A Proof of Proposition 1

Proof. The cross entropy loss for binary classification suffices to solve

min —Eg, {u log(p1) + (1 — w) log(pg)}
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Denoting the cross entropy loss above by L, the optimization of w1, ws are performed by
'u;i(—wi—nvwiL, i:1,2,

hence w = wy — w + [(wy — w2) — N(Vew, L — V,L)| = w — nVy, L, which are optimized

equivalently. O

B Proof of Proposition 2

Proof. Suppose that  — 1y is a classification model, and y — p is the softmax activation. Then the

gradient attributions of y; are ¢*(x), := Joy; and the gradient attributions of p, are
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Hence weighted contrastive explanations of class ¢ are essentially direct explanations with respect to
the probability p; value. O

C Proof of Proposition 3

Proof. Let "¢ € R% be the attribution scores at the [-th step starting from 7*-*, which is the score
for ys. VI, k € [L], s € [c], let £17%(r1:*) = %% be the propagation at the from the I-th step to the

k-th step, where | < k. The weighted contrast of ' is 7t g = 7t — 37, a7, Then the
propagated scores to the k-th step is
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Let k£ = L, then it equals to the weighted contrast at the input space. [

D Detailed Analysis of fig. d]

Here we present detailed analysis of the weighted contrastive explanations of samples in fig.
Different from original GradCAM, which tend to highlight the entire object for both classes, weighted
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Figure 6: Detailed demonstration of the samples from CUB-200 in fig. ] of the main paper. Each
image is shown in one block separated by dashed lines. In each block, the top two images are weighted
contrastive GradCAM explaining the top two classes (with the highest predicted probabilities p).
We highlight the top features according to weighted contrastive GradCAM and compare them with
4 correctly classified images shown below, 2 of which from each class, respectively. In contrast
to original GradCAM highlighting the entire objects (shown in fig. ), the weighted contrastive
explanations focus more on the contrastive features.

contrastive GradCAM highlights very different areas. We conduct empirical analysis and compare
the highlighted areas to check if these areas are semantically meaningful. The results are shown in
fig.[6l For each sample, we consider the top 2 classes predicted and check the correctly predicted
images of those classes. Then we compare the highlighted areas of those correctly predicted images
and the corresponding samples. It can be found in fig. [6 that the highlighted features are visually
similar.

E Visualizations of Other Data

Here we demonstrate results of datasets other than CUB-200. The visualizations of FGVC are shown
in fig.[7] THe visualizations of Flower-102 are shown in fig. [§] The visualizations of Food-101
are shown in fig. 9] The visualizations of Stanford Cars are shown in fig. The alignment of
images follows ﬁgl% From these visual results, same conclusion can be drawn. Original explanation
methods tend to fail capturing shared features while our weighted contrastive method succeeds.

F Quantitative Results of AlexNet

Here we present the blurring/masking experiments for AlexNet. The only difference between table|T]
is the models tested. The results are shown in table[2] It can be found that in general the weighted
contrastive methods outperform the original methods.
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Figure 7: FGVC images of original explanations and weighted contrastive explanations over Grad-
CAM and Linear Approximation. The alignment follows fig. [}
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Figure 8: Flower-102 images of original explanations and weighted contrastive explanations over
GradCAM and Linear Approximation. The alignment follows fig. ]
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Figure 9: Food-101 images of original explanations and weighted contrastive explanations over
GradCAM and Linear Approximation. The alignment follows fig. 4]
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Figure 10: Stanford Cars images of original explanations and weighted contrastive explanations over
GradCAM and Linear Approximation. The alignment follows fig. ]

Table 2: Comparisons between the weighted contrastive method (wtd.) and the original (ord.)
method in blurring/masking experiments on 5 datasets. Here the model tested is AlexNet, and other
settings follow those of table|[I]

Gaussian Blur Zeros Channel-wise Mean

Pt Pos. Features | Neg. Features Pos. Features | Neg. Features Pos. Features [ Neg. Features

ori. wtd. | ori. witd. ori. wid. | ori. wtd. ori. wtd. | ori. wtd.
LA t1 0.698 0.759 0.809 0.396 0.240 0.675 0.699 0.422 0.318 0.727 0.766 0.396 0.275
CUB-200 to 0.302 0.604 0.769 0.422 0.204 0.588 0.695 0.443 0.294 0.605 0.740 0.430 0.233
GC t 0.698 0.762 0.824 0.415 0.228 0.727 0.764 0.426 0.284 0.758 0.816 0.420 0.236
to 0.302 0.547 0.784 0.393 0.174 0.535 0.736 0.409 0.236 0.550 0.781 0.398 0.192
LA t1 0.702 0.769 0.823 0.364 0.218 0.671 0.678 0.419 0.329 0.709 0.736 0.397 0.267
FGVC to 0.298 0.697 0.801 0.351 0.169 0.644 0.692 0.423 0.321 0.665 0.754 0.395 0.254
GC t1 0.702 0.769 0.842 0.361 0.195 0.722 0.744 0.398 0.275 0.744 0.800 0.382 0.229
to 0.298 0.673 0.815 0.340 0.157 0.653 0.733 0.398 0.264 0.673 0.785 0.371 0.213
LA t1 0.707 0.781 0.791 0.417 0.279 0.709 0.702 0.443 0.333 0.734 0.737 0.430 0.306
Food-101 to 0.293 0.670 0.738 0.381 0.208 0.651 0.682 0.422 0.296 0.664 0.709 0.409 0.261
GC t1 0.707 0.794 0.813 0.420 0.261 0.759 0.757 0.428 0.293 0.778 0.787 0.423 0.265
to 0.292 0.628 0.752 0.377 0.187 0.637 0.723 0.408 0.242 0.646 0.749 0.394 0.213
LA t1 0.728 0.824 0.819 0.342 0.234 0.719 0.737 0.462 0.296 0.768 0.760 0.460 0.264
Flower-102 to 0.272 0.686 0.790 0.361 0.182 0.693 0.720 0.378 0.271 0.690 0.754 0.368 0.252
Ge t1 0.728 0.814 0.858 0.418 0.189 0.758 0.824 0.404 0.244 0.792 0.863 0.396 0.218
to 0.272 0.516 0.820 0.409 0.136 0.494 0.757 0.423 0.172 0.506 0.775 0.410 0.158
LA t1 0.698 0.747 0.745 0.468 0.309 0.694 0.702 0.470 0.356 0.701 0.712 0.465 0.340
Stanford to 0.302 0.647 0.693 0412 0.240 0.656 0.665 0.419 0.303 0.662 0.679 0.421 0.287
Cars Ge t1 0.698 0.766 0.782 0.447 0.277 0.748 0.761 0.444 0.291 0.756 0.769 0.439 0.277
to 0.302 0.627 0.740 0.402 0.210 0.640 0.720 0.397 0.240 0.647 0.736 0.399 0.230

G Equal Blurring/Masking

It should be noticed that the original methods and corresponding weighted contrastive methods have
different highlighted areas, the proportions of areas of positive and negative values are different, too.
As a result, the areas of masked/blurred pixels are different. In order to alleviate the bias introduced
here, we carry out a equal blurring/masking experiment. It can be found that original methods tend
to have much larger positive areas than the negative areas, while contrasted weighted methods are
more balanced between these two. As a result, when masking/blurring the positive areas, we blur
the minimum of the number of pixels that are positive of the two methods. And on the contrary,
when masking/blurring the negative areas, we blur the maximum of the number of pixels that are
negative of the two methods. In this way, the same number of pixels are masked/blurred. The results
are shown in table[3] It can be found that the contrastive weighted methods still outperform original
methods by a large margin.
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Table 3: Comparisons between the weighted contrastive method (wtd.) and the original (ori.) in
blurring/masking experiments on 5 datasets. Here we apply the equal blurring/masking technique.
Other settings follow thos of table[T]

Gaussian Blur Zeros Channel-wise Mean

Dt Pos. [ Neg. Pos. [ Neg. Pos. [ Neg.
ori. wtd. | ori. witd. ori. wtd. | ori. wid. ori. wtd. | ori. witd.
LA t1 0.710 0.726 0.809 0.475 0.299 0.691 0.780 0.494 0.325 0.710 0.799 0.486 0.311
CUB-200 to 0.290 0.441 0.728 0.435 0.187 0.445 0.706 0.438 0.221 0.434 0.723 0.429 0.200
Ge t1 0.710 0.720 0.832 0.468 0.266 0.702 0.818 0.477 0.278 0.711 0.832 0.474 0.271
to 0.290 0.414 0.761 0.440 0.148 0411 0.735 0.448 0.167 0.410 0.743 0.445 0.151
LA t 0.694 0.744 0.796 0.407 0.258 0.700 0.733 0.446 0.320 0.716 0.758 0.424 0.290
FGVC to 0.306 0.633 0.769 0.373 0.191 0.606 0.695 0.428 0.268 0.620 0.731 0.409 0.239
Ge t1 0.694 0.774 0.854 0.392 0.204 0.719 0.801 0.419 0.262 0.738 0.821 0.401 0.238
to 0.306 0.634 0.819 0.351 0.150 0.609 0.747 0.396 0.204 0.614 0.775 0.384 0.182
LA t 0.714 0.766 0.856 0.319 0.179 0.739 0.818 0.348 0.221 0.747 0.827 0.333 0.205
Food-101 to 0.286 0.699 0.832 0.280 0.138 0.80 0.794 0.317 0.174 0.688 0.805 0.308 0.164
Ge t 0.714 0.794 0.891 0.297 0.130 0.778 0.867 0.309 0.156 0.782 0.875 0.301 0.144
to 0.286 0.709 0.879 0.261 0.099 0.697 0.856 0.287 0.124 0.703 0.867 0.280 0.116
LA t1 0.715 0.756 0.830 0.367 0.243 0.655 0.746 0.353 0.252 0.647 0.752 0.371 0.269
Flower-102 to 0.285 0.646 0.748 0.391 0.145 0.667 0.751 0.444 0.243 0.651 0.728 0.435 0.232
Ge t 0.715 0.799 0.878 0.361 0.176 0.748 0.844 0.322 0.149 0.751 0.840 0.339 0.166
to 0.285 0.596 0.812 0.358 0.120 0.651 0.825 0.398 0.160 0.619 0.818 0.388 0.153
LA t1 0.721 0.749 0.828 0.433 0.262 0.744 0.816 0.439 0.262 0.744 0.819 0.436 0.260
Stanford to 0.279 0.574 0.755 0.390 0.166 0.592 0.747 0.398 0.178 0.586 0.754 0.396 0.173
Cars GC t1 0.721 0.73 0.885 0.424 0.208 0.775 0.881 0.423 0.218 0.773 0.886 0.422 0.209
to 0.279 0.574 0.821 0.390 0.112 0.582 0.817 0.394 0.120 0.584 0.821 0.390 0.114
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