
Appendix: Structured Reordering for Modeling Latent
Alignments in Sequence Transduction

WCFG to PCFG Conversion The algorithm of converting a WCFG to its equivalent PCFG is
shown in Algorithm 1. In a bottom-up manner, the algorithm first computes an inner weight β[Xk

i ]
for each segment, which is the total weight of all derivations with root Xk

i . Then the algorithm
normalizes the weight of production rules whose left-hand side is Xk

i using the inner weight.

The resulting normalized weight for a production rule, e.g., G[Xk
i

S−→ Xj
iX

k
j ], is the conditional

probability of applying the rule Xk
i

S−→ Xj
iX

k
j given the presence of the segment Xk

i . The PCFG
is equivalent to the original WCFG in the sense that for each derivation D, we have

pφ(D|x) =
∏
R∈D fφ(R)

Z(x, φ)
=
∏
R∈D

Gφ(R)

where Z(x, φ) =
∑

D′
∏
R∈D′ fφ(R). Full proof of this equivalence can be found in Smith and

Johnson [1]. The factorization of the derivation-level probability to rule-level probability facilitates
our design of dynamic programming for marginal inference.

Proof of the Dynamic Programming for Marginal Inference We prove the correctness of the
dynamic programming algorithm for computing the marginal permutation matrix of separable per-
mutations by induction as follows.

Proof. As a base case, each word (i.e., segment with length 1) is associated with an identity per-
mutation matrix 1. Then we assume that the marginal permutation matrix for all segments with
length 1 < k − i < n is Ek

i , which is defined as Ep(Dki )[M(Dk
i )] where Dk

i is the derivation tree
of segment i to k, and M(Dk

i ) is the permutation matrix corresponding to Dk
i . It is obvious that

1



Algorithm 1 Converting WCFG to PCFG

1: initialize β[. . . ] to 0
2: for i := 0 to n− 1 do . width-1 spans
3: β[Xi+1

i ] = 1
4: end for
5: for w := 2 to n do . width of spans
6: for i := 0 to n− w do . start point
7: k := i+ w . end point
8: for j := i+ 1 to k − 1 do . compute inner weight
9: β[Xk

i ]+ = fφ(X
k
i

S−→ Xj
iX

k
j )β[X

j
i ]β[X

k
j ] . S: Straight

10: β[Xk
i ]+ = fφ(X

k
i

I−→ Xj
iX

k
j )β[X

j
i ]β[X

k
j ] . I: Inverted

11: end for
12: for j := i+ 1 to k − 1 do . normalize weight

13: G(Xk
i

S−→ Xj
iX

k
j ) =

fφ(X
k
i

S−→Xj
iX

k
j )β[X

j
i ]β[X

k
j ]

β[Xk
i ]

14: G(Xk
i

I−→ Xj
iX

k
j ) =

fφ(X
k
i

I−→Xj
iX

k
j )β[X

j
i ]β[X

k
j ]

β[Xk
i ]

15: end for
16: end for
17: end for
18: return G[. . . ]

Ei+1
i = 1. The marginal permutation matrix for all segments with length n can be obtained by

Ek
i = Ep(Dki )[M(Dk

i )]

=
∑
i<j<k

(
Gφ(Si,j,k)

(
E
p(Dji )

[M(Dj
i )])⊕ Ep(Dkj )[M(Dk

j )]
)

+Gφ(Ii,j,k)
(
E
p(Dji )

[M(Dj
i )]	 Ep(Dkj )[M(Dk

j )]
))

=
∑
i<j<k

(
Gφ(Si,j,k)(Ej

i ⊕Ek
j ) +Gφ(Ii,j,k)(Ej

i 	Ek
j )
)

where in the second step we consider all the possible expansions of the derivation tree Dk
i ; in the

third step, we obtain the recursion that is used in Step 12-14 of Algorithm 1 by reusing the marginal
permutations matrices of shorter segments.

Architecture and Hyperparameters The detailed architecture of ReMoto is shown in Figure 1.
In the structured reordering module, we compute the scores for BTG production rules using span

2



Input: how many states do not have rivers

Embedding

LSTM

Parser

Structured
Reordering

Embedding

LSTM

Reordered
Embedding

Monotonic Decoding

SSNT

count exclude state_all loc 1 river_all 
Output:

permutation
matrix input encodings

input/output link
intra-module link
inter-module link

Encoding
with Reordering

Figure 1: The detailed architecture of our seq2seq model for semantic parsing (view in color).
First, the structured reordering module genearates a (relaxed) permutation matrix given the input
utterrance. Then, the encoding module generates the representations of the input utterance based
on the reordered embeddings, which are computed based on the original embedding and the per-
mutation matrix computed in the first step. Finally, the decoding module, namely SSNT, generates
the output program monotonically based on the input encodings.

embeddings [2] followed by a multi-layer perceptron. Specifically, the score function for each
rule has form G(Ri,j,k) = MLP(sij , sjk), where sij and sjk are the span embeddings based on
[2], MLP is a multi-layer perceptron that outputs a 2-d vector, which corresponds to the score of
R=Straight and R=Inverted, respectively. Similar to a conventional LSTM-based encoder-decoder
model, LSTMs used in structured reordering and encoding module are bidirectional whereas the
LSTM for decoding (within SSNT) is unidirectional. We implemented all models using Py-
torch [3]. We list the main hyperparameters we tuned are shown in Table 1. The full hyperpa-
rameters for each experiment will be released along with the code.

Training Strategy Empirically, we found that during training the structured reordering module
tends to converge to a sub-optimal point where it develops a simple reordering strategy and the
subsequent modules (i.e., the encoding and decoding module in Figure 1) quickly adapt to naive
reorderings. For example, in the EN-JA translation task, the reordering module tends to completely
invert the input English translation after training. While this simple strategy proves to be a useful
heuristic [4], we would like more accurate reordering to emerge during training. This issue is
similar to posterior collapse [5], a common issue in training variational autoencoders.

Inspired by He et al. [6], we speculate that the issue occurred due to that optimization of the
structured reordering module usually lags far behind the optimization of subsequent modules dur-
ing the initial stages of training. We use a simple training strategy to alleviate the issue. Specifically,
during the initial M training steps, with a certain probability p, we only update the parameters of

3



Name Range

embedding size [128, 256, 512]
number of encoder LSTM layer [1,2]

encoder LSTM hidden size [128, 256, 512]
decoder LSTM layer [1,2]

decoder LSTM hidden size [128, 256, 512]
decoder dropout [0.1, 0.3, 0.5, 0.7, 0.9]

temperature of Gumbel-softmax [0.1, 1, 2, 10]
label smoothing [0.0, 0.1]

Table 1: Main hyperparameters of ReMoto.

the structured reordering module and ignore the gradients of the parameters from the subsequence
modules. M and p are treated as hyperparameters. With this strategy, the structured reordering
module is updated more often than the subsequent modules, and has a better chance to catch up
with the optimization of subsequent modules. We find that this simple training strategy usually
leads to better segment alignments and better performance.

References

[1] Noah A Smith and Mark Johnson. Weighted and probabilistic context-free grammars are
equally expressive. Computational Linguistics, 33(4):477–491, 2007.

[2] Wenhui Wang and Baobao Chang. Graph-based dependency parsing with bidirectional lstm.
In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2306–2315, 2016.

[3] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. arXiv preprint arXiv:1912.01703, 2019.

[4] Jason Katz-Brown and Michael Collins. Syntactic reordering in preprocessing for japanese
english translation: Mit system description for ntcir-7 patent translation task. In NTCIR, 2008.

[5] Samuel R Bowman, Luke Vilnis, Oriol Vinyals, Andrew M Dai, Rafal Jozefowicz, and Samy
Bengio. Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349,
2015.

[6] Junxian He, Daniel Spokoyny, Graham Neubig, and Taylor Berg-Kirkpatrick. Lagging
inference networks and posterior collapse in variational autoencoders. arXiv preprint
arXiv:1901.05534, 2019.

4


