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1 Baselines details, implementation and reproducibility

We publicly release our code and data at https://github.com/antoalli/3D_0S. The repository
also contains instructions on how to replicate all the experiments.

In the main paper we include a high-level description of all methods and the most relevant implementa-
tion details. Here we extend the description, discussing implementation choices and hyperparameters
for each.

Discriminative Models

All the approaches in this group (MSP, MLS, ODIN, Energy, GradNorm, ReAct) share exactly the
same basic cross-entropy classifier trained on known data. Section 4.1 of the main paper already
specified the cardinality (number of points) of the point clouds in train and test, as well as the number
of epochs, initial learning rate and learning rate scheduling policy.

MSP & MLS only differ for the way in which the logits of the classifier on each test sample are used
to compute the normality score. MLS directly employs the maximum logit, while for MSP the logits
go through a softmax function before selecting the maximum of the obtained class probabilities as
the score.

ODIN internally exploits input perturbation and temperature scaling since both have an effect on the
distribution of the softmax scores, better separating data from known and unknown classes. The most
important hyperparameter here is the temperature value which we set to 7' = 1000 following the
original paper’s instructions [27]. The input perturbation magnitude ¢ should be optimized through
a validation set of OOD samples, still keeping its value very small to avoid detrimental effects.
Considering that we do not have access to OOD data at training time we preferred to stay on the safe
side, setting € = 0 in all of our experiments, effectively disabling the input perturbation.

Energy The energy-based normality score is computed by postprocessing the network output logits
and it’s hyperparameter free.

GradNorm In order to compute a normality score, the KL divergence between the network output
and a uniform distribution is backpropagated to obtain network gradients and then extract their norm.
As suggested in the original paper [21], we exploit the norm of the gradients of the last layer only.
No further hyperparameters are involved in this process.

ReAct rectifies the test-time activations of the network trained for classification and then can exploit
any normality score computation strategy. By following [40] we use ReAct in combination with
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Energy normality score. The only hyperparameter involved is the rectification threshold value. We
chose it by exploiting the known class validation samples to preserve 90% of ID activations. For the
Synthetic Benchmark the known classes validation samples come from the original ShapeNetCore
[6] validation split. For the Synthetic to Real Benchmark, we adopt ModelNet40 [48] known classes
test set as validation, we underline that these samples are not involved in the testing phase since both
Closed Set accuracy and Open Set performance are computed on ScanObjectNN [43].

Density and Reconstruction Based Models

VAE For our experiments we use the original code publicly released by the authorsE] [31], as well
as their same choice on point cloud cardinality (2048 points) and hyperparameters. The encoder
is composed of graph-convolutional layers: it takes as input a point cloud and outputs two 512-
dimensional vectors representing the mean and variance. The decoder is a FoldingNet: it takes in
input a sampled vector z from the encoded mean and variance and outputs an intermediate and a final
point cloud reconstruction with respectively 1024 and 2048 points. The normality score is computed
as the Chamfer Distance between the original test sample and its final reconstruction.

NF For this method we got inspired by [55]. The overall architecture consists of three modules: a
feature encoder, a classification head, and a Normalizing Flow (NF) head. The feature encoder and
classification head work together to optimize a standard cross-entropy loss. The NF head works
independently on top of the feature encoder representation and it is composed of eight Real-NVP [13]
coupling blocks which are trained to maximize the log-likelihood of the observed training features.
At inference time we use the test sample log-likelihood as a normality score. For training NF we use
the Adam optimizer with a learning rate of 0.0002 and weight decay set to 0.00001.

Outlier Exposure with OOD Generated Data The outlier exposure strategy described in [19] con-
sists in training a Discriminative Model on ID training data (known) through standard cross-entropy
loss, while exploiting additional OOD training data (unknown) to improve ID-OOD separability.
Specifically, we start from the same cross-entropy classifier trained on known classes employed for
the first group of strategies (i.e. Discriminative Models) and finetune it by minimizing the following
loss function: L = Lo E known + ALOE,unknown-

The finetuning involves a continued optimization of the cross-entropy loss on known training data
LcE, known and an outlier exposure objective Lo g, unknown ON unknown training data. The goal of
the outlier exposure objective is to minimize the KL divergence between the Uniform and Cross-
entropy distributions for unknown samples. The hyperparameter A controls the importance of the OE
auxiliary objective and is set to 0.5 according to the original paper [19]. The finetuning is performed
for additional 100 epochs, with a learning rate reduced by a factor of 100.

For OE finetuning, OOD training data are obtained through Rigid Subset Mix (RSMix) [24] of known
class samples, some examples of the produced OOD data for the synthetic SN1 set are shown in Fig.

Representation and distance-based methods

ARPL+CS The training process of this method involves learning a GAN model designed to generate
confusing samples (CS), as well as optimizing the reciprocal points learning objective. The model
needs a number of hyperparameters to keep all the learning components well-balanced and we used
the same values adopted by the authors [7].

Cosine proto We train a simple cosine classifier by following CosFace [45] strategy and setting the
imposed margin to 0. At inference time output logits correspond to the cosine similarities between
the test sample and the class prototypes. The largest value is used as the normality score without
introducing additional hyperparameters.

CE (L?) With this method we aim at studying the reliability to OOD detection of the feature
representation learned by the same classifier trained for the Discriminative Models. We use the
inverse of the distance from the nearest training sample as each test sample normality score, without
introducing additional hyperparameters.

SupCon requires long training with a large batch size to reach convergence [22]. With respect to
the models trained for classification we double the batch size and halve the learning rate. To deal
with large batches we perform distributed training on multiple GPUs and adopt Synchronized Batch
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Figure 1: Qualitative visualizations: point clouds from bookshelf, sink, sofa and chair categories.
Blue are synthetic point clouds from ModelNet40, yellow are real-world from ScanObjectNN

Normalization. We also increase the number of epochs to 2000, using a linear warmup in the first
100. During deployment the normality score is the cosine similarity of each test sample to its nearest
training sample. The SupCon learning objective builds a hyperspherical feature space in which class
clusters are compact and well separated. Similar results can be obtained through SubArcFace which
exploits a much more easily optimized classification-like loss. On this basis, and also considering the
poor results of SupCon on the Synthetic Benchmark, we decided to discard it in the Synthetic to Real
and Real to Real Benchmarks.

SubArcFace learning objective seeks to maximize the cosine similarity between each training sample
and one of the K centers associated with its respective class, while also imposing a certain margin m
between different classes. We use K = 3 as done by the authors in the original paper [11] and set
the margin to m = 0.5, as done in ArcFace [12] from which this hyperparameter is inherited. The
normality score is computed as done for SupCon.

2 Synthetic to Real Benchmark: Additional Analyses

The goal of the Synthetic to Real Benchmark track is to simulate realistic deployment conditions and
analyze the behaviour of Open Set methods in this context. Indeed, due to the high cost of 3D data
acquisition and labelling, large synthetic datasets are commonly used to train deep neural network
models which are then employed in real-world applications such as autonomous driving, augmented
reality or robotics.

This strategy, although effective in lowering data collection costs, inevitably causes a covariate
distribution (visual domain) shift between training and test data. As a result test samples belonging to
unknown classes show both a semantic and a domain shift, while test samples belonging to known
classes only show a domain shift. The necessity to distinguish between these two cases raises the
difficulty of the unknown detection task. To get an idea of the difference between the synthetic and
the real domains we render some point clouds in Figure [T} respectively from the known classes in the
train and test of our Synthetic to Real Benchmark track.

It is evident that real-world samples (in yellow) are much noisier than synthetic ones (in blue).
Moreover, real-world point clouds have background (first chair), are affected by occlusion, partiality
(second chair) and interaction with other objects nearby (second sofa and first chair).

This additional covariate shift, which is present only in the Synthetic to Real Benchmark, is what
makes this track the most difficult among the ones we analyzed, as highlighted in the Conclusion of
the main paper.

2.1 AUPR metric

In the results reported in the main paper we exploited two of the most common OOD detection
metrics to evaluate the unknown detection ability of the analyzed methods: AUROC and FPR95.
Different metrics may be chosen for the same purpose, one of the most used being the Area Under the
Precision Recall curve (AUPR). Similarly to AUROC this is a threshold-free metric: the precision =
TP/(TP+FP),isplotted as a function of recall = T P/(T P+ F N), for different threshold settings



Table 1: AUROC, FPR95, AUPR results on the Synthetic to Real Benchmark with PointNet++ [34]

Synthetic to Real Benchmark - PointNet++ [34]

SR 1 SR 2 Avg
Method AUROC T FPR95) AUPR?T | AUROCT FPR95] AUPRT | AUROC1 FPR9S5| AUPR 1
MSP [18] 81.0  79.6 799 703 86.7 839 75.6 832 819
MLS [44] 82.1 76.6 820 67.6 86.8 83.1 74.8 81.7 825
ODIN [27] 81.7 773 815 702 844 844 76.0 80.8 829
Energy [28] 81.9 775 820 67.7 873 83.0 74.8 824 825
GradNorm [21] 77.6  80.1 78.8 684 863 835 73.0 832 81.2
ReAct [40] 81.7 75.6 819 67.6 872 83.1 74.6 814 825
NF 78.0 844 77.0 747 842 86.3 764 843 81.7
OE+mixup [19] 71.2  89.7 709 603 935 779 657 916 744
ARPLACS [7] 828 749 827 68.0 893 834 754 821 83.0
Cosine proto 799 745 812 76.5 77.8 88.1 782 76.1 84.7
CE (L?) 79.7 845 784 75.7 802 873 77.7 823 829
SubArcFace [11] 78.7 84.3 77.2 75.1 834 86.1 769 838 81.6

Table 2: Synthetic to Real Benchmark with real-world augmentations

Synthetic to Real Benchmark - DGCNN [46] Synthetic to Real Benchmark - PointNet++ [34]

SR 1 SR 2 Avg SR 1 SR 2 Avg
Method AUROCT FPR95| | AUROCT FPR95| | AUROC! FPR9S| || AUROCT FPR9S| | AUROCT FPR95, | AUROC{T FPR95|
MSP [18] 722 91.0 61.2 903 66.7 90.6 81.0 79.6 70.3  86.7 75.6 83.2
MSP (+RW Augm) 82.1 76.0 65.8 92.8 739 844 76.5 81.8 74.6 859 75.5 839
SubArcFace [11] 745  86.7 68.7 86.6 71.6  86.7 787 843 75.1 834 769 83.8
SubArcFace (+RW Augm) 81.3 774 68.8 847 75.1 81.1 76.9 83.7 73.0 89.5 75.0 86.6

and then the area under the resulting curve is computed, with a high value (near to 1) indicating a
good known-unknown separation and a low one (near to 0) highlighting bad performance. Differently
from the AUROC, the AUPR takes care of the possible unbalance between positive and negative
classes by adjusting for the base rates. Specifically, we computed the AUPR considering the unknown
samples as positive: given its complementary polarity with AUROC we expect it to provide further
information.

We report the results of the best performing backbone on the most difficult benchmark track, i.e. we
run with PointNet++ [34] on the Synthetic to Real Benchmark: see Table[I] According to AUPR, the
top performing methods are the same ones that AUROC and FPR95 highlighted as best.

2.2 OE-+mixup in the Synthetic to Real Benchmark

Figure [2| presents point cloud instances obtained via mixup. This strategy is used to create data
that can be exploited as OOD during training via outlier exposure. However, as it can be noticed,
shape mixing inevitably introduces some artefacts that resemble noise, missing parts and background,
typical of real-world data. We believe that in the synthetic-to-real experiments this may introduce
some confusion rather than helping in separating known and unknown classes, as it pushes the model
to believe that all corrupted samples belong to unknown classes. This reflects in the poor OE+mixup
results reported in Tab. 3 of the main paper.

2.3 Corruption-based data augmentation

The results of the Synthetic to Real benchmark highlight the impact of the domain shift on the open
set performance. Indeed, synthetic point clouds exhibit a clean geometry and have no background.
Differently, real-world point clouds are affected by partiality, and occlusion, cluttered with noise
and background points. A possible solution to partially bridge this domain shift consists in trying to
emulate these kinds of corruptions at training time via tailored data augmentation functions.

We experiment with this solution by adopting the Occlusion and LIDAR augmentations from [57].
Fig. [3|shows some examples of the results obtained using these transformations. Comparing them
with point clouds in the second row of Fig. [I]it is possible to notice some differences. Considering
both DGCNN and PointNet++ backbones we perform experiments with such augmented training
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Figure 2: Examples of RSMix [24] between Figure 3: Examples of ModelNet point clouds
known samples of the synthetic SN1 set. We em- augmented with LIDAR (first two) and Occlu-
ploy these mixed point clouds as training OOD  sion (last two) corruptions from [57]]

data in OE experiments

Table 3: Results on the Synthetic to Real Benchmark track when varying the number of test points.
Reported results are average over the two possible scenarios (SR1, SR2).

Synth (1024) to Real (2048) - Avg Synth (1024) to Real (1024) - Avg Synth (1024) to Real (512) - Avg
DGCNN PointNet++ || DGCNN PointNet++ || DGCNN PointNet++

Method AUROCT  FPR95, | AUROCT FPR95| || AUROCT FPR95, | AUROCT FPR95| || AUROC? FPR95S| | AUROCT  FPR9S)
MSP [18] 66.7 90.6 75.6 83.2 70.2 86.7 76.5 84.0 58.5 92.1 74.3 844
MLS [44] 65.7 90.5 74.8 81.7 70.4 86.4 76.4 79.0 61.9 89.7 75.2 80.9
ODIN [27] 65.7 90.6 76.0 80.8 70.1 87.4 78.3 81.0 574 93.3 76.1 81.3
Energy [28] 65.6 90.8 74.8 82.4 70.6 86.9 77.6 78.9 62.5 88.7 76.3 80.4
GradNorm [21] 63.4 91.5 73.0 83.2 70.5 85.8 76.5 78.0 62.2 89.8 75.5 79.8
ReAct [40] 65.6 90.5 74.6 81.4 67.5 88.3 74.3 80.9 60.8 90.4 73.1 82.8
Cosine proto 579 90.9 78.2 76.1 70.0 86.3 76.2 7.7 61.1 88.8 74.9 79.5
CE (L?) 66.0 89.2 71.7 82.3 73.9 82.2 71.0 84.2 64.9 88.4 724 86.5
SubArcface [11]  71.6 86.7 76.9 83.8 61.9 88.6 78.5 76.4 55.0 93.1 76.8 76.6

data for both the simple MSP baseline and SubArcFace method. Results for these experiments are
presented in Tab. [2] where we refer to the models trained with the augmented training set as (+RW
Augm). DGCNN highly benefit from the real-world tailored data augmentation, obtaining an AUROC
improvement of +7.2pp and +3.5pp respectively for MSP and SubArcFace methods. PointNet++,
on the other hand, has already proven its robustness in synthetic to real-world scenario and does not
benefit from the tailored augmentation schema.

2.4 Number of points at test time

The visual domain shift between training and test conditions that appear in the Synthetic to Real case
may include also a difference in the cardinality of points. In our Synthetic to Real Benchmark we
followed the same procedure adopted for the Synthetic Benchmark case: we use 1024-dim synthetic
points clouds during training, with points randomly sampled from the surface of the ModelNet40
meshes. The trained model is then evaluated solely on real-world samples from the ScanObject
dataset. Real-world data samples come directly in the form of 2048-dim point clouds. For each
sample, out of the 2048 points, we do not know a priori which are belonging to the foreground
object, background, or other interacting objects. In order to ease results replication, we originally
decided to avoid random subsampling and used at test time 2048-dim real-world points clouds in all
our Synthetic to Real experiments. We are now interested in analyzing how the number of points
used during inference influences the results and thus we test with 1024 and 512 and report results
in Tab. 3] Looking at the results we can conclude that forcing train and test data to have the same
number of points (1024-1024) slightly reduces the domain shift and provides a small performance
improvement with respect to the remaining cases that present an asymmetry in the point cloud
cardinality (1024-2048, 1024-512).

3 Analysis of the error margin

All the experimental results presented in the main paper are average over three experiments repetitions
with different seeds. In Fig. @] we report both the average and standard deviation for the MSP baseline
and the methods that presented top results, respectively CE (L?) for the Synthetic, SubArcFace for the
Synthetic to Real and Cosine proto for the Real to Real Benchmarks. By looking at the error bars, we
can see that in the Synthetic Benchmark the standard deviation is quite small and the advantage of CE
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Figure 4: Error margin analysis. State-of-the-art and baseline AUROC results on the three 3DOS
tracks: Synthetic, Synthetic to Real and Real to Real Benchmarks. Red error bars represent the
standard deviation around the mean value.

(L?) over MSP is always statistically significant. In the Synthetic to Real Benchmark the performance
gap is lower, especially for the SR1 case, where MSP outperforms SubArcFace with the PointNet++
backbone. With both backbones however the results of the baseline and the state-of-the-art approach
are within the error margin. SubArcface however has significantly better performance on the SR2
setting with also a smaller standard deviation.

When inspecting the Real to Real Benchmark results the performance gap between the baseline and
the top-performing method is most noticeable with DGCNN. Clearly, the improved performance
obtained by using a more robust backbone such as PointNet++ reduces the importance of selecting
a stronger learning approach. In any case, the error margin is quite low and appears to decrease as
performance improves, highlighting the high reliability of the results obtained in this Benchmark.

4 Further discussion

4.1 Limitations

Some limitations of our work are directly inherited from the 3D computer vision field. The benchmark
would undoubtedly benefit from the inclusion of a large-scale real-world dataset; however, such a
dataset would have to be purposefully collected and curated because it is currently unavailable. In the
last years, huge progress has been made in 3D deep learning literature. However, most of the recent
works exclusively focus on synthetic scenarios, now exhibiting a trend of performance saturation on
these testbeds. Furthermore, the lack of a large-scale annotated dataset also limits the development of
more efficient 3D backbones. Our experiments demonstrated that using a cutting-edge backbone does
not automatically translate into improved performance. This surprising trend is even more visible in
the synthetic to real-world scenario, for which more research efforts are needed.

4.2 Broader Impact

We hope that our research will have a positive impact on both academia and society. In terms of
academic research, we emphasized the importance of investigating Open Set scenarios for 3D deep
learning. In this context, our benchmark will serve as a reliable starting point for novel methods
capable of leveraging the plethora of information naturally offered by 3D data. We release our code
with the aim of providing a foothold for future work towards building trustworthy systems that can
manage the challenges of the open world. In terms of societal impact, we anticipate that increased
academic interest in this field will drive the development of more robust models for safety-critical
applications where 3D sensing could be a valuable ally: autonomous driving, robotics and health care
are only some examples.
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