
A Algorithm

We provide the pseudo code for our method in Algorithm 2, the detailed description of which is in
Section 3.1.

Algorithm 2: Algorithm for CCA-SSG
Input: A graph G = (X,A) with N nodes, where X is node feature matrix, and A is the

adjacency matrix. Augmentations T , encoder f✓ by random initialization, trade-off
hyper-parameter �, maximum training steps T .

Output: Learned encoder f✓.
1 while not reaching T do
2 Sample two augmentation functions tA, tB ⇠ T ;
3 Generate transformed graphs: G̃A = (X̃A, ÃA), G̃B = (X̃B , ÃB) ;
4 Get node embeddings through the graph neural network as encoder:

ZA = f✓(X̃A, ÃA),ZB = f✓(X̃B , ÃB) ;
5 Normalize embeddings along instance dimension: Z̃A = ZA�µ(ZA)

�(ZA)⇤
p
N
, Z̃B = ZB�µ(ZB)

�(ZB)⇤
p
N

;
6 Calculate the loss function L according to Eq. (5) ;
7 Update ✓ by gradient descent;
8 Inference: Z = f✓(X,A), where ✓ is the frozen parameters of the encoder.

B Discussions on Degenerated Solutions in SSL

In this section we provide an illustration and some discussions for degenerated (collapsed) solutions,
or namely trivial solutions, in self-supervised representation learning. The discussion is inspired by the
separation of complete collapse and dimensional collapse proposed in [19]. We show that our method
naturally avoids complete collapse through feature-wise normalization, and could prevent/alleviate
dimensional collapse through the decorrelation term Eq. (7).

In most contrastive learning methods especially the augmentation-based ones [46, 16, 5, 40], both
positive pairs and negative pairs are required for learning a model. For instance, the widely adopted
InfoNCE [46] loss has the following formulation:

LInfoNCE = � log
exp

�
zAi · zBi /⌧

�
P

j exp
�
zAi · zBj /⌧

� , (18)

where zAi and zBi are the (normalized) embeddings of two views of the same instance i, and ⌧ is the
temperature hyperparameter. The numerator enforces similarity between positive pairs (two views
of the same instance), while the denominator promotes dis-similarity between negative pairs (two
views of different instances). Therefore, minimizing Eq. (18) is equivalent to maximizing the cosine
similarity of positive pairs and meanwhile minimizing the cosine similarity of negative pairs. Note
that the normalization is applied for each instance (projecting the embedding onto a hypersphere),
so we are essentially minimizing the distances between positive pairs and maximizing the distance
between negative pairs. The previous work [50] provides a thorough analysis on the behaviors of the
objective by decomposing it into two terms: 1) alignment term (for positive pairs) and 2) uniformity
term (for negative pairs).

The alignment loss is defined as the expected distance between positive pairs:

Lalign , E(x,y)⇠ppos kf(x)� f(y)k↵2 , with ↵ > 0. (19)

The uniformity loss is the logarithm of the average pairwise Gaussian potential:

Luniformity , logEx,y⇠pdatae
�tkf(x)�f(y)k2

2 , with t > 0 (20)

Intuitively, the alignment term makes the positive pairs close to each other on the hypersphere, while
the uniformity term makes different data points distribute on the hypersphere uniformly.

15

(a) complete collapse (b) uniformity (c) dimensional collapse (d) decorrelation

Figure 4: An illustration of the two types of collapse and how to deal with them with a 2-d case. Blue
circles are data points. Fig. 4(a): complete collapse, when all data samples degenerate to a same
point on the hypersphere. Fig. 4(b): the uniformity loss keeps positive pairs close, but forces all
data points to distribute on the hypersphere uniformly. Fig. 4(c): in dimensional collapse, the data
points are not projected onto the hypersphere, but they distribute nearly as a line in the space, making
them hard to discriminate. Fig. 4(d): the decorrelation term prevents dimensional collapse by directly
decorrelating each dimensional representations, which implicitly scatters the data points.

In particular, only considering the alignment term in Eq. (19) will lead to trivial solutions: all the
embeddings would degenerate to a fixed point on the hypersphere. This phenomenon is called
complete collapse [19]. Denote ZA and ZB as two embedding matrix of two views (Z 2 RN⇥D

and is row normalized), then in this case ZAZ>
B
⇠= 1 is an all-one matrix (so as ZAZ>

A and ZBZ>
B).

The uniformity term in Eq. (20) prevents complete collapse by separating the embeddings of arbitrary
two data points, so that the data points would be embedded uniformly on the hypersphere. Fig. 4(a)
and 4(b) provide an illustration for complete collapse and how the uniformity term prevents it.

Another kind of collapse that has been neglected by most existing works is dimensional collapse [19].
Different from complete collapse where all the data points degenerate into a single point, dimensional
collapse means data points are distributed on a line, and each dimension captures exactly the same
features (or different dimensions are highly correlated can capture the same information). Note
that if the data representations are normalized along feature dimensions, all the data points would
be projected onto a hypersphere. Under this circumstance there will not be dimensional collapse.
However, if we normalize the output along the instance dimension so that each column has zero-mean
and 1/

p
N -standard deviation, as is done in this paper in Eq. (6), merely optimizing Eq. (6) would

not prevent dimensional collapse, i.e. Z̃>Z̃ ⇠= 1 (Z̃ 2 RN⇥D is normalized by column).

In our model, the feature decorrelation term in Eq. (7) exactly prevents dimensional collapse by

minimizing
���Z̃>Z̃� I

���
2

F
. Note that the diagonal term is always equal to 1, so we are pushing each

dimension to capture orthogonal features. Also, the feature decorrelation term implicitly scatters the
data points in the space, making them distinguishable for downstream tasks [19, 8]. An illustration
of the dimensional collapse and the effect of feature decorrelation is provided in Fig. 4(c) and 4(d),
respectively.

C Properties of Mutual Information and Entropy

In this section, we enumerate some useful properties of mutual information and entropy that will be
used in Appendix D for proving the theorems. For any random variables A,B,C,X,Z, we have:

• Property 1. Non-negativity:

I(A,B) � 0, I(A,B|C) � 0. (21)

• Property 2. Chain rule:

I(A,B,C) = I(A,B)� I(A,B|C). (22)

• Property 3. Data Processing Inequality (DPI). Z = f✓(X), then:

I(Z,A) = I(f✓(X), A)  I(X,A) (23)

16

• Property 4. Non-negativity of discrete entropy. For discrete random variable:
H(A) � 0, H(A|B) � 0. (24)

• Property 5. Relationship between entropy and mutual information:
H(A) = H(A|B) + I(A,B). (25)

• Property 6. Entropy of deterministic function. If Z is deterministic given X:
H(Z|X) = 0 (26)

• Property 7. Entropy of Gaussian distribution. Assume X obeys a k-dimensional Gaussian
distribution, X ⇠ N (µ,⌃), and we have

H(X) =
k

2
(ln 2⇡ + 1) +

1

2
ln |⌃|. (27)

D Proofs in Section 4

As already introduced in Section 4, we use X and S to denote the data and its augmentations
respectively. We use ZX and ZS to denote their embeddings through the encoder f✓: ZX = f✓(X),
ZS = f✓(S). We aim to learn the optimal encoder parameters ✓.

D.1 Proof of Proposition 1

Restate Proposition 1:

Proposition 1. In expectation, minimizing Eq. (6) is equivalent to minimizing the entropy of ZS

conditioned on the input X , i.e.,:

min
✓

Linv
⇠= min

✓
H(ZS |X) (28)

Proof. Assume input data come from a distribution x ⇠ p(x) and s is a view of x through random
augmentation s ⇠ paug(·|x). Denote zs as the representation of s. Note that s1 and and s2 both
come from paug(·|x).

Recall the invariance term: Linv =
���Z̃A � Z̃B

���
2

F
=

NP
i=1

DP
k=1

⇣
z̃Ai,k � z̃Bi,k

⌘2
. If we ignore the

normalization and use s1 and s2 to represent view A and view B. We have:

Linv/N ⇠=Ex

DX

k=1

Es1,s2⇠p(·|x)(z
s1
k � zs2

k)2
!

=Ex

DX

k=1

Es1,s2⇠p(·|x)(z
s1
k

2 + zs2
k

2 � 2 ⇤ zs1
k zs2

k)

!

=2 ⇤ Ex

DX

k=1

Vs⇠p(·|x)z
s
k

!

=2 ⇤
DX

k=1

Ex

�
Vs⇠p(·|x)z

s
k

�

(29)

This indicates that minimizing Linv is to minimize the variance of augmentation’s representations
conditioned on the input data.

Note the decorrelation term Eq. (7) aims to learn orthogonal representations at each dimension. If the
representations are perfectly decorrelated, then H(ZS |X) =

P
k
H(ZS,k|X). With Assumption 1,

each dimensional representation also obeys a 1-dimensional Gaussian distribution, whose entropy
is H(ZS,k|X) = 1

2 log 2⇡e�
s
k
2. This indicates by minimizing the variance of features at each

dimension, its entropy is also minimized. Hence we have Proposition 1.

Remark 1. I(ZS , S|X) = H(ZS |X)�H(ZS |S,X) = H(ZS |X) (Property 6 in Appendix C). So

I(ZS , S|X) is also minimized.

17

D.2 Proof of Proposition 2

Restate Proposition 2:

Proposition 2. Minimizing Eq. (7) is equivalent to maximizing the entropy of ZS , i.e.,

min
✓

Ldec
⇠= max

✓
H(ZS). (30)

Proof. With the assumption that ZS obeys a Gaussian distribution, we have:

max
✓

H(ZS) ⇠= max
✓

log |⌃ZS |, (31)

where |⌃ZS | is the determinant of the covariance matrix of the embeddings of the augmented data.
Note that in our implementation we normalize the embedding matrix along the instance dimension:
⌃ZS

⇠= Z̃>
S Z̃S , so the diagonal entries of ⌃ZS are all 1’s. And ⌃ZS 2 RD⇥D is a symmetric matrix.

If �1,�2, · · · ,�D are the D eigenvalues of ⌃ZS , then
DP
i=1

�i = trace(⌃ZS) = D. We have

log |⌃Z✓,X0 | = log
DY

i=1

�i =
DX

i=1

log �i  D log

DP
i=1

�i

D
| {z }

Jensen Inequality

= 0. (32)

This means that the upper bound of |⌃ZS | is 1, and the upper bound is achieved if and only if �i = 1
for 8i, which indicates ⌃ZS is an identity matrix. This global optimum is exactly the same as that of
the feature decorrelation term Ldec in Eq. (7). Therefore we conclude the proof.

D.3 Proof of Theorem 1

Restate Theorem 1:

Theorem 1. By optimizing Eqn (5), we maximize the mutual information between the view’s

embedding ZS and the input data X , and minimize the mutual information between the view’s

embedding ZS and the view it self S, conditioned on the input data X . Formally,

min
✓

L) max
✓

I(ZS , X) and min
✓

I(ZS , S|X). (33)

Proof. According to Remark 1, we have:

I(ZS , S|X) = H(ZS |X). (34)

According to Property 5 in Appendix C, we have:

I(ZS , X) = H(ZS)�H(ZS |X). (35)

Then combining Proposition 1 and Proposition 2, we conclude the proof.

D.4 Proof of Theorem 2

Restate Theorem 2:

Theorem 2. Assume 0 < �  1, then by minimizing Eq. (5), the self-supervised Information

Bottleneck objective is maximized, formally:

min
✓

L) max
✓

IBssl. (36)

18

Proof. According to Property 5 in Appendix C, we can rewrite the IB principle in SSL setting as:
IBssl = [H(ZS)�H(ZS |X)]� � [H(ZS)�H(ZS |S)] . (37)

Notice that ZS is deterministic given S: ZS = f✓(S). According to Property 5 in Appendix C, we
have H(ZS |S) = 0. Hence, we further have the following relationship

IBssl = (1� �)H(ZS)�H(ZS |X). (38)

Let � = 1 � � � 0. Now we can decompose the objective IBssl into two terms: 1) maximizing
H(ZS), which increases the information entropy of the embeddings of augmented data. 2) minimizing
H(ZS |X), which decreases the entropy of the embeddings of augmented data, conditioned on the
original data.

With Proposition 1 and Proposition 2, we complete the proof.

D.5 Proof of Corollary 1

Restate Corollary 1:

Corollary 1. Let X1 = S, X2 = X and assume 0 < �  1, then minimizing Eq. (5) is equivalent to

minimizing the Multi-view Information Bottleneck Loss in [9]:

LMIB = I(Z1, X1|X2)� �I(X2, Z1), 0 < �  1 (39)

By maximizing I(X2, Z1), the model could obtain sufficient information for downstream tasks by
ensuring the representation Z1 of X1 is sufficient for X2, and decreasing I(Z1, X1|X2) will increase
the robustness of the representation by discarding irrelevant information.

Proof. Let X1 = S,X2 = X be two views of the input data. We have:
LMIB = I(ZS , S|X)� �I(X,ZS)

= [H(ZS |X)�H(ZS |S,X)]� �[H(ZS)�H(ZS |X)]

= (1� �)H(ZS |X)� �H(ZS)�H(ZS |S,X).

(40)

As ZS is deterministic given S, we can obtain H(ZS |S,X) = 0. Based on this, we can further
simplify LMIB as

LMIB = H(ZS |X)� �H(ZS), with � > 0. (41)
With Proposition 1 and Proposition 2, we complete the proof.

D.6 Proof of Corollary 2

Restate Corollary 2:

Corollary 2. When the data augmentation process is reversible, minimizing Eq. (5) is equivalent to

learning the Minimal and Sufficient Representations for Self-supervision in [45]:

Zssl

X = argmax
ZX

I(ZX , S), Zsslmin

X = argmin
ZX

H(ZX |S) s.t. I(ZX , S) is maximized. (42)

Zssl
X is the sufficient self-supervised representation by maximizing I(ZX , S), and Zsslmin

X is the
minimal and sufficient representation by minimizing H(ZX |S).

Proof. Eq. (42) can be converted to minimizing the relaxed Lagrangian objective as below
Lsslmin = H(ZX |S)� �I(ZX , S), with � > 0. (43)

Then Lsslmin could be decomposed into
Lsslmin = H(ZX |S)� �I(S,ZX)

= H(ZX |S)� �[H(ZX)�H(ZX |S)]
= (1 + �)H(ZX |S)� �H(ZX)

(44)

With � > 0, Lsslmin is essentially a symmetric formulation of Eq. (38), by exchanging X with S, and
ZX with ZS . With the assumption that the data augmentation process is reversible and according to
Proposition 1 and Proposition 2, we conclude the proof.

19

D.7 Proof of Theorem 3

Restate Theorem 3:

Theorem 3 (task-relevant/irrelevant information). By optimizing Eq. (5), the task-relevant informa-

tion I(ZS , T) is maximized, and the task-irrelevant information H(ZS |T) is minimized. Formally:

min
✓

L) max
✓

I(ZS , T) and min
✓

H(ZS |T). (45)

Proof. Note that with Assumption 2, we have I(X,T |S) = I(S, T |X) = 0. Therefore we obtain
0  I(ZS , T |X)  I(S, T |X) = 0, which induces I(ZS , T |X) = 0. Then we can derive

I(ZS , T) =I(ZS , T |X) + I(ZS , X, T)

=0 + I(ZS , X)� I(ZS , X|T)
=I(ZS , X)� I(ZS , X|T)
�I(ZS , X)� I(X,S|T)

(46)

and

H(ZS |T) =H(ZS |X,T) + I(ZS , X|T)
=H(ZS |X)� I(ZS , T |X) + I(ZS , X|T)
=H(ZS |X)� 0 + I(ZS , X|T)
H(ZS |X) + I(X,S|T)

(47)

Note that I(X,S|T) is a fixed gap indicating the amount of task-irrelevant information shared
between X and S.

With Theorem 1, by optimizing the objective Eq. (5), we maximize the lower bound of the task-
relevant information I(ZS , T), and minimize the upper bound of the task-irrelevant information
H(ZS |T). Then the proof is completed.

E Implementation Details

E.1 Loss function

In our implementation we did not directly use the original loss function as given in Eqn. (5). For
simplicity, we use its equivalent form, which can be easily derived from the following equation:

���Z̃A � Z̃B

���
2

F
=

DX

k=1

NX

i=1

(z̃A
i,k � z̃B

i,k)
2

=
DX

k=1

NX

i=1

�
(z̃A

i,k)
2 + (z̃B

i,k)
2 � 2 ⇤ z̃A

i,kz̃
B
i,k

�

=
DX

k=1

(2� 2 ⇤ Z̃>
A,kZ̃B,k)

=2D � 2 ⇤ trace(Z̃>
A Z̃B)

(48)

So we can rewrite the objective function Eqn. (5) as the following one:

L = �trace(Z̃>
A Z̃B) + �0

✓���Z̃>
AZ̃A � I

���
2

F
+
���Z̃>

BZ̃B � I
���
2

F

◆
(49)

where the �0 here should be half of the � in Eqn. (5). For simplicity we do not discriminate between
these two symbols. The values of the trade-off parameter � in Fig 2 as well as that in Appendix E.4
are actually denoted as �0 in Eqn. (49).

20

Table 6: Statistics of benchmark datasets
Dataset #Nodes #Edges #Classes #Features

Cora 2,708 10,556 7 1,433
Citeseer 3,327 9,228 6 3,703
Pubmed 19,717 88,651 3 500

Coauthor CS 18,333 327,576 15 6,805
Coauthor Physics 34,493 991,848 5 8,451

Amazon Computer 13,752 574,418 10 767
Amazon Photo 7,650 287,326 8 745

E.2 Graph augmentations

We adopt two random data augmentations strategies on graphs: 1) Edge dropping. 2) Node feature
masking. The two strategies are widely used in node-level contrastive learning [57, 58, 39].

• Edge dropping works on the graph structure level, where we randomly remove a portion of
edges in the original graph. Formally, given the edge dropping ratio pe, for each edge we
have pe probability to drop this edge from the graph. When calculating the degree for each
node, the dropped edge will not be considered.

• Node feature masking works on the node feature level, where we randomly set a fraction
of features of all nodes as 0. Formally, given the node feature masking ratio pf , for each
input feature, we set it as 0 with a probability of pf . Note that the masking operation is
applied to the selected feature columns of all the nodes.

Note that the previous works [57, 58, 39] use two separate sets of edge dropping ratio pe and node
feature dropping ratio pf for generating two views, i.e. pe1 and pf1 for view A, pe2 and pf2 for view
B. However, in our implementation, we let pe1 = pe2 and pf1 = pf2 , so that the two transformations
tA and tB come from the same distribution T .

E.3 Datasets

We evaluate our models on seven node classification benchmarks: Cora, Citeseer, Pubmed, Coauthor

CS, Coauthor Physics, Amazon Computer and Amazon Photo. We provide dataset statistics in Table 6,
and brief introduction and settings are as follows:

Cora4, Citeseer, Pubmed5 are three widely used node classification benchmarks [34, 29]. Each
dataset contains one citation network, where nodes mean papers and edges mean citation relationships.
We use the public split for linear evaluation, where each class has fixed 20 nodes for training, another
fixed 500 nodes and 1000 nodes are for validation/test respectively.

Coauther CS, Coauther Physics are co-authorship graphs based on the Microsoft Academic Graph
from the KDD Cup 2016 challenge [35]. Nodes are authors, that are connected by an edge if they
co-authored a paper; node features represent paper keywords for each author’s papers, and class
labels indicate most active fields of study for each author. As there is no public split for these datasets,
we randomly split the nodes into train/validation/test (10%/10%/80%) sets.

Amazon Computer, Amazon Photo are segments of the Amazon co-purchase graph [26], where
nodes represent goods, edges indicate that two goods are frequently bought together; node features
are bag-of-words encoded product reviews, and class labels are given by the product category. We
also use a 10%/10%/80% split for these two datasets.

For all datasets, we use the processed version provided by Deep Graph Library [49]6. All datasets are
public available and do not have licenses.

4
https://relational.fit.cvut.cz/dataset/CORA

5Citeseer and Pubmed: https://linqs.soe.ucsc.edu/data
6
https://docs.dgl.ai/en/0.6.x/api/python/dgl.data.html, Apache License 2.0

21

https://relational.fit.cvut.cz/dataset/CORA
https://linqs.soe.ucsc.edu/data
https://docs.dgl.ai/en/0.6.x/api/python/dgl.data.html

Table 7: Details of hyper-parameters of the experimental results in Table 2 and Table 3.

Dataset CCA-SSG Logistic Regression
Steps # layers # hidden units � lr wd pf pe lr wd

Cora 50 2 512-512 1e-3 1e-3 0 0.1 0.4 1e-2 1e-4
Citeseer 20 1 512 5e-4 1e-3 0 0.0 0.4 1e-2 1e-2
Pubmed 100 2 512-512 1e-3 1e-3 0 0.3 0.5 1e-2 1e-4

Computer 50 2 512-512 5e-4 1e-3 0 0.1 0.3 1e-2 1e-4
Photo 50 2 512-512 1e-3 1e-3 0 0.2 0.3 1e-2 1e-4
CS1 50 2 512-512 1e-3 1e-3 0 0.2 - 5e-3 1e-4

Physics 100 2 512-512 1e-3 1e-3 0 0.5 0.5 5e-3 1e-4
1 We use MLP (instead of GCN) as the encoder on Coauthor-CS, which is essentially equivalent to setting
pe = 1.0 (drop all the edges except the self-loops).

In Table 2, we have mentioned that for MVGRL [15] and GRACE [57], we reproduce the experiments
with authors’ codes, both of which are publicly available: MVGRL7 and GRACE8.

E.4 Hyper-parameters

We provide all the detailed hyper-parameters on the seven benchmarks in Table 7. All hyper-
parameters are selected through small grid search, and the search space is provided as follows:

• Training steps: {20, 50, 100, 200}
• Number of layers: {1, 2, 3}
• Number of hidden units: {128, 256, 512, 1024}
• �: {1e-4, 5e-4, 1e-3, 5e-3, 1e-2}
• learning rate of CCA-SSG: {5e-4, 1e-3, 5e-3}
• weight decay of CCA-SSG: {0, 1e-5, 1e-4, 1e-3}
• edge dropping ratio: {0, 0.1, 0.2, 0.3, 0.4, 0.5}
• node feature masking ratio: {0, 0.1, 0.2, 0.3, 0.4, 0.5}
• learning rate of logistic regression: {1e-3, 5e-3, 1e-2}
• weight decay of logistic regression: {1e-4, 1e-3, 1e-2}

F Additional Experiments

F.1 Visualizations of Correlation Matrix

In Fig. 5, we provide visualizations of the absolute correlation matrix of the raw input features, the
embeddings without decorrelation term, and embeddings with decorrelation term on three datasets:
Cora, Citeseer and Pubmed.

As we can see, the raw input feature of the three datasets are all nearly fully uncorrelated (Fig. 5(a),
5(d) and 5(g)). Specifically, the on-diagonal term is close to 1 while the off-diagonal term is close to
0. When training without the decorrelation term Eq. (7), the off-diagonal elements of the correlation
matrix of node embeddings increase dramatically as shown in Fig. 5(b) and 5(h), indicating that
different dimensions fail to capture orthogonal information. Fig. 5(c) and 5(i) show that with the
decorrelation term Eq. (7), our method could learn nearly highly disentangled representations. An
interesting finding is that even without the decorrelation term, on Citeseer our method could still
generate fairly uncorrelated representations (Fig. 5(e)). The possible reason is that: 1) on Citeseer,
we use a one-layer GCN as the encoder, which is less expressive than a two-layer one and alleviate
the trend of collapsing. 2) The number of training steps on Citeseer is much smaller than others, so
that the impact of invariance term is weaken.

7
https://github.com/kavehhassani/mvgrl, no license.

8
https://github.com/CRIPAC-DIG/GRACE, Apache License 2.0.

22

https://github.com/kavehhassani/mvgrl
https://github.com/CRIPAC-DIG/GRACE

(a) Cora: raw feature (b) Cora: w/o decorrelation (c) Cora: with decorrelation

(d) Citeseer: raw feature (e) Citeseer: w/o decorrelation (f) Citeseer: with decorrelation

(g) Pubemd: raw feature (h) Pubmed: w/o decorrelation (i) Pubmed: with decorrelation

Figure 5: Visualizations of the correlation matrix (absolute value) of the raw input features, the
embeddings without decorrelation term, and embeddings with decorrelation term on Cora, Citeseer

and Pubmed. Light green: ! 0; Dark blue: ! 1.

These visualizations also echo the dimensional collapse issue as discussed in Appendix B: without the
feature decorrelation term Eq. (7), there is a high probability that all the dimensions capture similar
semantic information, thus leading to the dimensional collapse issue. The dimensional collapse can
be fundamentally avoided by the decorrelation term Eq. (7).

F.2 Effects of Augmentation Intensity

We further explore the effects of augmentation intensity on downstream node classification tasks. We
try different combinations of the feature masking ratio pf and edge dropping ratio pe, and report the
corresponding performance on the 7 benchmarks mentioned in Appendix E.3. Other hyper-parameters
are the same as reported in Table 7. As we can see in Fig. 6, for each dataset there exists an optimal
pe/pf combination, that could help the model reach the best performance. Also, we find that our
method is not that sensitive to the augmentation intensity: as long as pe and pf are in a proper range,
our method could still achieve impressive and competitive performance. However, it is still very
important to select a proper augmentation intensity as well as augmentation method, in order for
label-invariant data augmentations for learning informative representations.

F.3 Performance under Low Label Rates

We further evaluate the node embeddings learned through CCA-SSG on downstream node classifica-
tion tasks (still using linear, logistic regression), with respect to various label rates (ratio of training
nodes). The experiments are conducted on three citation networks: Cora, Citeseer and Pubmed. In
the linear evaluation step, we follow the setups in [24]: we train the linear classifier with 1%, 2%,

23

(a) Cora (b) Citeseer (c) Pubmed

(d) Amazon-Computer (e) Amazon-Photo (f) Coauthor-CS (g) Coauthor-Physics

Figure 6: Visualizations of the effects of different augmentation intensity, by adopting different
combinations of feature masking ratio pf and edge dropping ratio pe, and we report test accuracy
(%). Each row represents a specific setting for edge dropping ratio pe and each column represents a
specific setting for feature masking ratio pf . Note that when pe = pf = 0 (the upper left entry in
each subfigure), the test accuracy for different datasets should be: 50.2 on Cora; 30.5 on Citeseer;
46.4 on Pubmed; 54.56 on Computer; 83.95 on Photo; 90.4 on CS; 87.85 on Physics. Since these
results are much worse than the others, we raise their values in each subfigure for better visualization.
On CS, the edge dropping ratio pe would make no difference to the performance as we use MLP as
the encoder, which does not take graph structure as input.

Table 8: Node classification Accuracy under low label rates (%).
Dataset Cora Citeseer Pubmed

Label Rate 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 0.05% 0.1% 0.3%

LP 62.3 65.4 67.5 69.0 70.2 40.2 43.6 45.3 46.4 47.3 66.4 65.4 66.8
Cheby 52.0 62.4 70.8 74.1 77.6 42.8 59.9 66.2 68.3 69.3 47.3 51.2 72.8
GCN 62.3 72.2 76.5 78.4 79.7 55.3 64.9 67.5 68.7 69.6 57.5 65.9 77.8

CCA-SSG 72.5 79.3 81.0 82.0 82.3 58.9 65.6 68.6 70.8 71.7 68.8 73.1 81.1

3%, 4%, 5% (resp. 0.05%, 0.1%, 0.3%) training nodes on Cora and Citeseer (resp. Pubmed), and
then test the model with another 1000 nodes. Both training nodes and testing nodes are randomly
selected for each trial, and we report the mean accuracy through 20 trials with random splits and
random initialization in Table 8.

We compare our method with Label Propagation, GCN with Chebyshev filter(Cheby) and the vanilla
GCN [22], whose results are taken from [24] as well. As we can see in Table 8, our method achieves
very impressive performance under low label rates, especially when the labeled nodes are really
scarce (i.e. 1% on Cora and Citeseer, 0.05% on Pubmed). This is because through self-supervised
pretraining, our method could fully utilize the information of unlabeled nodes, and learn good
representations for them, which make them easy to distinguish even with only a few number of
labeled nodes for training.

G Further Comparisons with previous contrastive methods

In Table 1 we have made a thorough comparison with typical contrastive methods from the technical
details. Here, we further compare our method with more existing contrastive self-supervised graph
models (both node-level and graph-level) from the perspective of their general, conceptual designs:
1) How they generate views. 2) The pairs for contrasting. 3) The loss function. 4) Downstream tasks

24

Table 9: Further conceptual comparison with existing contrastive learning methods on graphs. View

generation in general (how the method generate views): Cross-scale means this method treat elements
in different scales of the graph data as different views (e.g. node and graph); Fix-Diff means using
fixed graph diffusion [23] operation to create another view; Rand-Aug means using random graph
augmentations (e.g. edge dropping, feature masking, etc.) to generate views. Pairs represents the
contrasting components, where N is node and G is graph. Loss (i.e. the used loss function): NCE
represents Noise-Contrastive Estimation [13]; JSD represents Jensen-Shannon Mutual Information
Estimator [30]; InfoNCE represents InfoNCE Estimator [46]; MINE means Mutual Information
Neural Estimator [3]; BYOL means the asymmetric objective proposed in the BYOL paper [12].
Tasks denotes the downstream tasks (node-level, graph-level or edge-level) to which the method has
been applied.

Methods View generation in general Pairs Loss Tasks

In
st

an
ce

-le
ve

l

DGI [48] Cross-scale N-G NCE Node
InfoGraph [38] Cross-scale N-G JSD Graph
MVGRL [15] Fix-Diff + Cross-scale N-G NCE/JSD Node/Graph
GCC [33] Rand-Aug N-N InfoNCE Node/Graph
GMI [31] Hybrid1 Hybrid MINE/JSD Node/Edge
GRACE [57] Rand-Aug N-N InfoNCE Node
GraphCL [52] Rand-Aug G-G InfoNCE Graph
GCA [58] Rand-Aug N-N InfoNCE Node
CSSL [54] Rand-Aug G-G InfoNCE Graph
IGSD [55] Rand-Aug G-G BYOL+InfoNCE Graph
GraphLog [28] Rand-Aug N-P-G2 InfoNCE Graph
BGRL [39] Rand-Aug N-N BYOL Node
MERIT [27] Fix-Diff + Rand-Aug N-N BYOL+InfoNCE Node

CCA-SSG (Ours) Rand-Aug F-F CCA Node
1 The view generation and contrasting pairs in GMI [31] is unique and complex, and could not be

classified into any category.
2 P denotes hierarchical prototype and could be seen as clustering centroid.

(i.e., node-level, edge-level or graph-level). The comparison is shown in Table 9. Note that this is a
high-level comparison with general taxonomy, and each method may have distinct implementation
details and specific designs.

We highlight that all of the previous methods focus on contrastive learning at instance level. Our paper
proposes a non-contrastive and non-discriminative objective as a new self-supervised representation
learning framework, inspired by canonical correlation analysis.

25

