such
structures is provided in Fig. 6. This shows the importance
of additional methods, that force the network to be aware
of the causal dependency between the input and the output.
We now test the two proposed methods: the acyclic prior,
and the use of negative examples.

To overcome this, we propose two different methods:

1. force an acyclic structure, by adding to the loss function the regulariser h(A) =
tr(exp(A⇥A)) introduced in (Zheng et al., 2018). We weight h(A) by a scalar ⌘.

2. force a connection between input nodes and output nodes, by introducing negative samples
in the training dataset: with probability pns we sample randomly a new label ŷns. We
modify the energy function:

F̂ =
P

i 6=iy
kxi � µik2 + (kxiy � µiyk2 � k)2, (18)

where iy is the index of the node fixed to ŷ and k the new energy target. We set k = 0 for
positive samples and k > 0 for negative samples. With negative samples, the output node
cannot simply learn to predict itself, as the energy would be non-zero for negative samples,
for which the energy target is k > 0.

Discussion. Both methods produce hierarchical structures that achieve a better performance than
the original complete graph. Method (1) has the disadvantage of introducing an inductive bias in
the architecture by completely removing loops and requiring a complex balance between the ! and
⌘ parameters, as they affect each other. On the other hand, method (2), despite overcoming these
issues, seems more brittle with respect of the choice of hyperparameters and produces a smaller
variety of networks. The value of ! determines the overall network structure. For method (1),

41



Under review as a conference paper at ICLR 2024

model N graph FDR # TPR " FPR # SHD " NNZ - F1 "
Ours 0.08 ± 0.04 0.92 ± 0.04 0.02 ± 0.01 0.80 ± 0.45 10.00 ± 0.00 0.92 ± 0.04

GES 0.22 ± 0.08 0.88 ± 0.11 0.07 ± 0.03 3.00 ± 1.41 11.20 ± 0.45 0.68 ± 0.09
PC 10 ER1 0.13 ± 0.04 0.82 ± 0.04 0.03 ± 0.01 2.20 ± 0.45 9.40 ± 0.55 0.77 ± 0.03

ICALiNGAM 0.25 ± 0.15 0.86 ± 0.11 0.09 ± 0.05 3.20 ± 2.05 11.60 ± 1.14 0.80 ± 0.13
NOTEARS 0.08 ± 0.08 0.90 ± 0.07 0.02 ± 0.02 1.20 ± 0.84 9.80 ± 0.84 0.91 ± 0.07

Ours 0.02 ± 0.04 0.94 ± 0.04 0.02 ± 0.04 1.40 ± 0.89 19.20 ± 1.30 0.96 ± 0.03

GES 0.86 ± 0.03 0.26 ± 0.05 1.30 ± 0.02 33.60 ± 0.55 37.60 ± 1.14 0.17 ± 0.03
PC 10 ER2 0.47 ± 0.09 0.45 ± 0.08 0.32 ± 0.06 13.20 ± 1.48 17.00 ± 0.71 0.47 ± 0.08

ICALiNGAM 0.31 ± 0.14 0.74 ± 0.12 0.27 ± 0.13 9.20 ± 4.76 21.60 ± 1.14 0.71 ± 0.13
NOTEARS 0.14 ± 0.00 0.90 ± 0.00 0.12 ± 0.00 4.00 ± 0.00 21.00 ± 0.00 0.88 ± 0.00

Ours 0.03 ± 0.04 0.99 ± 0.03 0.00 ± 0.01 0.60 ± 0.89 15.20 ± 0.45 0.98 ± 0.03

GES 0.22 ± 0.14 0.83 ± 0.10 0.04 ± 0.03 5.00 ± 3.00 16.00 ± 1.00 0.80 ± 0.12
PC 15 ER1 0.16 ± 0.05 0.85 ± 0.03 0.03 ± 0.01 3.40 ± 0.89 15.20 ± 0.45 0.78 ± 0.03

ICALiNGAM 0.30 ± 0.06 0.77 ± 0.09 0.06 ± 0.01 5.40 ± 1.14 16.60 ± 1.52 0.73 ± 0.07
NOTEARS 0.06 ± 0.08 0.89 ± 0.10 0.01 ± 0.01 2.00 ± 2.00 14.20 ± 0.84 0.92 ± 0.09

Ours 0.20 ± 0.06 0.89 ± 0.04 0.09 ± 0.03 8.80 ± 3.11 33.60 ± 1.52 0.84 ± 0.05

GES 0.56 ± 0.08 0.77 ± 0.07 0.40 ± 0.10 31.60 ± 7.70 52.80 ± 5.72 0.54 ± 0.08
PC 15 ER2 0.62 ± 0.07 0.37 ± 0.06 0.24 ± 0.03 33.40 ± 3.05 28.80 ± 1.48 0.37 ± 0.07

ICALiNGAM 0.38 ± 0.08 0.75 ± 0.08 0.18 ± 0.04 17.60 ± 3.65 36.20 ± 2.49 0.68 ± 0.07
NOTEARS 0.17 ± 0.03 0.79 ± 0.02 0.07 ± 0.01 9.80 ± 0.84 28.60 ± 0.89 0.81 ± 0.02

Ours 0.25 ± 0.04 0.99 ± 0.02 0.04 ± 0.01 6.80 ± 1.48 26.60 ± 1.14 0.80 ± 0.04

GES 0.43 ± 0.12 0.74 ± 0.13 0.07 ± 0.02 14.90 ± 6.47 26.30 ± 1.95 0.65 ± 0.13
PC 20 ER1 0.43 ± 0.08 0.61 ± 0.07 0.06 ± 0.01 13.80 ± 1.92 21.60 ± 1.14 0.54 ± 0.07

ICALiNGAM 0.47 ± 0.05 0.72 ± 0.06 0.08 ± 0.01 14.60 ± 2.19 27.20 ± 1.92 0.61 ± 0.05
NOTEARS 0.23 ± 0.08 0.79 ± 0.07 0.03 ± 0.01 8.80 ± 2.86 20.60 ± 0.55 0.78 ± 0.07

Ours 0.12 ± 0.08 0.94 ± 0.02 0.04 ± 0.02 6.20 ± 3.83 43.00 ± 2.83 0.91 ± 0.05

GES 0.70 ± 0.07 0.64 ± 0.11 0.42 ± 0.10 65.80 ± 13.57 88.80 ± 11.90 0.40 ± 0.09
PC 20 ER2 0.65 ± 0.04 0.37 ± 0.06 0.18 ± 0.01 44.00 ± 1.41 41.80 ± 2.39 0.36 ± 0.05

ICALINGAM 0.34 ± 0.10 0.80 ± 0.06 0.11 ± 0.04 19.60 ± 6.47 49.20 ± 4.21 0.72 ± 0.08
NOTEARS 0.15 ± 0.05 0.91 ± 0.02 0.04 ± 0.02 9.40 ± 1.95 42.80 ± 2.59 0.88 ± 0.03

Ours 0.03 ± 0.09 0.99 ± 0.04 0.02 ± 0.07 0.70 ± 2.21 17.40 ± 1.26 0.98 ± 0.07

GES 0.39 ± 0.02 0.89 ± 0.03 0.35 ± 0.05 9.80 ± 1.30 25.00 ± 1.73 0.69 ± 0.02
PC 10 SF2 0.24 ± 0.03 0.69 ± 0.03 0.14 ± 0.02 7.40 ± 0.55 15.60 ± 0.55 0.72 ± 0.02

ICALiNGAM 0.40 ± 0.09 0.79 ± 0.07 0.33 ± 0.09 10.80 ± 2.77 22.60 ± 1.67 0.68 ± 0.08
NOTEARS 0.00 ± 0.00 0.82 ± 0.00 0.00 ± 0.00 3.00 ± 0.00 14.00 ± 0.00 0.90 ± 0.00

Ours 0.08 ± 0.08 0.94 ± 0.06 0.17 ± 0.19 3.50 ± 3.78 30.80 ± 1.87 0.93 ± 0.07

GES 0.60 ± 0.05 0.56 ± 0.07 1.69 ± 0.12 27.00 ± 2.35 42.20 ± 0.45 0.44 ± 0.05
PC 10 SF4 0.18 ± 0.08 0.59 ± 0.06 0.25 ± 0.12 14.60 ± 2.41 21.40 ± 1.52 0.68 ± 0.06

ICALiNGAM 0.21 ± 0.06 0.83 ± 0.05 0.45 ± 0.15 9.40 ± 3.21 31.80 ± 1.64 0.81 ± 0.06
NOTEARS 0.03 ± 0.05 0.83 ± 0.09 0.05 ± 0.07 5.40 ± 3.29 25.80 ± 1.64 0.89 ± 0.07

Ours 0.02 ± 0.02 0.98 ± 0.02 0.01 ± 0.01 0.60 ± 0.55 27.00 ± 0.00 0.98 ± 0.02

GES 0.27 ± 0.02 0.99 ± 0.02 0.13 ± 0.01 10.00 ± 1.00 36.80 ± 0.84 0.79 ± 0.01
PC 15 SF2 0.15 ± 0.08 0.76 ± 0.03 0.05 ± 0.03 9.40 ± 2.70 24.00 ± 1.41 0.77 ± 0.04

ICALiNGAM 0.36 ± 0.11 0.87 ± 0.07 0.17 ± 0.07 15.20 ± 7.26 37.20 ± 3.83 0.74 ± 0.10
NOTEARS 0.02 ± 0.02 0.97 ± 0.02 0.01 ± 0.01 1.40 ± 0.89 26.80 ± 0.45 0.97 ± 0.02

Ours 0.10 ± 0.06 0.94 ± 0.05 0.09 ± 0.06 7.20 ± 4.55 52.20 ± 1.79 0.92 ± 0.05

GES 0.47 ± 0.09 0.82 ± 0.10 0.67 ± 0.16 39.40 ± 11.04 77.60 ± 4.39 0.62 ± 0.09
PC 15 SF4 0.52 ± 0.06 0.29 ± 0.04 0.28 ± 0.03 45.40 ± 2.51 30.00 ± 0.71 0.36 ± 0.05

ICALiNGAM 0.44 ± 0.09 0.69 ± 0.09 0.50 ± 0.11 36.40 ± 7.83 62.00 ± 3.39 0.62 ± 0.09
NOTEARS 0.12 ± 0.03 0.83 ± 0.08 0.11 ± 0.02 13.20 ± 4.92 47.40 ± 2.79 0.85 ± 0.06

Ours 0.10 ± 0.14 0.96 ± 0.05 0.03 ± 0.04 5.40 ± 7.40 40.20 ± 4.38 0.93 ± 0.10

GES 0.30 ± 0.12 0.96 ± 0.02 0.10 ± 0.05 16.00 ± 7.28 51.20 ± 6.98 0.77 ± 0.08
PC 20 SF2 0.26 ± 0.07 0.70 ± 0.06 0.06 ± 0.02 17.80 ± 4.38 34.80 ± 1.48 0.68 ± 0.06

ICALiNGAM 0.34 ± 0.17 0.87 ± 0.06 0.12 ± 0.08 19.80 ± 13.01 50.80 ± 9.88 0.75 ± 0.13
NOTEARS 0.23 ± 0.07 0.88 ± 0.04 0.06 ± 0.02 12.80 ± 5.76 42.20 ± 2.28 0.82 ± 0.05

Ours 0.06 ± 0.05 0.98 ± 0.03 0.04 ± 0.03 5.60 ± 5.50 73.00 ± 1.73 0.96 ± 0.04

GES 0.28 ± 0.03 0.94 ± 0.04 0.21 ± 0.02 26.60 ± 3.13 91.40 ± 1.52 0.79 ± 0.03
PC 20 SF4 0.38 ± 0.04 0.34 ± 0.02 0.12 ± 0.01 54.60 ± 2.70 38.80 ± 1.30 0.44 ± 0.03

ICALiNGAM 0.37 ± 0.13 0.73 ± 0.05 0.27 ± 0.13 45.20 ± 17.25 83.40 ± 12.46 0.67 ± 0.10
NOTEARS 0.18 ± 0.01 0.81 ± 0.02 0.10 ± 0.01 22.80 ± 1.64 69.40 ± 0.55 0.82 ± 0.02

Table 3: Comparison against established structure learning algorithms on various accuracy metrics
for ER/SF graphs of increasing complexity. Mean and standard deviation calculated over 10 seeds.

42



Under review as a conference paper at ICLR 2024

Dataset Method � ↵ � ! ⌘ pns

MNIST DAG 0.5 4e� 05 2e� 05 8e�4 40.0 -
Fashion-MNIST DAG 0.3 3e� 05 5e� 05 1e� 3 20.0 -

2-MNIST DAG 0.5 4e� 05 2e� 05 8e� 4 40.0 -

MNIST NS 0.8 1e� 04 8e� 05 0.05 - 0.1
Fashion-MNIST NS 0.5 1e� 04 8e� 05 0.05 - 0.2

2-MNIST NS 0.8 1e� 04 8e� 05 0.05 - 0.1

Table 4: Hyperparameters used to obtain the results reported in Fig. 6. DAG (directed acyclic
graphs) refers to method (1), while NS (negative samples) to method (2). The accuracy obtained on
2-MNIST is similar to the one obtained for MNIST. k was set to 1.0 for negative samples. A weight
decay of 0.001 was applied to the node values during the NS experiments.

we observed a wide range of possible output structures (e.g., using zero or multiple hidden-nodes,
in parallel or in sequence, with and with-out skip connections) depending on the chosen !. The
best accuracy, however, was always achieved with a structure equivalent to a hierarchical neural
network with two fully connected layers as shown in Figure 6. For method (2), instead, the only
non-degenerate possibilities were either a complete graph (for low ! values), the optimal 2-layer
network, or a network with no edges (for high ! values). A possible future research direction could
be aiming at combining the two methods to overcome their respective limitations. Table 4 reports
the best hyperparameters for each method and dataset.

H END-TO-END CAUSAL LEARNING

The goal of the presented experiments so far was to show that a causal predictive coding network
can solve both tasks of causality:

• Given observational data, perform unsupervised causal structure learning of the (weighted)
adjacency matrix that represents the data generating SCM.

• Given observational data and causal structure, perform inference of associational, interven-
tional, and counterfactual distributions to answer causal queries.

Therefore, this section is motivated by studying the capability of our proposed method to combine
both tasks into a single framework. We use the same PC graph to conduct structure learning for
the common causal graphs used in the causal inference experiments (chain, collider, confounder,

fork, mediator, butterfly bias, M-bias) using only observational data generated by the corresponding
SCM. Given that our method is able to (i) discover complex causal structures for random DAGs in
Section 4 and (ii) correctly answer causal queries for common DAG structures in Section 3, we hy-
pothesize that our method should be able to discover graph structures used in Section 3 without prior
knowledge. The motivation behind this approach is that in the real-world, true causal structures are

rarely known and often only observational data from an unknown SCM is available. In the following,
we perform causal structure learning for the graphs used in the causal inference experiments of Sec-
tion 3. The procedure is as follows: First, given observational data, we learn the causal structure of
the underlying SCM that generated the observed data. More specifically, we start with a fully con-
nected PC graph and prune unnecessary node connections using sparsity and acyclicity constraints
with subsequent thresholding as described in Appendix D. Second, given the observational data and
the discovered causal structure, we learn the SCM parameters including an approximation of the
parameters of each node’s exogenous distribution ui. To be more specific, once the causal structure
is discovered, we modify the PC graph by including one exogenous node, ui, for each endogenous
variable, xi, into our PC graph. Augmenting the PC graph with exogenous nodes enables us to learn
the distribution of each exogenous node, which is crucial in the SCM framework, as exogenous vari-
ables are essential for conducting counterfactual inference. This procedure provides us with a simple
and closed form end-to-end causal inference engine. Using a single PC model with no pipelines,
enables us to (1) discover the adjacency matrix of the SCM and to (2) answer causal queries on any
of the three levels of Pearl’s ladder of causation (2009). We report results for the structure learning
step in Table 5.

43



Under review as a conference paper at ICLR 2024

graph N MAE # FDR # TPR " FPR # SHD # NNZ - F1 "
butterfly 5 0.02 ± 0.01 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 6.00 ± 0.00 1.00 ± 0.00

M 5 0.03 ± 0.01 0.04 ± 0.09 1.00 ± 0.00 0.03 ± 0.07 0.20 ± 0.45 4.20 ± 0.45 0.98 ± 0.05
chain 3 0.01 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00

confounder 3 0.22 ± 0.12 0.27 ± 0.15 0.73 ± 0.15 0.80 ± 0.45 0.80 ± 0.45 3.00 ± 0.00 0.73 ± 0.15
collider 3 0.01 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00

fork 3 0.01 ± 0.01 0.00 ± 0.00 1.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 2.00 ± 0.00 1.00 ± 0.00
mediator 3 0.46 ± 0.33 0.27 ± 0.15 0.73 ± 0.15 0.80 ± 0.45 0.80 ± 0.45 3.00 ± 0.00 0.73 ± 0.15

Table 5: End-to-end causality engine: Causal predictive coding for discovery of DAGs based on
observational data only. Numbers are reported over 5 different runs.

Despite the graphs being very different, the experimental results show that our method performs
well in causal discovery for most common causal graphs despite using the same hyperparameters
and no hyperparameter search, even though the graphs are very different. We do not show the
causal inference results again, because the results for learning associational, interventional, and
counterfactual distributions and the distribution of the exogenous noise variables in SCM remained
the same. The discovered causal structures are consistent with the adjacency matrices used as prior
knowledge in Section 3. Our method is able to solve both causality tasks without prior knowledge of
any graph structures. We showed how our causal predictive coding framework can be used in an end-
to-end unsupervised causal inference pipeline similar to (Geffner et al., 2022) but without the need
of complex neural networks. Thus, our proposed causal predictive coding maintains transparency
and interpretability despite good performance.

44


	Introduction
	Bayesian Networks and Predictive Coding
	Predictive Coding Graphs

	Causal Inference via Predictive Coding
	Structural Causal Models
	Experiments

	Structure Learning
	Experiments

	Related Work
	Conclusion
	Appendix
	Learning on PC Graphs
	Proof of Theorem 1
	Interventional and Counterfactual Inference
	Experiments on Common Causal Graphs
	Classification Experiments
	Robustness Experiments
	Structure Learning
	Experiments on Random Graphs
	Classification

	End-to-end Causal Learning


