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ABSTRACT

Similar to other machine learning frameworks, Offline Reinforcement Learning
(RL) is shown to be vulnerable to poisoning attacks, due to its reliance on exter-
nally sourced datasets, a vulnerability that is exacerbated by its sequential nature.
To mitigate the risks posed by RL poisoning, we extend certified defenses to pro-
vide larger guarantees against adversarial manipulation, ensuring robustness for
both per-state actions, and the overall expected cumulative reward. Our approach
leverages properties of Differential Privacy, in a manner that allows this work to
span both continuous and discrete spaces, as well as stochastic and deterministic
environments—significantly expanding the scope and applicability of achievable
guarantees. Empirical evaluations demonstrate that our approach ensures the per-
formance drops to no more than 50% with up to 7% of the training data poisoned,
significantly improving over the 0.008% in prior work (Wu et al., 2022), while
producing certified radii that is 5 times larger as well. This highlights the poten-
tial of our framework to enhance safety and reliability in offline RL.

1 INTRODUCTION

Offline Reinforcement Learning (RL), also known as batch RL, involves training policies entirely
from pre-collected datasets. Doing so is particularly advantageous in scenarios where directly in-
teracting with the environment is costly, risky, or infeasible, such as healthcare (Wang et al., 2018),
autonomous driving (Pan et al., 2017), and robotics (Gürtler et al., 2023). Due to this, offline RL
mechanistically shares the same vulnerability to data poisoning attacks (Kiourti et al., 2020; Wang
et al., 2021) as traditional classifiers, in which adversarial manipulation of the training data can
lead to suboptimal or harmful decisions. Such vulnerability is further intensified by the dependence
on external datasets collected by unknown behavioral agents and the dynamic, sequential decision-
making process of RL. Across industrial users of RL, poisoning attacks are broadly considered to
pose the most pressing security risk (Kumar et al., 2020), with offline settings being of particular
concern (Zhang et al., 2021a). These intrinsic risks highlight the need for specialized defensive
strategies to be developed, in order to support RL deployments.

Defenses in RL share many of the same risks as defenses deployed for other Machine Learning
paradigms, in that they can be circumvented by a motivated attacker. By contrast, certified defenses
offer theoretical guarantees of robustness against worst-case adversarial manipulations. Such ro-
bustness guarantees are particularly desirable in safety-critical domains and have been extensively
explored in classification tasks (Lecuyer et al., 2019; Salman et al., 2019; Cullen et al., 2022). How-
ever the direct applicability of these techniques to RL is made more challenging due to the complex
sequential dependency and interactive nature of RL (Kiourti et al., 2020).

While some works (Ye et al., 2023; Zhang et al., 2021a; Lykouris et al., 2023) have established
robustness bounds for RL from a theoretical perspective, they typically rely on significant sim-
plifications of the problem setting that do not reflect the complexities of real-world RL scenarios,
limiting their applicability. Furthermore, these robustness bounds are typically expressed in terms
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of the optimality gap to the practically unattainable Bellman optimal policy, offering qualitative
insights rather than quantitative certification value of the robustness.

To circumvent these limitations, recent research has begun to consider how practical certifications
can be constructed, resulting in the COPA approach (Wu et al., 2022). This approach provides com-
putable lower bounds on cumulative reward and certified radii, to ensure policies are robust against
poisoning attacks. However, despite its utility, COPA is fundamentally limited to discrete action
spaces and deterministic settings, which constrains it to a small subset of potential RL environ-
ments. Additionally, it certifies only individual trajectories without offering robustness guarantees
for the overall performance of the learned policy.

To resolve these limitations, within this work, we propose the Multi-level Certified Defenses
(MuCD) against poisoning attacks in general offline RL settings, offering multi-level robustness
guarantees across different levels of poisoning. To assist in this, we distinguish between adversar-
ial attacks against RL that involve trajectory-level poisoning, which occur during the data collec-
tion process; and transition-level poisoning, which occurs after the training dataset is collected. In
response to the existence of these threat models, we propose employing certifications that employ
action-level robustness (expanding upon Wu et al. 2022) to ensure that critical states are safeguarded
against being entered; and policy-level robustness, which provides a lower bound on the expected
cumulative reward. This latter framework naturally aligns with RL policy’s primary goal (Prudencio
et al., 2024). To achieve these certifications, our framework comprises two stages: a Differential
Privacy (DP) based randomized training process and robustness certification methods. These certi-
fications are broadly applicable to RL, covering both discrete and continuous action spaces, as well
as deterministic and stochastic environments.

Our contributions on both a theoretical and empirical level are:

• Formulating both multi-level attacks and certifications for poisoning attacks in offline RL, en-
abling comprehensive analysis of the robustness of the offline RL training process.

• Proposing the first practical certified defense framework that provides computable robustness cer-
tification in terms of both per-state action stability and expected cumulative reward in general
offline RL settings.

• Experimentally demonstrating significant improvements over past certification frameworks across
varying environments and RL algorithms.

2 RELATED WORKS

Offline and Online RL. RL approaches can be broadly categorized as online or offline learning.
Of these, online learning algorithms involve agents learning by interacting with the environment in
real-time, driving advances in a range of fields (Silver et al., 2017; Schulman et al., 2017; Kendall
et al., 2019). While frameworks like Policy Gradient (Sutton et al., 1999) and Actor-Critic (Mnih,
2016) can effectively learn policies for online RL, their trial-and-error exploration may lead to un-
intended harmful outcomes and unsafe decisions during the learning process, which is of particular
concern to safety-critical areas such as healthcare (Yu et al., 2021) and finance (Nevmyvaka et al.,
2006). By contrast, offline (or batch) RL is considered safer, as it learns to emulate pre-collected
data to create optimal policies without interacting with the environment (Lange et al., 2012). Algo-
rithms such as Deep Q-Network (DQN) (Mnih et al., 2013), Implicit Q-Learning (IQL) (Kostrikov
et al., 2021) and C51 (Bellemare et al., 2017) have demonstrated effective in leveraging historical
data to optimize decision-making without further exploration.

Poisoning Attacks in Offline RL. Adversarial attacks are a well-documented threat to machine
learning, where motivated adversaries manipulate models to induce unexpected behaviors. Among
these, poisoning attacks (Barreno et al., 2006; Biggio et al., 2013)—which deliberately corrupt the
training data to degrade the performance of learned models—are particularly concerning for offline
RL, due to its reliance on pre-collected datasets and the complex dynamics of RL frameworks (Ku-
mar et al., 2020; Kiourti et al., 2020). Adversaries can target specific components of the data, such as
in reward poisoning attacks (Wu et al., 2023), or broadly corrupt the entire dataset as in general poi-
soning attacks (Wang et al., 2021). Corruption can occur after data has been collected cleanly (Zhang
et al., 2021a) or during data collection (Ye et al., 2023; Gong et al., 2024).
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Certified Defenses. In response to these attacks, a range of defensive mechanisms have been pro-
posed. Of these, certified defenses have drawn particular interest, due to their ability to provide ro-
bustness guarantees against attack existence for classification tasks (Peri et al., 2020; Lecuyer et al.,
2019; Liu et al., 2021; Cullen et al., 2024b), however applying these methods to RL directly has
proven challenging due to RL’s sequential dependency (Kiourti et al., 2020). While some research
has addressed certified robust RL in the context of reward poisoning (Banihashem et al., 2021; Nika
et al., 2023), extensions to general poisoning attacks have been more limited, with results primarily
restricted to theoretical analyses of simplified variants (using linear MDPs or assuming bounded
distances to Bellman optimality) of offline RL under attack occurring during data collection (Ye
et al., 2023) or afterward (Yang et al., 2024; Zhang et al., 2021a). Crucially, these robustness ap-
proaches typically produce bounds expressed in asymptotic measures of the optimality gap between
the learned policy and the theoretical optimal policy, which have limited practical applicability.

By contrast, COPA (Wu et al., 2022) recently demonstrated that per-state certification for RL could
be computed by adapting the Deep Partition Aggregation (DPA) (Levine & Feizi, 2021) method
from classification tasks. Based on that, they proposed a tree-search approach that exhaustively
explores all possible trajectories to compute a lower bound on the cumulative reward. However,
such an approach intrinsically limits it to discrete action spaces and deterministic environments.
Consequently, their certification framework only applies to specific, repeatable trajectories and fails
to provide robustness guarantees for the reward or policy in more general scenarios.

3 PRELIMINARIES

In this section, we formulate the offline RL framework as an episodic finite-horizon Markov De-
cision Process (MDP), establishing the foundation for our discussion. We then outline the dataset
construction process and introduce a comprehensive multi-level poisoning attack model to address
potential risks in offline RL training, along with the objectives for certified defense. Finally, we
highlight key concepts from Differential Privacy (DP) that underpin our approach.

3.1 MULTI-LEVEL POISONING

Framework. The RL framework is modeled as an episodic finite-horizon MDP, represented by
the tuple (S,A, P,R,H, γ), where S is the state space,A is the action space, P : S×A → ∆(S) is
the stochastic transition function with ∆(·) defining the set of probability measures, R : S×A → R
is the bounded reward function, H is the time horizon, and γ ∈ R is the discount factor.

At a time step t, an RL agent in state st ∈ S selects an action at = π(st) according to its policy
π ∈ Π : S → A. Upon executing at, the agent transitions to the subsequent state st+1 ∼ P (st, at)
and receives a reward rt = R(st, at). The tuple (st, at, st+1, rt) is referred to as a transition, and
the sequence of transitions {(st, at, st+1, rt)}H−1

t=0 over one episode constitutes a trajectory τ .

Offline RL Datasets. Offline RL employs a dataset D = {τj}Mj=1 consisting of M trajectories, or
equivalently N transitions D = {(si, ai, si+1, ri)}Ni=1, collected by an unknown behavioral policy
πβ . The agent learns its policy π from this dataset without further interaction with the environment,
which provides opportunities for an adversary to poison the training data during the behavioral
policy execution or after the collection process.

Trajectory-level Poisoning. Trajectory-level poisoning occurs when the adversary corrupts the
data collection process. The adversary, with full knowledge of the MDP, can observe all the histor-
ical transitions and alter transitions {(st, at, st+1, rt)} at arbitrarily many time steps by replacing
them with {(s̃t, ãt, s̃t+1, r̃t)}. As any alteration can affect subsequent transitions and propagate
through gameplay, the following definition quantifies corruption by the number of modified trajec-
tories, following the adversarial models in robust statistics (Diakonikolas et al., 2019) and robust
RL (Zhang et al., 2021b; Wu et al., 2022) settings.
Definition 3.1 (Trajectory-level poisoning). Assume an adversary can make up to r changes, in-
cluding additions, deletions, or alterations, to the trajectories within a clean dataset D = {τj}Mj=1.
Then the set of all possible poisoned datasets is Btrj(D, r) := {D̃ : |D ⊖trj D̃| ≤ r}, where
|D ⊖tra D̃| measures the minimum number of changes to the trajectories required to map D to D̃.
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Transition-level Poisoning. In transition-level poisoning, the adversary modifies transitions
after the data is collected. Therefore, alterations are limited to the specific transitions
{(s̃i, ãi, s̃i+1, r̃i)}ri=1 that were directly modified, without impacting any subsequent transitions
across the trajectory. Hence, we quantify the corruption by the total number of modified transitions
through the following definition.

Definition 3.2 (Transition-level poisoning). Assume an adversary can make up to r changes,
including additions, deletions, or alterations, to the transitions within a clean dataset D =
{(si, ai, si+1, ri)}Ni=1. Then the set of all possible poisoned datasets is Btra(D, r) := {D̃ :

|D ⊖tra D̃| ≤ r}, where |D ⊖tra D̃| measures the minimum number of changes to the transitions
required to map D to D̃.

3.2 MULTI-LEVEL ROBUSTNESS CERTIFICATION

To ensure robustness against data poisoning in RL, we aim to certify test-time performance of a
policy π =M(D) trained on a clean dataset D with the training algorithmM. In doing so, we will
bound the difference between π and the equivalent π̃ =M(D̃) trained upon a poisoned dataset D̃,
subject to a constraint on the difference between D and D̃.

Policy-level Robustness. Offline RL algorithms aim to find an optimal policy that maximizes the
expected cumulative reward for all trajectories induced by the policy (Prudencio et al., 2024). Thus
we first aim to construct certifications regarding the expected cumulative reward. The expected
cumulative reward is denoted as J(π) = Eσ,ξ [

∑
t γ

trt | π], where ξ represents the randomness
of the environment and σ represents the randomness introduced by the training algorithm. The
following definition demonstrates how policy-level robustness certifications can construct a lower
bound on the expected cumulative reward, henceforth labelled as Jr, under a poisoning attack of
size r.

Definition 3.3 (Policy-level robustness certification). Given a clean dataset D, a policy-level certifi-
cation ensures that a policy π̃ =M(D̃) trained on any poisoned dataset D̃ ∈ B(D, r) will produce
an expected cumulative reward J(π̃) ≥ Jr with probability at least 1− δ.

Action-level Robustness. Beyond ensuring generalised robustness, it is crucial to be able to guar-
antee the safety of the agent by ensuring it avoids catastrophic outcomes and entering undesirable
states (Gu et al., 2024). Therefore, we also aim to certify the stability of the agent’s actions on a
per-state basis during testing. The action-level robustness certification in a discrete action space at
state st under a poisoning attack of size r is defined in the following definition.

Definition 3.4 (Action-level robustness certification). Given a clean dataset D and state st, the
action-level robustness certification states that for any poisoned dataset D̃ ∈ B(D, r), the clean
and poisoned policies produce the same action π(st) = π̃(st) where π =M(D) and π̃ =M(D̃),
with a probability of at least 1− δ.

3.3 DIFFERENTIAL PRIVACY

DP quantifies privacy loss when releasing aggregate statistics or trained models on sensitive
data (Dwork et al., 2006; Abadi et al., 2016; Friedman & Schuster, 2010). As DP can be used
to measure the sensitivity of outputs to input perturbations, it is well aligned to use in certifications,
leading to it being employed in multiple works (Lecuyer et al., 2019; Ma et al., 2019; Cullen et al.,
2024a). The remainder of this section will introduce key properties of DP as employed by our work,
with more detailed explanations of the Approximate-DP (ADP) and Rényi-DP (RDP) mechanisms
deferred to Appendix A.1.

Our work relies upon two key principles of DP—the post-processing property, that any computation
applied to the output of a DP algorithm preserves the same DP guarantee (Dwork et al., 2006); and
the outcomes guarantee (Liu et al., 2023; Mironov, 2017), as explained in the following definition
specifically for ADP and RDP.

Definition 3.5 (Outcomes guarantee for ADP and RDP). A randomised functionM is said to pre-
serve a (K, r)-outcomes guarantee if for any function K ∈ K such that for all datasets D1 and
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D2 ∈ B(D1, r), and for all measurable output sets S ⊆ Range(M) if

Pr[M(D1) ∈ S] ≤ K(Pr[M(D2) ∈ S]) . (1)

In ADP, the function family K is parameterized by ϵ, δ as Kϵ,δ(x) = eϵx + δ, while in RDP K is
parameterized by ϵ, α as Kϵ,α(x) = (eϵx)

α−1
α .

4 APPROACH

Our novel certified defense employs a DP-based randomized training process and provides two
unique certification methods to construct both action-level and policy-level robustness certification
against transition and trajectory level poisoning attacks.

4.1 RANDOMIZED TRAINING PROCESS

Our certification requires the training algorithmM to ensure the DP guarantee of its output policy
π with respect to the training dataset D. DP mechanisms introduce randomness into the training
process by adding calibrated noise in updating the parameters, producing a randomized policy π.
Empirically, this can be represented as a set of p policy instances (π̂1, · · · , π̂p). As each instance
undergoes the same training process, this can be easily parallelized for efficiency. For larger datasets,
further efficiency gains can be achieved by training each instance on a subset Dsub ⊆ D.

Our specific approach employs the Sampled Gaussian Mechanism (SGM) (Mironov et al., 2019)
to ensure DP guarantee at the transition-level Btra, and adapts the DP-FEDAVG (McMahan et al.,
2017) for the trajectory-level Btrj DP guarantee. Details of the training algorithms are deferred to
Appendix A.2. For the remainder of this paper, B will represent either Btra or Btrj , depending on
whether the applied DP training algorithm provides transition- or trajectory-level guarantees.

4.2 POLICY-LEVEL ROBUSTNESS CERTIFICATION

Consider a DP training algorithmM (as described in Section 4.1) that preserves a (K, r)-outcomes
guarantee for the clean dataset D, producing the clean policy π = M(D). When the dataset is
poisoned as D̃, the resulting policy is denoted as π̃ =M(D̃). To certify the policy-level robustness
as in Definition 3.3 in terms of the lower bound of expected cumulative reward, we denote the testing
time expected cumulative reward of a policy π as expressed by

J(π) = E
σ
[C(π)] where C(π) = E

ξ

[
H−1∑
t=0

γtrt|π

]
, (2)

that σ represents the training randomness, and ξ represents the environment randomness.

To provide bounds over the expected output of the DP mechanisms, we propose the following lemma
that extends the outcomes guarantee from probability to the expected value.
Lemma 4.1 (Expected Outcomes Guarantee for ADP and RDP). If anM that produces bounded
outputs in [0, b], b ∈ R+ satisfies (K, r)-outcomes guarantee, then for any D̃ ∈ B(D, r) the expected
value of the outputs of theM must satisfy: If K denotes the function family of ADP Kϵ,δ ,

e−ϵ(E[M(D)]− bδ) ≤ E[M(D̃)] ≤ eϵE[M(D)] + bδ . (3)

Similarly, if K denotes the function family of RDP Kϵ,α,

e−ϵ(b−1/αE[M(D)])
α

α−1 ≤ E[M(D̃)] ≤ b1/α(eϵE[M(D)])(α−1)/α , (4)

where the expectation is taken over the randomness inM.

Proof. While a full proof is contained within Appendix A.3, here we present an informative sketch.
The upper bound of the expected value can be obtained by integrating over the right-tail distribution
function of the probabilities in Equation (1) by Fubini’s Theorem (Fubini, 1907). The integral results
of ADP and RDP can be derived by respectively employing Lecuyer et al. (2019) and Hölder’s
Inequality. The lower bound follows by the symmetry in the roles of D1, D2 in DP, and by K being
strictly monotonic.
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With this preliminary result, we now turn to the main result of this section, which is to establish that
DP learning algorithms ensure policy-level robustness against poisoning attacks up to size r, with
an extension to real-valued cumulative rewards deferred to Appendix A.4.

Theorem 4.2 (Policy-level robustness by outcomes guarantee). Consider an RL environment with
bounded cumulative reward in the range [0, b], b ∈ R+, as well as a randomized offline RL policy
π =M(D) constructed by the learning algorithmM using training dataset D. IfM preserves a
ADP (K, r)-outcomes guarantee, then each K ∈ Kϵ,δ with corresponding ϵ, δ satisfies the policy-
level robustness of size r for any poisoned dataset D̃ ∈ B(D, r) as

J(π̃) ≥ Jr(π̃) = e−ϵ(J(π)− bδ) . (5)

If M preserves a RDP (K, r)-outcomes guarantee, then each K ∈ Kϵ,α with corresponding ϵ, α
satisfies the policy-level robustness of size r as

J(π̃) ≥ Jr(π̃) = e−ϵ(b−1/αJ(π))
α

α−1 . (6)

Proof. This result is a direct consequence of the (K, r)-outcomes guarantee and the post-processing
property, as C(π̃) = C(M(D̃)) is a post-computation applied to the output of the DP mechanism
M, hence it satisfies the same (K, r)-outcomes guarantee by the post-processing property. By
Lemma 4.1, the expected value J(π̃) = E[C(π̃)] and J(π) = E[C(π)] satisfy the inequality in
Equation (5) and Equation (6) for ADP and RDP respectively.

To compute the policy-level robustness using Theorem 4.2, we need to obtain the lower bound of
J(π) to substitute into the Equation (5) and Equation (6). Consider the cumulative reward of the
policy π as a random variable X =

∑H
t γtrt where J(π) = Eσ,ξ [X]. The estimations of X can be

obtained by playing the games m times using the trained policy instances (π̂1, · · · , π̂p), and obtain
its empirical Cumulative Distribution Function (CDF) F̂X(x). By the Dvoretzky–Kiefer–Wolfowitz
inequality (Dvoretzky et al., 1956), the true CDF FX(x) must be bounded by an empirical CDF
F̂X(x) of a finite sample size m with probability at least 1− δ as

F̂X(x)− ε ≤ FX(x) ≤ F̂X(x) + ε where ε =

√
ln 2

δ

2m
. (7)

The expected value of the random variable X in the bounded range [0, b] can be expressed by the
true CDF FX(x) and bounded by the empirical CDF F̂X(x) as

J(π) = E
σ,ξ

[X] =

∫ b

0

(1− FX(x)) dx ≥
∫ b

0

(1− (F̂X(x)− ε)) dx , (8)

and thus allows us to construct the lower bound Jr(π̃), as required for policy-level certification.

4.3 ACTION-LEVEL ROBUSTNESS CERTIFICATION

In this section, we propose a method for certifying action-level robustness as in Definition 3.4 in
terms of the stability of output actions. To achieve this, we begin by considering the decision-
making process of a policy π given state st in a discrete action space A = {A1, · · · , AL}. For
each instance π̂i of the policy, the action at,i is selected based on the highest action-value at,i =

argmaxal∈A Qπ̂i
(st, al) = Eπ̃i

[∑H−1
t=0 γtrt | s0 = st, a0 = al

]
. Without loss of generality, we

denote the action at chosen by the randomized policy π as the one with the highest inferred scores
IAl

(st, π), where
∑

Al∈A IAl
(st, π) = 1 and IAl

(st, π) ∈ [0, 1]. The inferred score function of the
randomized policy π takes the form

IAl
(st, π) = Pr[argmax

ai

Qπ(st, ai) = Al] , (9)

indicating that the action is induced as the most likely one, which can be estimated unbiasedly by
using a majority vote among all policy instances. We then propose the following lemma, which
extends the outcome guarantees to inferred scores.
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Lemma 4.3 (Inferred scores outcomes guarantee). If M preserves a (K, r)-outcomes guarantee
for a dataset D, and there exist an I that maps the learned policy π = M(D) and a state st to
an inferred score, then for any K ∈ K, it must hold that for any action Al ∈ A and any policy
π̃ =M(D̃) trained with dataset D̃ ∈ B(D, r):

K−1(IAl
(st, π)) ≤ IAl

(st, π̃) ≤ K(IAl
(st, π)) . (10)

Proof. The composition I ◦ M preserves the same outcomes guaranteed by the post-processing
property. The reverse inequality is derived from the symmetry in the roles of the datasets in DP, with
K being strictly monotonic. The outcomes guarantee can be directly converted to Equation (10) by
defining S = {π : argmaxai Qπ(st, ai) = Al}.

With the bounds over inferred scores by outcomes guarantee, we present the theorem that speci-
fies the conditions under which a DP learning algorithm maintains action-level robustness against
poisoning attacks of size r in any arbitrary state st.
Theorem 4.4 (Action-level robustness by outcomes guarantee). Consider an offline RL training
dataset D, a randomized learning algorithm M that satisfies a (K, r)-outcomes guarantee and
outputs a policy π = M(D). Let I be the inferred score function, and st be an arbitrary test-
time input state with the corresponding output action at = argmaxal∈A Ial

(st, π). If there exist
K1,K2 ∈ K such that:

K−1
1 (Iat(st, π)) > max

al∈A\{al}
K2(Ial

(st, π)) (11)

then the algorithm preserves action-level robustness at state st under a poisoning attack of size r.

Proof. As the policy selects the action that maximises the inferred score, the objective of certifying
action-level robustness is equivalent to proving that the inferred score of at is larger than the inferred
score of any other actions al ∈ A \ {at} for any poisoned dataset D̃ ∈ B(D, r), as

∀D̃ ∈ B(D, r)

Iat(st,M(D̃)) > max
al∈A\{al}

Ial
(st,M(D̃)) .

(12)

GivenM preserves a (K, r)-outcomes guarantee, then for any K1,K2 ∈ K, the following inequali-
ties can be derived by Lemma 4.3 as

Iat
(st,M(D̃)) > K−1

1 (Iat
(st, π))

max
al∈A\{al}

Ial
(st,M(D̃)) < max

al∈A\{al}
K2(Ial

(st, π)) .
(13)

Therefore, if there exists K1 and K2 that satisfy the condition in Equation (11), the transitive prop-
erty of inequalities ensures that the condition in Equation (12) is also satisfied.

The maximum tolerable poisoning size rt can be calculated while maintaining action-level robust-
ness by way of the policy instances (π̂1, · · · , π̂p) and the condition in Theorem 4.4. At each time,
the selected action at is that with the highest inferred score across the policy instances, with upper
and lower bounds estimated simultaneously through sampling the outputs of the policy instances to
a confidence level of at least 1 − δ by the SIMUEM method (Jia et al., 2020). We substitute the
lower bound of Iat

(st, π) and the upper bound of maxat∈A\{at} Iat2
(st, π) into the condition of

Equation (11). By Theorem 4.4 we can then certify whether action-level robustness is achieved at
state st under a poisoning size r. The maximum tolerable poisoning size rt is determined through a
binary search over the domain ofK to find the K1 and K2 that satisfies the condition for maximising
r. We defer the details of this process to Appendix A.5.

5 EXPERIMENTS

In this section, we evaluate our proposed certified defenses under scenarios of either transition- or
trajectory-level poisoning (Section 3.1) for policy-level and action-level robustness (Section 3.2). To
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facilitate these, we conducted evaluations using Farama Gymnasium (Towers et al., 2023) discrete
Atari games Freeway and Breakout, as well as the continuous action space Mujoco game Half Chee-
tah. We also employed the D4RL (Fu et al., 2020) dataset and the Opacus (Yousefpour et al., 2021)
DP framework. Our environments were trained using DQN (Mnih et al., 2013), IQL (Kostrikov
et al., 2021) and C51 (Bellemare et al., 2017), implemented with Convolutional Neural Networks
(CNN) in PyTorch on a NVIDIA 80GB A100 GPU. Further results considering the robustness of
these defenses to empirical attacks are presented within Appendix A.7.

Our offline RL datasets consist of 2 million transitions for each game, with corresponding trajectory
counts of 976 for Freeway, 3, 648 for Breakout, and 2, 000 for Half Cheetah. In all experiments, the
sample rates q in the DP training algorithms were adjusted to achieve a batch size of 32, with varying
noise multipliers σ as detailed in the results. Uncertainties were estimated within a confidence
interval suitable for δ = 0.001. For each game, the number of policy instances p, as described in
Section 4.1, is set to 50. The number of estimations of expected cumulative reward m is set to 500,
with 10 estimations per policy instance, as detailed in Section 4.2.

5.1 ACTION-LEVEL ROBUSTNESS RESULTS

Figure 1: Stability ratio against the tolerable poisoning threshold r̄ for action-level robustness using
DQN and C51 for the Freeway and Breakout environments under transition- or trajectory-level poi-
soning attacks. Blue, Green and Red lines represent different noise levels σ during the randomized
training process as σ = {1, 2, 3} for Freeway and {1, 1.5, 2} for Breakout, while the yellow dashed
line denotes COPA, which can only be calculated for trajectory-level poisoning.

Environment Method Noise
Avg. Cumulative Reward Action-level Mean Radii

DQN C51 DQN C51
Transition Trajectory Transition Trajectory

Freeway Proposed (RDP)

0.0 20.1 21.3 N/A N/A N/A N/A
1.0 16.9 16.1 128.1 32.6 111.6 22.1
2.0 16.6 15.3 145.5 58.7 119.3 37.8
3.0 16.0 15.1 160.0 102.4 134.5 49.7

COPA N/A 16.4 16.4 N/A 10.1 N/A 9.7

Breakout Proposed (RDP)

0.0 385.4 389.3 N/A N/A N/A N/A
1.0 366.6 369.0 3.4 3.2 4.0 3.9
1.5 320.8 270.4 7.9 7.6 9.5 9.3
2.0 268.4 102.7 17.7 16.9 22.0 21.7

COPA N/A 325.7 330.1 N/A 6.6 N/A 6.3

Table 1: Testing time average cumulative reward in a clean environment and the mean of maximum
tolerable poisoning size rt of the action-level robustness.

We will now evaluate action-level robustness across varying RL algorithms and environments for
RDP, with additional ADP based experiments and statistics provided in Appendix A.6. This analysis
considers the mean and maximum value of rt across a set of evaluated trajectories as well the
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stability ratio (Wu et al., 2022). This latter metric represents the proportion of time steps in a
trajectory where the maximum tolerable poisoning size rt of action-level robustness is maintained
under a poisoning attack of size up to a given threshold r̄ for a trajectory length H by way of

Stability Ratio =
1

H

H−1∑
t=0

1[rt ≥ r̄] . (14)

To interpret our results, it is important to emphasise that a higher stability ratio at larger thresholds
signifies better certified robustness. Models trained with higher noise achieve stronger certified
robustness, at the cost of clean performance decreasing in terms of the average cumulative rewards,
as shown in Table 1. In concert with Figure 1 it is clear that DQN produces a consistently higher
certifications than C51 in Freeway, while matching performance in Breakout. These differences
arise from DQNs ability to adapt to noisey training process, allowing it to ameliorate the impact of
these perturbations without a significant drop in performance. It is also important to note that the
Freeway consistently shows better action-level robustness than Breakout, suggesting that Freeway
supports more stable and robust policies.

Given the effectively interchangeable action-level robustness of the variants as reported in
COPA (Wu et al., 2022), our comparisons are constructed against the basic PARL variant in the
same setting, with the number of partitions set to 50. For a fair comparison, the models trained at a
noise level represented by the green line in each game achieve comparable performance to COPA in
terms of Avg. Cumulative Reward, as shown in Table 1. Our technique’s maximum tolerable poi-
soning size—indicated by the x-axis intersection in Figure 1—is approximately 5 times larger than
other approaches, which confirms that our approach produces stronger robustness in states where
certain actions are highly preferable, typically during critical moments. Additionally, our method
achieves a higher mean value of the tolerable poisoning size across all steps as shown in Table 1,
demonstrating better certification for most states.

5.2 POLICY-LEVEL ROBUSTNESS RESULTS

Figure 2: Policy-level robustness certifications, capturing the lower bound of the expected cumula-
tive reward Jr against poisoning size r for Atari games. Solid and dashed lines represent RDP and
ADP derived guarantees respectively, with colors indicating noise levels as per Figure 1.

To assess policy-level robustness, we turn to the measure Jr(π), which directly reflects the policy-
level robustness of the learned policy against a poisoning attack of size r̄ (as in Definition 3.3),
with Figure 2 showing this for the discrete games Freeway and Breakout. We also consider the
continuous game Half Cheetah as shown in Figure 3, where the benign training yielded an average
cumulative reward of 96.47 and randomized training with noise levels set at σ = 1.0, 2.0, and
3.0 yielded average cumulative rewards of 90.5, 87.0, and 83.4, respectively. The results can be
compared from different aspects. In terms of the poisoning level, for the same policy certification
Jr, the tolerable poisoning size r in transition-level certification is about 10 times larger than in
trajectory-level. Given that each trajectory consists of approximately 1, 000 transitions, the total
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Figure 3: Policy-level robustness certification for the continuous action game Mujoco Half Cheetah,
using RL algorithm IQL. The plot is formulated in the same way as Figure 2.

number of transitions that can be altered in trajectory-level certification is actually higher than in
transition-level. This aligns with the nature of the threat models: in trajectory-level poisoning, not
all transition changes are assumed adversarial, whereas in transition-level poisoning, the adversary
can more precisely target key transitions to minimize the number of modifications.

In analyzing the influence of RL algorithms and certification methods, DQN consistently demon-
strates higher robustness certification than C51, which is consistent with the analysis from the action-
level certification. RDP’s tight quantification of privacy loss, particularly in handling iterative func-
tion composition in deep networks, provides a significant advantage over ADP in all settings.

Lastly, our approach accommodates more general RL settings, in that it can be applied to both
discrete and continuous action spaces, as well as deterministic and stochastic environments, and
significantly improves upon the performance of extant techniques, namely COPA. As COPA cer-
tifies the cumulative reward for specific trajectories rather than the expected cumulative reward of
the policy, our comparison with COPA is often implicit. The limited applicable scenarios of COPA
stem from its reliance upon exhaustive tree search in certifying cumulative reward, which is funda-
mentally incompatible with environments involving randomness or continuous action spaces, and
limiting the trajectory length to 400 in Freeway and 75 in Breakout due to the exponential growth
of the tree size, while the default trajectory lengths are 2, 000 and 600, respectively. As a result, the
maximum cumulative reward COPA can certify is restricted to 5 in Freeway and 2 in Breakout. By
contrast, our approach has no such limitations regarding environment settings or trajectory length.
Furthermore, for Freeway, COPA only allows 0.008% of trajectories in the training dataset to be
poisoned while certifying less than a 50% performance drop, whereas our method achieves a much
higher ratio of 7.17%. We observe a similar delta in relative performance within the Breakout games,
where COPA’s ratio of 0.0075% is significantly smaller than 2.05% observed for our approach.

6 CONCLUSIONS

This work explored how certified defenses against poisoning attacks can be both constructed and
enhanced in offline RL. To do this, we introduced a novel framework that leverages Differential
Privacy mechanisms to provide the first practical certified defense in a general offline RL setting.
While past works have only considered theoretical robustness bounds or are limited to specific RL
settings, our framework is able to offer both action-level stability and policy-level lower bounds
with respect to the expected cumulative reward of the learned policy. Furthermore, our experiments
across a wide range of RL environments and algorithms demonstrate robust certifications in practical
applications, significantly outperforming other state-of-the-art defense frameworks.

Our work suggests several potential directions for future research. First, developing a unified DP
training algorithm that simultaneously supports both transition- and trajectory-level certified de-
fenses could significantly enhance robustness. Additionally, defense performance may be further
improved by designing a more sophisticated noise injection mechanism that adapts noise levels dy-
namically, rather than uniform noise throughout the entire training process.
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Nico Gürtler, Sebastian Blaes, Pavel Kolev, Felix Widmaier, Manuel Wüthrich, Stefan Bauer, Bern-
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A APPENDIX

A.1 ADP AND RDP DEFINITIONS

Definition A.1 (Approximate-DP). A randomised functionM is said to be (ϵ, δ)-Approximate DP
(ADP) if for all datasets D1 and D2 for which D2 ∈ B(D1, 1), and for all measurable output sets
S ⊆ Range(M):

Pr[M(D1) ∈ S] ≤ eϵ Pr[M(D2) ∈ S] + δ , (15)
where ϵ > 0 and δ ∈ [0, 1) are chosen parameters.

ADP with the privacy guarantee as expressed in Equation (15) is the most commonly used format
in DP research. Smaller values of the privacy budget ϵ restrict the (multiplicative) influence of
a participant joining dataset D2 to form D1, thereby limiting the probability of any subsequent
privacy breach. The confidence parameter δ relaxes this guarantee by allowing for the possibility
that no bound is provided on privacy loss in the case of low-probability events.

To bound the residual risk from ADP, Rényi-DP (RDP) was introduced by Mironov (2017). Rényi-
DP provide tighter quantification of privacy through sequences of function composition, as required
when iteratively training a deep net on sensitive data, which leads to improved certifications in
practice.
Definition A.2 (Rényi-DP). A randomised functionM preserves (α, ϵ)-Rényi-DP, with α > 1, ϵ >
0, if for all datasets D1 and D2 ∈ B(D1, 1):

Dα (M(D1)∥M (D2)) ≤ ε , (16)

where Dα represents the Rényi divergence of finite order α ̸= 1 between two distributions P and Q
defined over the same probability space X with densities p and q as

Dα(P∥Q) ≜
1

α− 1
ln

∫
X
q(x)

(
p(x)

q(x)

)α

dx . (17)

The generalization to Definition 3.5 incorporates group privacy (Dwork et al., 2006) to extend DP
to adjacent datasets to pairs datasets that differ in up to r data points B(D1, r). The ADP’s function
familyK is derived directly from the Definition A.1, while the RDP’s family is obtained by applying
Hölder’s inequality to the integral of the density function in the Rényi divergence (Mironov, 2017).

A.2 DP TRAINING ALGORITHMS

Several works have extended differential privacy to RL by developing privacy-preserving algorithms
that balance the trade-off between model performance and privacy guarantees. To tackle the distinct
challenges in RL, such as the sequential dependency, multi-sourced data, notable contributions have
been made, including techniques for regret minimization RL with privacy guarantee (Vietri et al.,
2020; Dann et al., 2017; Garcelon et al., 2021), off-policy evaluation (Balle et al., 2016), and distri-
butional RL (Ono & Takahashi, 2020).

The proposed methods require the training algorithmM to preserve the DP guarantee of its output
policy π regarding the training dataset D. Depending on the DP training mechanisms, the trained
private policy in the context of offline RL can achieve either transition- or trajectory-level DP guar-
antees, meaning the B used in the aforementioned DP definitions can be Btra or Btrj respectively.

Transition-level DP Training Method SGM. While numerous differential privacy (DP) mecha-
nisms have been proposed and extensively studied in machine learning (Abadi et al., 2016; Mironov
et al., 2019), most rely on adding noise directly to the training samples. Instead, the Sampled Gaus-
sian Mechanism (SGM) (Mironov et al., 2019) introduces randomness through both noise injection
and sub-sampling, providing a better privacy cost. In SGM, each element of the training batch is
sampled without replacement with uniform probability q from the training dataset. Additionally,
Gaussian noise is added to the gradients during each weight update step. The training algorithm
is illustrated in Algorithm 1 When applied to a modelM, SGM preserves (α, ϵ)-RDP, where ϵ is
determined by the parameters (α,M, q, σ). This RDP guarantee can be further transformed into
(ϵ, δ)-ADP using the conversion method described by Balle et al. (2019).
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Algorithm 1 Sampled Gaussian Mechanism (SGM) for a ModelM using Dataset D
Require: Dataset D with n samples, sampling ratio q, noise multiplier σ, number of iterations T ,

learning rate η
Ensure: Private modelM

1: Initialize model parameters θ0
2: for t = 1, 2, . . . , T do
3: Sample a mini-batch Bt ⊆ D by selecting each element of D with probability q without

replacement
4: Compute gradients ∇L(θt−1;Bt) with respect to the mini-batch
5: Clip gradients: ∇̄L = ∇L

max(1,
∥∇L∥

C )
where C is the clipping threshold

6: Add Gaussian noise: ∇̃L = ∇̄L+N (0, σ2C2I)

7: Update model parameters: θt = θt−1 − η∇̃L
8: end for
9: return Differentially private modelM with parameters θT

Trajectory-level DP Training Method DP-FEDAVG. As demonstrated in the SGM, clipping
per-sample gradients makes it unsuitable for trajectory-level DP, where the privacy cost needs to
be accounted for on a per-trajectory basis. To address this, we utilize DP-FEDAVG (McMahan
et al., 2017), initially designed for client-level privacy in federated learning, which can be adapted
to scenarios where training data is naturally segmented, such as trajectory data in offline RL. The
core idea of DP-FEDAVG is as follows: at each iteration t, a subset Bt of trajectories is sampled
from the dataset D with probability q without replacement. A single gradient ∇L(θt−1; τt) is then
computed and clipped with constant C for each trajectory. An unbiased estimator of the average
gradient of the subset is then calculated, with sensitivity bounded by the C divided by the batch
size. Finally, the Gaussian mechanism is applied with noise magnitude σ, and the model is updated
using the noisy gradient. The details of the training algorithm is shown in Algorithm 2.

Algorithm 2 Model Training with DP-FEDAVG
Require: Dataset D, sampling ratio q ∈ (0, 1), noise multiplier σ, clipping norm C, local epochs

E, batch size B, learning rate η
Ensure: Private modelM

1: Initialize model parameters θ0
2: for each iteration t ∈ [0, T − 1] do
3: Ut ← (sample with replacement trajectories from D with probability q)
4: for each trajectory τk ∈ Ut do
5: Clone current model θstart ← θt
6: for each local epoch i ∈ [1, E] do
7: B ← (split τ ’s data into size B batches)
8: for each batch b ∈ B do
9: θ ← θ − η∇L(θ; b)

10: θ ← θstart + PerLayerClip(θ − θstart;C)
11: end for
12: end for
13: ∆clipped

t,k ← θ − θstart

14: end for
15: ∆avg

t ←
∑

k∈Ut
∆clipped

t,k

qK

16: ∆̃avg
t ← ∆avg

t +N
(
0,
(

σC
qK

)2
)

17: θt+1 ← θt + ∆̃avg
t

18: end for

In addition to the DP training algorithms discussed above, it is worth highlighting the existence of
more advanced DP algorithms capable of offering tighter privacy guarantees, enhanced computa-
tional efficiency, or optimality analysis (Gopi et al., 2021; Geng & Viswanath, 2015). These ad-
vancements enable more precise privacy bounds and contribute to further reinforcing the robustness
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of the certification for our proposed defense mechanism. However, it is crucial to emphasize that the
primary focus of our work is on establishing a general framework for integrating DP into certified
defenses for offline RL. This framework is designed to be adaptable, allowing for the incorporation
of more advanced DP mechanisms in future developments.

A.3 PROOF OF THE EXPECTED OUTCOMES GUARANTEE

Lemma A.1 (Expected Outcomes Guarantee for ADP and RDP). Suppose a randomized function
M, with bounded output [0, b], b ∈ R+, satisfies (K, r)-outcomes guarantee. Then for any D̃ ∈
B(D, r), if K denotes the function family of ADP Kϵ,δ , the expected value of its outputs satisfies:

e−ϵ(E[M(D)]− bδ) ≤ E[M(D̃)] ≤ eϵE[M(D)] + bδ , (18)

if K denotes the function family of RDP Kϵ,α, the expected value of its outputs satisfies:

e−ϵ(b−1/αE[M(D)])
α

α−1 ≤ E[M(D̃)] ≤ b1/α(eϵE[M(D)])(α−1)/α , (19)

where the expectation is taken over the randomness inM.

Proof. The expected value can be obtained by integrating over the right-tail distribution function of
the probabilities in Equation (1) by Fubini’s Theorem (Fubini, 1907) as

E[M(D̃)] =

∫ b

0

Pr[M(D̃) > t] dt . (20)

In the case of ADP, for any K ∈ Kϵ,δ that parameterized by ϵ, δ, we have

E[M(D̃)] ≤
∫ b

0

eϵ Pr[M(D) > t] + δ dt = eϵE[M(D)] + bδ . (21)

In the case of RDP, for any K ∈ Kϵ,α that parameterized by ϵ, α, we have

E[M(D̃)] ≤
∫ b

0

(eϵ Pr[M(D) > t])(α−1)/α dt . (22)

Recall Hölder’s Inequality, which states that for real-valued functions f and g, and real p, q > 1,
such that 1/p+ 1/q = 1,

∥fg∥1 ≤ ∥f∥p∥g∥q . (23)

By Hölder’s Inequality setting p = α and q = α/(α−1), f(t) = 1, g(t) = Pr [M (D) > t]
(α−1)/α,

allows for us to state that

E(M(D̃)) ≤ eϵ(α−1)/α(

∫ b

0

1αdt)1/α(

∫ b

0

Pr[M(D) > t]dt)(α−1)/α

= eϵ(α−1)/αb1/α(E(M(D)))(α−1)/α

= b1/α(eϵE(M(D)))(α−1)/α .

(24)

The alternative inequality follows by both K being strictly monotonic and symmetry in the roles of
D1, D2 for DP.

A.4 POLICY-LEVEL ROBUSTNESS CERTIFICATION FOR REAL-VALUED REWARD

To certify policy-level robustness in real-valued cumulative reward, we first extend the Lemma 4.1
to the expected value in real number.
Lemma A.2 (Real-valued Expected Outcomes Guarantee for ADP and RDP). Suppose a random-
ized functionM, with bounded output [a, b], a ∈ R−, b ∈ R+, satisfies (K, r)-outcomes guarantee.
Then for any D̃ ∈ B(D, r), if K denotes the function family of ADP Kϵ,δ , the expected value of its
outputs satisfies:

E[M(D̃)] ≥ e−ϵ(E[M(D)+]− bδ)− (eϵE[M(D)−]− aδ) (25)

E[M(D̃)] ≤ eϵE[M(D)+] + bδ − e−ϵ(E[M(D)−] + aδ) (26)

18



Published as a conference paper at ICLR 2025

if K denotes the function family of RDP Kϵ,α, the expected value of its outputs satisfies:

E[M(D̃)] ≥ e−ϵ(b−1/αE[M(D)+])
α

α−1 − (−a)1/α(eϵE[M(D)−])(α−1)/α (27)

E[M(D̃)] ≤ b1/α(eϵE[M(D)+])(α−1)/α − e−ϵ((−a)−1/αE[M(D)−])
α

α−1 (28)

where the expectation is taken over the randomness inM, E[M(D)+] represents the expected value
of all non-negativeM(D), E[M(D)−] represents the expected value of all negativeM(D).

Proof. We extend the Fubini’s Theorem from non-negative values to real values as:

E[X] =

∫ ∞

0

Pr[X ≥ t] dt−
∫ 0

−∞
Pr[X ≤ t] dt (29)

which can be derived as

Let X+ :=

{
X if X ≥ 0

0 otherwise

X− :=

{
−X if X < 0
0 otherwise

(30)

Then, we have

X = X+ −X− → E[X] = E[X+]− E[X−]

E[X+] =

∫ ∞

0

Pr[X+ ≥ t]dt =

∫ ∞

0

Pr[X ≥ t]dt

E[X−] =

∫ ∞

0

Pr[X− ≥ t]dt =

∫ ∞

0

Pr[X ≤ −t]dt =
∫ 0

−∞
Pr[X ≤ t]dt

(31)

The expected value E[M(D̃)] in range [a, b] with M satisfies (K, r)-outcomes guarantee, can be
written as

E[M(D̃)] =

∫ b

0

Pr[M(D̃) ≥ t]dt−
∫ 0

a

Pr[M(D̃] ≤ u)du

=

∫ b

0

Pr[M(D̃] ∈ T )dt−
∫ 0

a

Pr[M(D̃] ∈ U)du

≥
∫ b

0

K−1(Pr[M(D) ∈ T ])dt−
∫ 0

a

K(Pr[M(D) ∈ U ])du

(32)

where K ∈ K. For the cases of ADP and RDP, replace the K with corresponding function as
outlined in Definition 3.5.

Then the Theorem 4.2 can be extended to the case of real-valued expected cumulative reward as,
Theorem A.3 (Policy-level robustness by outcomes guarantee in real-value range). Consider an RL
environment with bounded cumulative reward in the range [a, b], a ∈ R−, b ∈ R+, an offline RL
training dataset D, and a learning algorithmM that takes the training dataset D and outputs the
randomized policy π =M(D). IfM preserves a (K, r)-outcomes guarantee in ADP, then for each
K ∈ Kϵ,δ with corresponding ϵ, δ satisfies the policy-level robustness of size r for any poisoned
dataset D̃ ∈ B(D, r) as

J(π̃) ≥ e−ϵ(J(π)+ − bδ)− (eϵJ(π)− − aδ) . (33)

IfM preserves a (K, r)-outcomes guarantee in RDP, then for each K ∈ Kϵ,α with corresponding
ϵ, α satisfies the policy-level robustness of size r as

J(π̃) ≥ e−ϵ(b−1/αJ(π)+)
α

α−1 − (−a)1/α(eϵJ(π)−)(α−1)/α , (34)

where J(π)+ denotes the expected value of all non-negative cumulative rewards, J(π)− denotes the
expected value of all negative cumulative rewards.

Proof. The proof is similar to the proof of Theorem 4.2, instead replace the usage of Lemma 4.1 to
Lemma A.2 for the real-valued expected outcomes guarantee.
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A.5 ADDITIONAL DETAILS OF ACTION-LEVEL CERTIFICATION

Here we provide additional details of the action-level certification process. As discussed in Sec-
tion 4.3, the inferred scores are estimated by the sampling from the policy instances (π̂1, · · · , π̂p).
Due to uncertainty, we obtain the upper and lower bounds of the inferred score with a confidence
interval of at least 1 − α via the SIMUEM method (Jia et al., 2020) based on the Clopper-Pearson
method. Specifically, the SIMUEM directly estimates the upper and lower bounds of the inferred
scores IAl

(st, π) = Pr[argmaxai
Qπ(st, ai) = Al] based on the frequencies (ni, · · · , nL) of each

Al produced by the policy instances as

IAl
= Beta

(α
L
;nl, p− nl + 1

)
,

IAi
= Beta

(
1− α

L
;ni + 1, p− ni

)
, ∀i ̸= l .

To determine the maximum tolerable poisoning size rt for a given state st, a binary search is per-
formed over the domain of K. As described in Section 3.3 and Appendix A.2, K represents the set
of (δ, ϵ) or (α, ϵ) pairs that satisfy the privacy guarantees of the respective DP training algorithm.
The binary search operates within a predefined range, such as (0, 500), aiming to identify the largest
radius rt that meets the condition specified in Theorem 4.4, provided there exist K1 and K2 within
the domain of K.

A.6 ADDITIONAL RESULTS OF ACTION-LEVEL CERTIFICATION

The Figure 4 and Table 1 show additional experimental results of action-level robustness certification
and training statics.

Figure 4: Stability ratio versus the tolerable poisoning threshold r̄ for action-level robustness with
ADP. Results are presented for two Atari games, Freeway and Breakout with RL algorithms DQN
and C51 under transition- and trajectory-level poisoning. The blue, green, and red lines represent
our proposed certified defense.

A.7 ADDITIONAL RESULTS AGAINST EMPIRICAL ATTACKS

To assess the performance of certifications relative to trajectory-level attacks, we implemented two
attacks against HalfCheetah when defended using RDP at σ = 2.0, with the results presented below.
These attacks include one in which the rewards in a subset of trajectories are replaced with r′i ∼
Uniform[−1, 1] (Random Reward); and one where they are replaced by r′i = −ri (Adversarial
Reward), following the methodology of Ye et al. (2023). For each attack, our experiments were
conducted over 150 runs to provide the estimated expected cumulative reward (Est. ECR) with 95%
confidence intervals, and the minimum cumulative reward among all the runs. The corresponding
policy-level robustness certification (certified lower bound on ECR) Jr for each poisoning size 10%
(r = 200) and 20% (r = 400) are shown as the same as in Figure 3 in the paper.
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Environment Method Noise
Action-level Max Radii

DQN C51
Transition Trajectory Transition Trajectory

Freeway Proposed (RDP)

0.0 N/A N/A N/A N/A
1.0 159 37 144 29
2.0 186 66 186 59
3.0 200 136 200 83

COPA N/A N/A 13 N/A 10

Breakout Proposed (RDP)

0.0 N/A N/A N/A N/A
1.0 99 98 100 100
1.5 99 99 100 100
2.0 118 117 120 120

COPA N/A N/A 25 N/A 24

Table 2: Our proposed method with RDP. The maximum value of maximum tolerable poisoning
size rt of the action-level robustness for the evaluated environments, certified methods, noise levels,
and RL algorithms.

Environment Method Noise
Action-level Mean Radii

DQN C51
Transition Trajectory Transition Trajectory

Freeway Proposed (ADP)

0.0 N/A N/A N/A N/A
1.0 0.3 0.3 0.0 0.0
2.0 18.0 0.7 11.3 1.7
3.0 20.5 20.0 9.6 2.1

Breakout Proposed (ADP)

0.0 N/A N/A N/A N/A
1.0 0.1 0.07 0.1 0.04
1.5 0.09 0.05 0.1 0.03
2.0 0.18 0.08 0.3 0.10

Table 3: Our proposed method with ADP. The mean value of maximum tolerable poisoning size rt
of the action-level robustness for the evaluated environments, certified methods, noise levels, and
RL algorithms.

Environment Method Noise
Action-level Max Radii

DQN C51
Transition Trajectory Transition Trajectory

Freeway Proposed (ADP)

0.0 N/A N/A N/A N/A
1.0 1 1 0 0
2.0 23 3 18 7
3.0 28 28 16 16

Breakout Proposed (ADP)

0.0 N/A N/A N/A N/A
1.0 10 4 11 5
1.5 10 4 11 5
2.0 10 4 11 5

Table 4: Our proposed method with ADP. The max value of maximum tolerable poisoning size rt of
the action-level robustness for the evaluated environments, certified methods, noise levels, and RL
algorithms.

The results demonstrate that the empirical performance of our certified defense significantly exceeds
the certified lower bound. This observation aligns with the theoretical framework, which defines the
certified lower bound as a guarantee for the worst-case scenario, and it provides a conservative
measurement of the robustness against attack.

Attack (Trajectory-level) Poisoning Proportion Est. ECR Min Cumulative Reward Certified Lower Bound on ECR (Jr)

Random Reward 10% 79.73 ± 0.44 76.52 48.76
Random Reward 20% 75.94 ± 0.74 71.96 23.17

Adversarial Reward 10% 68.49 ± 0.93 61.33 48.76
Adversarial Reward 20% 60.97 ± 0.58 56.39 23.17

Table 5: Trajectory-level defence with RDP and noise σ = 2.0 against empirical attacks in the game
Halfcheetha.
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